- 无标题文档
查看论文信息

论文中文题名:

 基于M估计的厚尾相依序列持久性变点在线监测    

姓名:

 程杨一    

学号:

 20201221053    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 时间序列分析    

第一导师姓名:

 赵高长    

第一导师单位:

 西安科技大学    

第二导师姓名:

 金浩    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Online monitoring of persistent change points in heavy-tail dependent sequences based on M-estimation    

论文中文关键词:

 厚尾相依序列 ; 持久性变点 ; M 估计 ; 在线监测 ; 渐近分布    

论文外文关键词:

 Heavy-tail dependent sequence ; Persistent change ; M-estimation ; Online monitoring ; Asymptotic distribution    

论文中文摘要:

变点问题是统计学中的一个热点问题,受到了国内外学者的广泛关注。越来越多的实证研究表明,地质、气候、经济等相关数据明显呈现出尖峰厚尾的特点,不能简单的利用高斯分布刻画其统计特征。时间序列的平稳与否决定了构建模型时采取的推断方法,因此应用实际数据建模时需先判定序列的平稳性。基于此,本文主要研究厚尾相依序列的持久性变点的在线监测问题。

在单变点情形下,考虑了厚尾相依序列持久性变点的监测问题。基于M估计,采用滑动比率型统计量,构造了一个稳健的M-Moving Ratio 监测统计量(简称MMR统计量)。基于广义的中心极限定理,推导了MMR统计量在原假设下的极限分布,且证明了从平稳过程(I(0)过程)到非平稳过程(I(1)过程)的变化下该统计量的一致性。针对MMR统计量无法判定从I(1)过程到I(0)过程变化的情况,提出了具备一致性的MMR-1统计量。数值模拟结果发现:MMR统计量和MMR-1统计量均不仅很好地控制了原假设下的经验水平,备择假设下有令人满意的的经验势,这表明文中方法能稳健地、快速地检测到持久性变点。最后利用一组滨江集团股票收盘价格数据实证分析,进一步验证了该方法的可行性和有效性。

鉴于观测序列数据的多变点现象经常发生,本文讨论了厚尾相依序列持久性多变点的监测检验。针对多变点问题,提出修正的MMR统计量,推导该统计量在原假设下的渐近分布,给出了备择假设下的发散速度。数值模拟结果表明:经验水平值稳定在显著性水平附近;而经验势随着带宽、厚尾指数的增加而增大。这表明了文中所给的监测方法适用于持久性多变点的检验。最后利用一组京东方A股票收盘价格数据实证分析,进一步验证了该方法的可行性和有效性。

论文外文摘要:

The change point problem is a hot issue in statistics, which has been widely concerned by scholars at home and abroad. More and more empirical studies show that geological, climatic, economic and other related data obviously show the characteristics of peaks and heavy tails, and it is not easy to use Gaussian distribution to describe their statistical characteristics. The stationarity of time series determines the inference method adopted in the construction of the model, so the stationarity of the series should be determined before the application of actual data modeling. Based on this, this paper mainly studies the problem of online monitoring of persistent change points of heavy-tail dependent sequences.

In the case of single change point, the problem of monitoring the persistent change point of heavy-tail dependent sequence is considered. Based on M-estimation, a robust M-moving Ratio monitoring statistic (MMR statistic for short) is constructed by using the moving ratio statistic. Based on the generalized central limit theorem, the limit distribution of the MMR statistic under the null hypothesis is derived, and the consistency of the statistic under the change from stationary process (I(0) process) to non-stationary process (I(1) process) is proved. In view of the fact that MMR statistics cannot determine the change from I(1) process to I(0) process, a consistent MMR-1 statistic is proposed. The numerical simulation results show that both MMR statistics and MMR-1 statistics not only well control the empirical sizes under the null hypothesis, but also have satisfactory empirical powers under the alternative hypothesis, which indicates that the method in this paper can detect the persistent change points robustly and quickly. Finally, based on a group of Binjiang Group stock closing price data, the feasibility and effectiveness of this method is verified.

In view of the frequent occurrence of variable points in observed sequence data, this paper discusses the monitoring and testing of persistent change points in heavy-tail dependent sequences. In this paper, a modified MMR statistic is proposed for the problem of change points. The asymptotic distribution of the statistic under the null hypothesis is derived, and the divergence velocity under the alternative hypothesis is given. The numerical simulation results show that the value of empirical sizes is stable around the significance level. The empirical powers increases with the increase of bandwidth and heavy-tail index. This indicates that the method proposed in this paper is suitable for the test of persistent change points. Finally, A group of BOE A stock closing price data is used for empirical analysis to further verify the feasibility and effectiveness of the method.

参考文献:

[1] Page, E. S. Continuous inspection schemes [J]. Biometrika, 1954, 42(6): 100-114.

[2] Caporin M, Gupta R. Time-varying persistence in US inflation[J]. Empirical Economics, 2017, 53: 423-439.

[3] Verdickt G, Annaert J, Deloof M. Dividend growth and return predictability: a long-run re-examination of conventional wisdom[J]. Journal of Empirical Finance, 2019, 52: 112-127.

[4] Bai J. Least squares estimation of a shift in linear processes[J]. Journal of Time Series Analysis, 1994, 15(5): 453-472.

[5] Bai J, Perron P. Estimating and testing linear models with multiple structural changes[J]. Econometrica, 1998: 47-78..

[6] Sen A, Srivastava, et al. On Tests for Detecting Change in Mean [J]. Annals of the Institute of Statistical Mathematics, 1975, 27(1): 479-486.

[7] Horváth L, Horváth Z, Hušková M. Ratio tests for change point detection[J]. Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen, 2008, 1: 293-304.

[8] Kokoszka P, Leipus R. Change-point in the mean of dependent observations[J]. Statistics & Probability Letters, 1998, 40(4):385-393.

[9] Chernoff H, Zacks S. Estimating the current mean of a normal distribution which is subjected to changes in time[J]. The Annals of Mathematical Statistics, 1964, 35(3): 999-1018.

[10] Miklós C, Lajos H. Limit theorems in change-point analysis[M]. John Wiley and Sons, 1997.

[11] M. Huÿskova. Estimators in the location model with gradual changes[J]. Commentationes Mathematicae Universitatis Carolinae, 1998, 39(1):147-157.

[12] D Jaruÿskova. Change-point estimator in gradually changing sequences[J]. Commentationes Mathematicae Universitatis Carolinae, 1998, 39(3):551-561.

[13] M. Hušková. Gradual changes versus abrupt changes[J]. Journal of Statistical Planning & Inference, 1999, 76(1–2):109-125.

[14] Dan W, Pengjiang G, Zhiming X. Detection and estimation of structural change in heavy-tailed sequence[J]. Communications in Statistics-Theory and Methods, 2017, 46(2): 815-827.

[15] Qin R, Liu W. Ratio Detection for Mean Change in α Mixing Observations [J]. Communications in Statistics, 2019, 48(7): 1693-1708.

[16] Zhao W, Tian Z, Xia Z. Ratio test for variance change point in linear process with long memory [J]. Statistical Papers, 2010, 51(2): 397-407.

[17] 刘彦红. 非参数回归模型方差变点的估计[D]. 西安科技大学, 2015.

[18] 王建锋. 斜率单变点分析[C]. 2004地质灾害调查与监测技术方法现场研讨会. 中国地质调查局, 2004.

[19] 李慧柳, 谭常春, 缪柏其. 至多一个斜率变点模型的收敛速度[J]. 中国科学技术大学学报, 2009 (9): 909-914.

[20] Perron P, Yamamoto Y, Zhou J. Testing jointly for structural changes in the error variance and coefficients of a linear regression model[J]. Quantitative Economics, 2020, 11(3): 1019-1057.

[21] Perron P, Yamamoto Y. Pitfalls of two-step testing for changes in the error variance and coefficients of a linear regression model[J]. Econometrics, 2019, 7(2): 22.

[22] Perron P, Yamamoto Y. The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence[J]. Empirical Economics, 2022, 62(3): 1193-1218.

[23] Andreea G. Halunga, Denise R. Osborn.Ratio-based estimators for a change point in persistence[J], Journal of Econometrics, 2012, 171(1): 24-31.

[24] Kejriwal M, Perron P, Zhou J. Wald tests for detecting multiple structural changes in persistence[J]. Econometric Theory, 2013, 29(2): 289-323.

[25] Perron P, Shintani M, Yabu T. Testing for flexible nonlinear trends with an integrated or stationary noise component[J]. Oxford Bulletin of Economics and Statistics, 2017, 79(5): 822-850.

[26] Choi I. Unit Root Tests for Dependent Micropanels[J]. The Japanese Economic Review, 2017, 70(2):145-167.

[27] Kejriwal M, Yu X, Perron P. Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series[J]. Journal of Time Series Analysis, 2020, 41(5): 676-690.

[28] Betken A, Kulik R. Testing for Change in Long‐Memory Stochastic Volatility Time Series[J]. Journal of Time Series Analysis, 2019, 40(5):707-738.

[29] Ramanayake A, Gupta A . Change Points with Linear Trend Followed by Abrupt Change for the Exponential Distribution[J]. Journal of Statistical Computation & Simulation, 2002, 72(4):263-278.

[30] Ramanayake, Asoka. Tests for a Change Point in the Shape Parameter of Gamma Random Variables[J]. Communications in Statistics, 2005, 33(4):821-833.

[31] 韩四儿, 田铮. ARCH模型的多变点检验[J]. 数学的实践与认识, 2007, 37(5): 38-44.

[32] 秦瑞兵, 田铮, 金浩. 持久性变点的非参数检验[J]. 西北工业大学学报, 2010, 28(02): 304-307.

[33] Duarte B, Saraiva P M . Detection of multiple structural changes in linear processes through Change Point Analysis and bootstraping[J]. Computer Aided Chemical Engineering, 2008, 25:665-670.

[34] 金浩, 张思, 乔宝明, 等. 基于Bootstrap的厚尾相依序列持久性变点检验[J]. 数学的实践与认识, 2012, 42(013):174-179.

[35] Ning W. Empirical likelihood ratio test for a mean change point model with a linear trend followed by an abrupt change[J]. Journal of Applied Statistics, 2012, 39(5): 947-961.

[36] Xing, Yuhong, Tian, et al. Sieve bootstrap monitoring persistence change in long memory process[J]. Statistics and Its Interface, 2016, 9(1):37-45.

[37] Hlávka Z, Hušková M, Kirch C, et al. Bootstrap procedures for online monitoring of changes in autoregressive models[J]. Communications in Statistics-Simulation and Computation, 2016, 45(7): 2471-2490.

[38] Pape K, Wied D, Galeano P. Monitoring multivariate variance changes[J]. Journal of Empirical Finance, 2016:54-68.

[39] Horváth L, Hušková M, Kokoszka P, et al. Monitoring changes in linear models[J]. Journal of statistical Planning and Inference, 2004, 126(1): 225-251.

[40] Aue A, Horváth L, Hušková M, et al. Change-point monitoring in linear models[J]. The Econometrics Journal, 2006, 9(3): 373-403.

[41] Černíková A, Hušková M, Prášková Z, et al. Delay time in monitoring jump changes in linear models[J]. Statistics, 2013, 47(1): 1-25.

[42] Aue A, L Horváth. Delay time in sequential detection of change, Stat. Probab. Lett. 67: 221-231[J]. Statistics & Probability Letters, 2004, 67(3):221-231.

[43] Chen Z, Xiao Y, Li F. Monitoring memory parameter change-points in long-memory time series[J]. Empirical Economics, 2021, 60: 2365-2389.

[44] Hsu C C. The MOSUM of squares test for monitoring variance changes[J]. Finance Research Letters, 2007, 4(4): 254-260.

[45] Zhao W, Xue Y, Liu X. Monitoring parameter change in linear regression model based on the efficient score vector[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 527: 121135.

[46] 陈占寿, 田铮, 丁明涛. 线性回归模型参数变点的在线监测[J]. 系统工程理论与实践, 2010, 30(06):1047-1054.

[47] Kejriwal M, Yu X, Perron P. Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series[J]. Journal of Time Series Analysis, 2020, 41(5): 676-690.

[48] Huber P J. Robust Statistics [M]. New York: Wiley, 1981.

[49] 陈希孺, 赵林城. 线性模型中的M方法 [M]. 上海科学技术出版社, 1996.

[50] Hušková M. Tests and Estimators for Change Point Problem Based on M-Statistics [J]. Stat. Decis. 1996, 14: 115-136.

[51] Qin R, Liu W. A Robust Test for Mean Change in Dependent Observations [J]. Journal of Inequalities and Applications. 2015, 48: 293-304.

[52] Qin R, Liu W. Ratio Detection for Mean Change in α Mixing Observations [J]. Communications in Statistics, 2019, 48(7): 1693-1708.

[53] Bai J . Least squares estimation of a shift in linear processes[J]. Journal of Time, 2010, 15(5):453-472.

[54] Lavielle M, Moulines E. Least squares estimation of an unknown number of shift in a time series[J]. Journal of Time Series Analysis, 2000,21(1):33-59.

[55] Kokoszka P, Leipus R. Change-point in the mean of dependent observations[J]. Statistics & Probability Letters, 1998, 40(4):385-393.

[56] Horváth L, Horváth Z, Hušková M. Ratio tests for change point detection[J]. Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen, 2008, 1: 293-304.

[57] Johnson R A, Bagshaw M. The effect of serial correlation on the performance of CUSUM tests[J]. Technometrics, 1974, 16(1): 103-112.

[58] Roberts S W. Properties of control chart zone tests[J]. Bell System Technical Journal, 1958, 37(1): 83-114.

[59] 王兆军, 邹长亮, 李忠华. 2013.统计质量控制图理论与方法[M]. 北京:科学出版社.

[60] Steland A. Monitoring procedures to detect unit roots and stationarity[J]. Econometric Theory, 2007, 23(6): 1108-1135.

[61] Chen Z , Zheng T , Wei Y . Monitoring change in persistence in linear time series[J]. Statistics & Probability Letters, 2010, 79(19-20):1520-1527.

[62] Chen Z, Tian Z, Zhao C. Monitoring persistence change in infinite variance observations[J]. Journal of the Korean Statistical Society, 2012, 41(1): 61-73.

[63] Chu C S J, Stinchcombe M, White H. Monitoring structural change[J]. Econometrica: Journal of the Econometric Society, 1996: 1045-1065.

[64] Efron B. Bootstrap methods: another look at the jackknife[M]. Springer New York, 1992.

[65] Knight K. Limit theory for M-estimates in an integrated infinite variance[J]. Econometric Theory, 1991, 7(2): 200-212.

[66] Phillips P C B, Solo V. Asymptotics for linear processes[J]. The Annals of Statistics, 1992: 971-1001.

[67] 陈占寿. 基于 Bootstrap 方法的时间序列变点检测[M]. 北京:科学出版社. 2020.

[68] Chen Z, Tian Z. Moving ratio test for multiple changes in persistence[J]. Journal of Systems Science and Complexity, 2012, 25(3): 582-593.

[69] Bai J, Perron P. Estimating and testing for multiple structural changes in linear models[J]. Econometrica, 1998, 66(1): 47-78.

[70] Bai J. Likelihood ratio tests for multiple structural changes[J]. Journal of econometrics, 1999, 91(2): 299-323.

中图分类号:

 O212.1    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式