- 无标题文档
查看论文信息

论文中文题名:

 地形和分层介质对2013年芦山Ms7.0地震同震形变的影响    

姓名:

 王金驰    

学号:

 21210061033    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 地震大地测量学    

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-01    

论文外文题名:

 The Impact of Topography and Layered Media on the Coseismic Deformation of the 2013 Lushan Ms7.0 Earthquake    

论文中文关键词:

 地形因素 ; 分层介质 ; 同震形变 ; 谱元法 ; 位错理论    

论文外文关键词:

 topographic factors ; layered media ; coseismic deformation ; spectral element method ; dislocation theory    

论文中文摘要:

利用地震同震形变精确反演地震震源参数和地下结构具有重要意义。然而,在研究地表形变与断层活动参数之间的关系时,为了简化模型,常常会忽略地形和分层介质因素。目前,地形因素和分层介质因素对同震形变的定量影响需要深入研究。2013年,四川芦山发生了Ms7.0地震,由于芦山地震断层两侧的地形梯度变化较大,地质构造复杂,忽略地形和分层介质因素会对反演结果造成一定偏差。因此,定量研究芦山区域地形和分层介质因素对同震形变的影响,有助于全面认识地震同震形变的机制。本文基于平面断层几何模型,采用谱元法探究了地形和分层介质对地表同震形变的影响,主要研究成果如下:

(1)谱元法能够量化地形因素对地表同震形变的影响。本文分别针对走滑、倾滑、张裂断层模型进行了研究,将其结果与Okada解析解进行对比分析,得出谱元法模拟结果与Okada解析解的吻合度较高,最大差异不超过3%。通过模拟计算了抛物线小山模型的同震位移场,并将其与基于平面模型计算的结果进行了比较。结果表明,地形因素不仅改变了同震位移场的分布形态,而且影响同震位移的量值。因此,本文认为在进行同震形变反演时,必须考虑地形因素的影响。

(2)地震同震形变研究中,地形因素和分层介质发挥着重要作用。本文利用芦山地区的地形数据、介质参数模型以及断层模型,基于谱元法计算了地形因素和分层介质对2013年芦山Ms7.0地震同震形变的影响。结果表明,相较于分层介质,地形因素对芦山地震同震形变的影响更为显著。地形因素对沿断层走向方向上同震形变分量的最大影响可达~17.3%,对垂直断层走向方向上同震形变分量的最大影响可达~20.6%,而分层介质对沿断层走向方向和垂直断层走向方向上同震形变分量的影响分别为~3.6%和~2.2%。综合考虑地形和分层介质因素时,其对沿断层走向方向和垂直断层走向方向上同震形变分量的影响分别为~17.5%和~18.3%。

(3)在考虑地形因素的芦山地震断层模型基础上,探讨了改变断层参数时地形效应的变化。研究结果表明,当断层倾角在30°到40°之间时,地形因素对同震形变的影响为~18%,当断层倾角在45°到65°之间时,地形因素对同震形变的影响为~15%,当断层倾角在70°到90°之间时,地形因素对同震形变的影响大于18%;随着震源深度的增加,地形效应随之减小;而改变断层滑动量的大小,地形因素的影响不明显。

论文外文摘要:

The accurate inversion of earthquake source parameters and subsurface structures using seismic coseismic deformation is of great significance. However, in studying the relationship between surface deformation and fault activity parameters, the simplification of models often leads to the neglect of topographic and layered medium factors. Currently, there is a need for in-depth research into the quantitative effects of topographic and layered medium factors on coseismic deformation. In 2013, the Ms7.0 earthquake occurred in Lushan, Sichuan Province, China. Due to significant changes in topographic gradients on both sides of the Lushan seismic fault and the complex geological structure, ignoring topographic and layered medium factors can introduce certain biases into inversion results. Therefore, quantitatively studying the effects of topographic and layered medium factors on coseismic deformation in the Lushan region can contribute to a comprehensive understanding of the mechanism of seismic coseismic deformation. In this study, based on a planar fault geometry model, the spectral element method was employed to investigate the effects of topographic and layered medium factors on surface coseismic deformation. The main research results are as follows:

       (1) The spectral element approach quantifies the effect of topographic factors on ground surface coseismic deformation. In this work, we looked at several fault models, including strike-slip, dip-slip, and tensional faults, and compared their results to the Okada analytical solution. Our investigation demonstrates that the simulation results generated using the spectral element method closely match the Okada analytical solution, with a maximum variation of only 3%. We also estimated the coseismic displacement field using the parabolic hill model and compared it to the results obtained using the planar model. Our findings show that topographic parameters influence both the distribution pattern and the amplitude of coseismic displacement.  Consequently, we conclude that the impact of topographic factors must be considered when inverting coseismic deformation.

(2) In the study of seismic coseismic deformation, both topographic and layered media play important roles. This paper utilizes topographic data, media parameter models, and fault models particular to the Lushan region to investigate the impact of topographic factors and layered media on the coseismic deformation of the 2013 Lushan Ms7.0 earthquake using the spectral element approach. The results demonstrate that compared to layered media, topographic factors exert a more pronounced influence on the coseismic deformation of the Lushan earthquake. The maximum impact of topographic factors on the coseismic deformation component along the fault strike direction reaches ~17.3%, while for the component along the vertical fault strike direction, it reaches ~20.6%. In contrast, the influence of layered media on the coseismic deformation components along the fault strike direction and the vertical fault strike direction is ~3.6% and ~2.2%, respectively. When considering both topographic and layered media factors comprehensively, their effects on the coseismic deformation components along the fault strike direction and the vertical fault strike direction are ~17.5% and ~18.3%, respectively.

(3) Based on the fault model of the Lushan earthquake considering topographic factors, the variations in topographic effects were explored when changing fault parameters. The research findings indicate that when the fault dip ranges between 30° and 40°, the impact of topographic factors on coseismic deformation is approximately ~18%. When the fault dip is between 45° and 65°, this impact decreases to ~15%, and when the fault dip ranges between 70° and 90°, the influence of topographic factors exceeds 18%. As the depth of the earthquake source increases, the topographic effect diminishes. However, altering the magnitude of fault slip does not significantly affect the influence of topographic factors.

参考文献:

[1]Bilham, R.Raising Kathmandu[J].Nature Geoscience,2015, 8(8): 582-584.

[2]张培震.中国地震灾害与防震减灾[J].地震地质,2008, (03): 577-583.

[3]刁守中, 王峰, 李霞.1976年唐山7.8级地震在鲁北造成的震害情况及其烈度校订[J].华南地震,2023, 43(01): 80-88.

[4]Y.Chen, D.C.Booth, 李万金.《2008年汶川地震:灾难剖析》第一章:汶川地震[J].世界地震译丛,2019, 50(03): 266-302.

[5]刘博研, 史保平.M_S8.1昆仑山口西地震和M_S8.0汶川地震余震序列的时空分布特征和持续时间的对比[J].地球物理学报,2012, 55(06): 1942-1951.

[6]张勇, 许力生, 陈运泰.2010年青海玉树地震震源过程[J].国际地震动态,2012, (06): 8.

[7]马聪慧, 钱峰, 张海明.2013年M_S7.0芦山地震的动力学破裂过程及其影响因素[J].地球物理学报,2021, 64(01): 170-181.

[8]骆毓燕, 黄琳岚, 颜旭辉等.九寨沟7.0级地震受灾区灾后经济韧性测度及恢复效率研究[J].灾害学,2024, 39(02): 26-33.

[9]范宣梅, 方成勇, 戴岚欣等.地震诱发滑坡空间分布概率近实时预测研究——以2022年6月1日四川芦山地震为例[J].工程地质学报,2022, 30(03): 729-739.

[10]杨九元, 温扬茂, 许才军.InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J].武汉大学学报(信息科学版): 1-11[2024-05-18].

[11]陈佳影.基于三角位错模型反演2013年芦山Ms7.0地震同震断层滑动分布[D].西安科技大学,2022.

[12]Burchfiel, B C, C Zhiliang, L Yupinc, et al.Tectonics of the Longmen Shan and adjacent regions, central China[J].International Geology Review,1995, 37(8): 661-735.

[13]Densmore, A L, M A Ellis, Y Li, et al.Active tectonics of the Beichuan and Pengguan faults at the eastern margin of the Tibetan Plateau[J].Tectonics,2007, 26(4).

[14]King, R W, F Shen, B Clark Burchfiel, et al.Geodetic measurement of crustal motion in southwest China[J].Geology,1997, 25(2): 179-182.

[15]Shen, Z K, J Lü, M Wang, et al.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau[J].Journal of Geophysical Research: Solid Earth,2005, 110(B11).

[16]陈运泰, 杨智娴, 张勇等.从汶川地震到芦山地震[J].中国科学:地球科学,2013, 43(06): 1064-1072.

[17]徐锡伟, 闻学泽, 韩竹军等.四川芦山7.0级强震:一次典型的盲逆断层型地震[J].科学通报,2013, 58(20): 1887-1893.

[18]Hao, J, C Ji, W Wang, et al.Rupture history of the 2013 Mw 6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves[J].Geophysical Research Letters,2013, 40(20): 5371-5376.

[19]雷生学, 冉勇康, 王虎等.关于芦山7.0级地震在龙门一带是否存在同震地表破裂的讨论[J].地震地质,2014, 36(01): 266-274.

[20]李传友, 徐锡伟, 甘卫军等.四川省芦山M_S7.0地震发震构造分析[J].地震地质,2013, 35(03): 671-683.

[21]刘杰, 易桂喜, 张致伟等.2013年4月20日四川芦山M7.0级地震介绍[J].地球物理学报,2013, 56(04): 1404-1407.

[22]Jiang, Z, M Wang, Y Wang, et al.GPS constrained coseismic source and slip distribution of the 2013 Mw6. 6 Lushan, China, earthquake and its tectonic implications[J].Geophysical Research Letters,2014, 41(2): 407-413.

[23]畅柳, 杨博, 张风霜等.基于GPS和水准数据的2013年芦山7.0级地震震源滑动模型[J].地震地质,2017, 39(03): 561-571.

[24]刘琦, 闻学泽, 邵志刚.基于GPS、水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布[J].地球物理学报,2016, 59(06): 2113-2125.

[25]王卫民, 郝金来, 姚振兴.2013年4月20日四川芦山地震震源破裂过程反演初步结果[J].地球物理学报,2013, 56(04): 1412-1417.

[26]Chinnery, M.The deformation of the ground around surface faults[J].Bulletin of the Seismological Society of America,1961, 51(3): 355-372.

[27]陈运泰, 林邦慧, 王新华等.用大地测量资料反演的1976年唐山地震的位错模式[J].地球物理学报,1979, (03): 201-217.

[28]Okada, Y.Surface deformation due to shear and tensile faults in a half-space[J].Bulletin of the seismological society of America,1985, 75(4): 1135-1154.

[29]Okada, Y.Internal deformation due to shear and tensile faults in a half-space[J].Bulletin of the seismological society of America,1992, 82(2): 1018-1040.

[30]Wang, R, F L Martı́n, F Roth.Computation of deformation induced by earthquakes in a multi-layered elastic crust—FORTRAN programs EDGRN/EDCMP[J].Computers & Geosciences,2003, 29(2): 195-207.

[31]Sun, W.Potential and gravity changes caused by dislocations in spherically symmetric earth models[J].Bulletin of the Earthquake Research Institute, University of Tokyo,1992, 67(2): 89-238.

[32]Sun, W, S Okubo.Surface potential and gravity changes due to internal dislocations in a spherical earth—I. Theory for a point dislocation[J].Geophysical Journal International,1993, 114(3): 569-592.

[33]Duan, H, J Chen, S Zhang, et al.Coseismic fault slip inversion of the 2013 Lushan Ms 7.0 earthquake based on the triangular dislocation model[J].Scientific Reports,2022, 12(1): 3514.

[34]Meade, B J.Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space[J].Computers & geosciences,2007, 33(8): 1064-1075.

[35]李水平, 陈刚, 何平等.2015年尼泊尔地震同震滑动及震后余滑的三角位错模型反演[J].武汉大学学报(信息科学版),2019, 44(12): 1787-1796.

[36]吴绍宇.2015年泥泊尔M_w7.8地震三角位错同震滑动分布及震后余滑反演[D].西安科技大学,2022.

[37]Williams, C A, G Wadge.An accurate and efficient method for including the effects of topography in three‐dimensional elastic models of ground deformation with applications to radar interferometry[J].Journal of Geophysical Research: Solid Earth,2000, 105(B4): 8103-8120.

[38]Yang, Y, Q Chen, Q Xu, et al.Source model and Coulomb stress change of the 2015 Mw 7.8 Gorkha earthquake determined from improved inversion of geodetic surface deformation observations[J].Journal of Geodesy,2019, 93(3): 333-351.

[39]Kelly, K R, R W Ward, S Treitel, et al.Synthetic seismograms: A finite-difference approach[J].Geophysics,1976, 41(1): 2-27.

[40]Virieux, J.P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method[J].Geophysics,1986, 51(4): 889-901.

[41]Ohminato, T, B A Chouet.A free-surface boundary condition for including 3D topography in the finite-difference method[J].Bulletin of the Seismological Society of America,1997, 87(2): 494-515.

[42]Olsen, K B, R J Archuleta.Three-dimensional simulation of earthquakes on the Los Angeles fault system[J].Bulletin of the Seismological Society of America,1996, 86(3): 575-596.

[43]Robertsson, J O.A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography[J].Geophysics,1996, 61(6): 1921-1934.

[44]Igel, H, P Mora, B Riollet.Anisotropic wave propagation through finite-difference grids[J].Geophysics,1995, 60(4): 1203-1216.

[45]Carcione, J M.The wave equation in generalized coordinates[J].Geophysics,1994, 59(12): 1911-1919.

[46]Tessmer, E, D Kosloff.3-D elastic modeling with surface topography by a Chebychev spectral method[J].Geophysics,1994, 59(3): 464-473.

[47]Furumura, T, B Kennett, M Furumura.Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method[J].Geophysical journal international,1998, 135(3): 845-860.

[48]Tessmer, E, D Kessler, D Kosloff, et al.Multi-domain Chebyshev-Fourier method for the solution of the equations of motion of dynamic elasticity[J].Journal of Computational Physics,1992, 100(2): 355-363.

[49]Graves, R W.Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J].Bulletin of the seismological society of America,1996, 86(4): 1091-1106.

[50]Komatitsch, D, F Coutel, P Mora.Tensorial formulation of the wave equation for modelling curved interfaces[J].Geophysical Journal International,1996, 127(1): 156-168.

[51]Bouchon, M, C A Schultz, M N Toksöz.Effect of three‐dimensional topography on seismic motion[J].Journal of Geophysical Research: Solid Earth,1996, 101(B3): 5835-5846.

[52]Bao, H, J Bielak, O Ghattas, et al.Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers[J].Computer methods in applied mechanics and engineering,1998, 152(1-2): 85-102.

[53]Geller, R J, T Ohminato.Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method[J].Geophysical Journal International,1994, 116(2): 421-446.

[54]Komatitsch, D, S Tsuboi, J Tromp, et al.The spectral-element method in seismology[J].Geophysical Monograph-American Geophysical Union,2005, 157: 205.

[55]Komatitsch, D, J-P Vilotte.The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures[J].Bulletin of the seismological society of America,1998, 88(2): 368-392.

[56]Seriani, G.A parallel spectral element method for acoustic wave modeling[J].Journal of Computational Acoustics,1997, 5(01): 53-69.

[57]李孝波, 薄景山, 齐文浩等.地震动模拟中的谱元法[J].地球物理学进展,2014, 29(05): 2029-2039.

[58]Liu, S, D Yang, X Dong, et al.Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling[J].Solid Earth,2017, 8(5): 969-986.

[59]刘少林, 杨顶辉, 孟雪莉等.模拟地震波传播的优化质量矩阵Legendre谱元法[J].地球物理学报,2022, 65(12): 4802-4815.

[60]Dravinski, M.Scattering of plane harmonic SH wave by dipping layers or arbitrary shape[J].Bulletin of the Seismological Society of America,1983, 73(5): 1303-1319.

[61]Dravinski, M, T Mossessian.Scattering of plane harmonic P, SV, and Rayleigh waves by dipping layers of arbitrary shape[J].Bulletin of the Seismological Society of America,1987, 77(1): 212-235.

[62]Lin, X, W Sun, H Zhang, et al.A feasibility study of an FEM simulation used in co-seismic deformations: A case study of a dip-slip fault[J].TAO: Terrestrial, Atmospheric and Oceanic Sciences,2013, 24(4): 637.

[63]林晓光, 孙文科.地形效应和局部地质构造对计算同震形变的影响——以2011年日本东北大地震(M_w9.0)为例[J].地球物理学报,2014, 57(08): 2530-2540.

[64]Langer, L, H N Gharti, J Tromp.Impact of topography and three-dimensional heterogeneity on coseismic deformation[J].Geophysical Journal International,2019, 217(2): 866-878.

[65]Langer, L, S Beller, E Hirakawa, et al.Impact of sedimentary basins on Green’s functions for static slip inversion[J].Geophysical Journal International,2023, 232(1): 569-580.

[66]Masterlark, T.Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson‐solid, and half‐space assumptions[J].Journal of Geophysical Research: Solid Earth,2003, 108(B11).

[67]Trasatti, E, C Kyriakopoulos, M Chini.Finite element inversion of DInSAR data from the Mw 6.3 L'Aquila earthquake, 2009 (Italy)[J].Geophysical Research Letters,2011, 38(8).

[68]Williams, C A, L M Wallace.The impact of realistic elastic properties on inversions of shallow subduction interface slow slip events using seafloor geodetic data[J].Geophysical Research Letters,2018, 45(15): 7462-7470.

[69]Hsu, Y J, M Simons, C Williams, et al.Three‐dimensional FEM derived elastic Green's functions for the coseismic deformation of the 2005 Mw 8.7 Nias‐Simeulue, Sumatra earthquake[J].Geochemistry, Geophysics, Geosystems,2011, 12(7).

[70]Tung, S, T Masterlark.Coseismic slip distribution of the 2015 Mw7. 8 Gorkha, Nepal, earthquake from joint inversion of GPS and InSAR data for slip within a 3‐D heterogeneous Domain[J].Journal of Geophysical Research: Solid Earth,2016, 121(5): 3479-3503.

[71]Tung, S, T Masterlark.Resolving source geometry of the 24 August 2016 Amatrice, Central Italy, earthquake from InSAR data and 3D finite‐element modeling[J].Bulletin of the Seismological Society of America,2018, 108(2): 553-572.

[72]Wang, K, Y Fialko.Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake[J].Journal of Geophysical Research: Solid Earth,2018, 123(1): 761-779.

[73]Steketee, J.On Volterra's dislocations in a semi-infinite elastic medium[J].Canadian Journal of Physics,1958, 36(2): 192-205.

[74]Sato, R, M MATSU'URA.Static deformations due to the fault spreading over several layers in a multi-layered medium Part I: Displacement[J].Journal of Physics of the Earth,1973, 21(3): 227-249.

[75]Jeyakumaran, M, J W Rudnicki, L M Keer.Modeling slip zones with triangular dislocation elements[J].Bulletin of the Seismological Society of America,1992, 82(5): 2153-2169.

[76]Comninou, M, J Dundurs.The angular dislocation in a half space[J].Journal of Elasticity,1975, 5(3-4): 203-216.

[77]陈飞.球形地球位错理论在日本Mw9.0地震中的应用研究[D].中国地震局预测研究所,2021.

[78]Gilbert, F, A M Dziewonski.An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J].Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1975, 278(1280): 187-269.

[79]Dziewonski, A M, D L Anderson.Preliminary reference Earth model[J].Physics of the earth and planetary interiors,1981, 25(4): 297-356.

[80]Sun, W, S Okubo.Surface potential and gravity changes due to internal dislocations in a spherical earth—II. Application to a finite fault[J].Geophysical Journal International,1998, 132(1): 79-88.

[81]Sun, W, S Okubo, Fu, G, et al.General formulations of global co-seismic deformations caused by an arbitrary dislocation in a spherically symmetric earth model-applicable to deformed earth surface and space-fixed point[J]. Geophysical Journal International,2009, 177(3): 817-833.

[82]Patera, A T.A spectral element method for fluid dynamics: laminar flow in a channel expansion[J].Journal of computational Physics,1984, 54(3): 468-488.

[83]Chaljub, E, Y Capdeville, J-P Vilotte.Solving elastodynamics in a fluid–solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids[J].Journal of Computational Physics,2003, 187(2): 457-491.

[84]Komatitsch, D, Q Liu, J Tromp, et al.Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J].Bulletin of the Seismological Society of America,2004, 94(1): 187-206.

[85]Komatitsch, D, J Ritsema, J Tromp.The spectral-element method, Beowulf computing, and global seismology[J].Science,2002, 298(5599): 1737-1742.

[86]Lee, S-J, H-W Chen, Q Liu, et al.Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method[J].Bulletin of the Seismological Society of America,2008, 98(1): 253-264.

[87]Melosh, H, A Raefsky.A simple and efficient method for introducing faults into finite element computations[J].Bulletin of the Seismological Society of America,1981, 71(5): 1391-1400.

[88]Aki, K, P G Richards2002.Quantitative seismology.

[89]Dahlen, F, J Tromp.2020 Theoretical global seismology. In Theoretical Global Seismology. Princeton university press.

[90]Curnier, A.A static infinite element[J].International journal for numerical methods in engineering,1983, 19(10): 1479-1488.

[91]Zienkiewicz, O, C Emson, P Bettess.A novel boundary infinite element[J].International Journal for Numerical Methods in Engineering,1983, 19(3): 393-404.

[92]Kumar, P.Static infinite element formulation[J].Journal of structural engineering,1985, 111(11): 2355-2372.

[93]Abdel-Fattah, T, H Hodhod, A Akl.A novel formulation of infinite elements for static analysis[J].Computers & Structures,2000, 77(4): 371-379.

[94]Gropp, W, E Lusk, A Skjellum1999.Using MPI: portable parallel programming with the message-passing interface. Volume 1: MIT press.

[95]Pellegrini, F, J Roman.Scotch: A software package for static mapping by dual recursive bipartitioning of process and architecture graphs. High-Performance Computing and Networking: International Conference and Exhibition HPCN EUROPE 1996 Brussels, Belgium, April 15–19, 1996 Proceedings 4, 1996, pp. 493-498. Springer.

[96]Balay, S, S Abhyankar, M F Adams, et al.Petsc users manual (tech. rep. anl-95/11-revision 3.7)[J].Argonne National Laboratory,2016.

[97]Komatitsch, D, J Tromp.Introduction to the spectral element method for three-dimensional seismic wave propagation[J].Geophysical journal international,1999, 139(3): 806-822.

[98]Lekić, V, B Romanowicz.Inferring upper-mantle structure by full waveform tomography with the spectral element method[J].Geophysical Journal International,2011, 185(2): 799-831.

[99]Nissen-Meyer, T, M van Driel, S C Stähler, et al.AxiSEM: broadband 3-D seismic wavefields in axisymmetric media[J].Solid Earth,2014, 5(1): 425-445.

[100]Gharti, H N, L Langer, J Tromp.Spectral-infinite-element simulations of coseismic and post-earthquake deformation[J].Geophysical Journal International,2019, 216(2): 1364-1393.

[101]Gharti, H N, L Langer, J Tromp.Spectral-infinite-element simulations of earthquake-induced gravity perturbations[J].Geophysical Journal International,2019, 217(1): 451-468.

[102]Gharti, H N, J Tromp.A spectral-infinite-element solution of Poisson's equation: an application to self gravity[J].arXiv preprint arXiv:1706.00855,2017.

[103]Gharti, H N, J Tromp.Spectral-infinite-element simulations of magnetic anomalies[J].Geophysical Journal International,2019, 217(3): 1656-1667.

[104]Gharti, H N, J Tromp, S Zampini.Spectral-infinite-element simulations of gravity anomalies[J].Geophysical Journal International,2018, 215(2): 1098-1117.

[105]Tarantola, A2005.Inverse problem theory and methods for model parameter estimation: SIAM.

[106]吕坚, 王晓山, 苏金蓉等.芦山7.0级地震序列的震源位置与震源机制解特征[J].地球物理学报,2013, 56(05): 1753-1763.

[107]Amante, C, B W Eakins.ETOPO1 arc-minute global relief model: procedures, data sources and analysis[J].2009.

[108]谈洪波, 申重阳, 玄松柏.地壳分层和地壳厚度对汶川地震同震效应的影响[J].大地测量与地球动力学,2010, 30(04): 29-35.

[109]Brocher, T M.Key elements of regional seismic velocity models for long period ground motion simulations[J].Journal of seismology,2008, 12: 217-221.

[110]余宏远, 李伟, 王文达.利用考虑地形起伏的反演方法获取2017年伊拉克M_W7.3地震的断层参数及滑动分布[J].地震,2020, 40(04): 63-75.

[111]徐彦, 邵文丽.2013年4月20日四川芦山7.0级地震震源破裂特征[J].地球物理学报,2013, 56(10): 3396-3403.

[112]Wang, C Y, W B Han, J P Wu, et al.Crustal structure beneath the eastern margin of the Tibetan Plateau and its tectonic implications[J].Journal of Geophysical Research: Solid Earth,2007, 112(B7).

[113]徐朝繁, 潘纪顺, 王夫运等.龙门山及其邻近地区深部地球物理探测[J].大地测量与地球动力学,2008, 28(06): 31-37.

[114]吴建平, 明跃红, 王椿镛.川滇地区速度结构的区域地震波形反演研究[J].地球物理学报,2006, (05): 1369-1376.

[115]田晓峰, 王夫运, 赵成斌等.龙门山南段芦山震区深部地壳结构研究[C]//中国地球物理学会,全国岩石学与地球动力学研讨会组委会,中国地质学会构造地质学与地球动力学专业委员会,中国地质学会区域地质与成矿专业委员会.2014年中国地球科学联合学术年会——专题8:21世纪巴颜喀拉块体大震活动的动力学机制论文集.中国地震局地球物理勘探中心;,2014:1.

[116]Pollitz, F F.Coseismic deformation from earthquake faulting on a layered spherical Earth[J].Geophysical Journal International,1996, 125(1): 1-14.

[117]Lee, S-J, D Komatitsch, B-S Huang, et al.Effects of topography on seismic-wave propagation: An example from northern Taiwan[J].Bulletin of the Seismological Society of America,2009, 99(1): 314-325.

中图分类号:

 P315.725    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式