论文中文题名: | 基于氮气保护下核电二回路碳钢的腐蚀行为与腐蚀仿真研究 |
姓名: | |
学号: | 20211225059 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085600 |
学科名称: | 工学 - 材料与化工 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 金属腐蚀与防护 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Study on Corrosion Behavior and Simulation of Carbon Steel in Secondary Circuit of Nuclear Power Plant under Nitrogen Protection |
论文中文关键词: | |
论文外文关键词: | Carbon steel ; Corrosion simulation platform ; Nuclear power second circuit ; Nitrogen protection ; Corrosion simulation |
论文中文摘要: |
核电二回路热力系统的结构、外壳和管道多采用碳钢材料。由于核电站通常建在海岸附近,在基建、运行和停堆期间,碳钢设备会受到高湿度和高盐雾的大气环境的腐蚀影响,从而导致材料性能下降并缩短其使用寿命。为了减缓碳钢腐蚀,可采用氮气保护对核电站的二回路热力系统进行腐蚀防护。其中,深入研究氮气保养期间碳钢发生的腐蚀行为对于制定实际保养方案具有重要意义。因此,我们根据核电二回路热力系统实际的氮气保护要求和技术规范,设计并搭建了多工况实验平台,并采用多硬件集成系统,通过人机交互软件界面实现实验环境的相关参数的自动化控制,从而达到对实验条件的精确控制。采用腐蚀失重、扫描电镜、X射线衍射、能谱仪和电化学测试等方法研究了20#钢、Q235A、Q245R三种碳钢在盐雾环境下和氮气保护环境下的腐蚀行为,同时也讨论了腐蚀对力学性能的影响,并基于实验结果进行了腐蚀仿真分析,得出以下结论: 在盐雾环境中,三种碳钢的腐蚀深度损失随时间呈近线性变化,平均腐蚀速率呈增长趋势。实验进行48 h后基体表面已被锈层完全覆盖,表明三种碳钢在盐雾环境下的腐蚀敏感性高。锈层中多为针片状和棉球状形貌,结构均疏松多孔,锈层对基体的保护性差。随锈层变厚,对基体有一定的保护作用,这与腐蚀速率的变化相一致。腐蚀产物的成分包括α-FeOOH、γ-FeOOH和γ-Fe2O3/Fe3O4,这与大气腐蚀产物一致,初始产物中活性相γ-FeOOH的含量较多,会加速腐蚀反应的发生,而γ-Fe2O3/Fe3O4则随腐蚀进行而增多,α-FeOOH含量相对稳定。 在氮气保护工艺下,三种碳钢初期腐蚀深度随时间呈现幂函数规律变化,且幂指数n值均大于1,平均腐蚀速率随时间延长而加快,与盐雾下的腐蚀速率相比低两个数量级。腐蚀实验进行到35 d时试样表面出现了点蚀坑和不规则的局部腐蚀形貌,以局部腐蚀为主;而在80 d时,试样表面的裸露部分减少,锈层变厚且产物形状不规则,逐渐发展成均匀腐蚀;三种碳钢的腐蚀产物主要为β-FeOOH、α-FeOOH和Fe3O4。三种碳钢在3.5 wt% NaCl充氮驱氧溶液环境中的腐蚀电流密度相较于充饱和空气中的低,阳极活化极化区斜率变大,这表明氮气保护能有效抑制碳钢金属的阳极溶解。在盐雾环境中腐蚀240 h时,三种碳钢腐蚀严重,试样的整体厚度减薄,屈服强度与抗拉强度出现了大幅下降,而碳钢在氮气保护环境下腐蚀80 d时,其抗拉强度和屈服强度反而表现出略微的升高。 在实验研究基础上,基于电化学腐蚀的基本原理,运用COMSOL Multiphysics多物理场仿真软件,建立了金属材料在大气腐蚀过程中的仿真模型,并对碳钢在不同氧气浓度下的腐蚀行为进行了仿真分析,进一步明确了腐蚀机理及影响腐蚀行为的因素。 关 键 词:碳钢;腐蚀模拟平台;核电二回路;氮气保护;腐蚀仿真 研究类型:应用研究 |
论文外文摘要: |
Based on the basic principle of electrochemical corrosion, the structure, casing, and pipes of the secondary loop thermal system in nuclear power plants are often made of carbon steel. However, due to the high humidity and salt spray in the coastal areas where nuclear power plants are typically built, the carbon steel equipment is prone to corrosion during construction, operation, and shutdown, which can result in the degradation of material properties and a shortened service life. To mitigate carbon steel corrosion, nitrogen protection can be employed to provide corrosion protection for the secondary loop thermal system in nuclear power plants.And in-depth study of the corrosion behavior of carbon steel during nitrogen maintenance is of great significance for formulating practical maintenance plans. Therefore, based on the actual nitrogen protection requirements and technical specifications of the nuclear secondary circuit thermal system, we have designed and built a multi-operating condition experimental platform and adopted a multi-hardware integrated system. Through the human-machine interactive software interface, the relevant parameters of the experimental environment can be automatically controlled, which can achieve precise control of the experimental conditions. Using analysis methods such as corrosion weight loss, scanning electron microscopy, X-ray diffraction, energy spectrometer, and electrochemical testing, the corrosion behavior of three types of carbon steels, 20# steel, Q235A, and Q245R, was studied under salt spray and nitrogen protection environments, respectively. The study also discussed the impact of corrosion on mechanical properties and conducted a corrosion simulation analysis based on experimental results. The following conclusions were drawn: The corrosion depth loss of three types of carbon steel showed a nearly linear increase with time in a salt spray environment, with an average corrosion rate that increased over time. After 48 hours of exposure, the surface of the substrate was completely covered by a rust layer, indicating high corrosion sensitivity of the three types of carbon steel. The rust layer observed under scanning electron microscopy was mainly composed of needle-like and cotton ball-like structures, which were porous and provided poor protection to the substrate. With increasing thickness of rust layer, it provided a certain level of protection to the substrate, which is consistent with the changes in corrosion rate. The composition of corrosion products included α-FeOOH, γ-FeOOH, and γ-Fe2O3/Fe3O4, which were consistent with those found in atmospheric corrosion products. The initial corrosion product was mainly composed of the active phase γ-FeOOH, which accelerated the corrosion reaction. The content of γ-Fe2O3/Fe3O4 increased with the progression of corrosion, while the α-FeOOH content remained relatively stable. Under the nitrogen protection process, the initial corrosion depth of three types of carbon steel showed a power law change with time, with the power exponent n greater than 1, and the average corrosion rate increased with time. Compared with the corrosion rate in salt spray, a two magnitude lower corrosion rate was achieved. The corrosion products of the three types of carbon steel were mainly β-FeOOH, α-FeOOH, and Fe3O4. When the corrosion experiment lasted for 35 d, pitting and irregular local corrosion appeared on the sample surface, with the main form being local corrosion. However, at 80d, the exposed area of the sample surface decreased, and the rust layer became thicker with irregular product shapes, gradually developing into uniform corrosion. The corrosion current density of carbon steel in a 3.5 wt% NaCl solution under nitrogen deoxygenation was lower than that in air saturation, and the anode activation polarization region slope became larger, indicating that nitrogen protection could effectively inhibit the anodic dissolution of carbon steel. When the three types of carbon steel were corroded for 240 h in a salt spray environment, severe corrosion occurred, and the overall thickness of the samples decreased significantly, with a large decrease in yield strength and tensile strength. While for the carbon steels corrosion in a nitrogen-deoxygenated environment, a slight increase in both tensile and yield strength was observed when corroded for as long as 80 d. Based on experimental studies, a simulation model for the corrosion of metallic materials in atmospheric environments was developed using the principles of electrochemical corrosion and the COMSOL Multiphysics software. The corrosion behavior of carbon steel under different working conditions was simulated and analyzed, leading to a better understanding of the corrosion mechanism and the factors influencing the corrosion behavior. Key words: Carbon steel; Corrosion simulation platform; Nuclear power second circuit; Nitrogen protection; Corrosion simulation Thesis : Applied Research |
参考文献: |
[1]王博. 我国核电行业发展现状与前景[J]. 陕西科技大学学报(自然科学版), 2011, 29(2): 179-182+196. [2]孙德意,宋浩亮,许俊斌.从世界核电站发展趋势看我国核电发展现状[J].上海电气技术,2011,4(02):40-46. [3]焦洋,张胜寒,檀玉.核电站用不锈钢在高温高压水中应力腐蚀开裂行为的研究进展[J].中国腐蚀与防护学报,2021,41(04):417-428 [4]赵彦芬, 遆文新, 汪小龙, 薛飞. 核电站用钢管材料及其国产化[J]. 钢管, 2007(02): 11-14. [5]杨武. 核电设备耐蚀材料及其评价技术[J]. 机械工程材料, 1994, 18(2): 16-19. [6]陈君, 康凯, 冯钜, 等. 压水堆核电站结构材料的腐蚀行为研究进展[J]. 西华大学学报(自然科学版), 2020, 39(3): 104-112. [7]陈济东. 大亚湾核电系统及运行[M]. 北京: 原子能出版社, 1994. 539-885. [8]何宽. 核级碳钢在硼酸溶液中的腐蚀行为研究[D]. 北京: 华北电力大学, 2019. [9]宋学鑫. 碳钢在核电站典型环境中的初期腐蚀行为研究[D]. 安徽: 中国科学技术大学, 2020. [10]刘爽, 胡新芳, 刘蕊. 锅炉水冷壁管内壁腐蚀泄漏原因分析及处理[J]. 热加工工艺,2014, 43(22): 211-214. [11]张广文, 胡杨, 刘锋, 王德军, 张翠伶, 王凤仙, 刘永兵. 俄供机组低温再热器腐蚀分析[J]. 热力发电, 2017, 46(02): 120-124. [12]程玉贵, 闫洪勇, 高继录, 张守恒. 800MW机组低温再热器内壁腐蚀原因分析及治理[J]. 东北电力技术, 2013, 34(03): 41-44. [13]王曦. 金属材料的腐蚀与防护方法分析[J]. 世界有色金属, 2021(15):217-218. [17]葛秋辰, 汪兵, 刘清友. 高湿热海洋大气环境下温度和湿度对Q345钢耐蚀性能的影响[J]. 机械工程材料, 2017, 41(8): 49-53. [20]梁利花. 微液滴现象在大气腐蚀过程中的作用[D]. 青岛: 中国海洋大学, 2009. [28]王磊, 胡锐, 王新虎, 等. S135钻杆钢在钻井液中的氧腐蚀行为[J]. 石油机械, 2006, 34(10): 1-4. [29]刘延湘, 楼台芳. 低磷酸盐-低NaOH模拟炉水中20A碳钢的腐蚀[J]. 腐蚀科学与防护技术, 2003, 15(1): 9-11. [30]李三胜. 注汽锅炉炉管弯头腐蚀原因分析及机理研究[D]. 东北石油大学, 2010. [40]李辛庚, 动态大气腐蚀地图与大气腐蚀防护关键技术. 山东省, 国网山东省电力公司电力科学研究院, 2017-06-03. [41]罗斯. 海水环境下腐蚀细菌对304不锈钢的腐蚀行为及抑制方法[D]. 上海: 上海师范大学, 2018. [42]刘亚丽. 耐候钢在海洋大气环境下的腐蚀行为研究[D]. 山东: 山东科技大学, 2019. [45]郦晓慧, 王俭秋, 韩恩厚, 等. 核级商用690合金和800合金在模拟压水堆核电站-回路高温高压水中的腐蚀行为研究[J]. 金属学报, 2012, 48(8): 941-950. [46]徐玉明. 核电发展与核电材料的腐蚀防护[J]. 腐蚀与防护, 2016, 37(07): 523-526. [47]陈东旭, 吴欣强, 韩恩厚. 缝隙腐蚀研究进展及核电材料的缝隙腐蚀问题[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300. [48]宋利君, 刘飞华, 李成涛. B-Li水化学对核电站金属材料腐蚀的影响[J]. 核科学与工程, 2014, 34(01): 97-101+115. [49]邓清泉, 王骏. 干空气保养对核电厂停机期间二回路设备腐蚀控制的研究[J]. 中国核电, 2022, 15(02): 176-180. [50]DL/T 956-2005, 火力发电厂停(备)用热力设备防锈蚀导则[S]. 电力标准, 2005. [51]NB/T25032-2014, 核电厂二回路压力容器停用保养导则[S]. 中国电力, 2014. [52]李海东. 核电接管安全端镍基690合金微观组织和耐腐蚀性研究[D]. 上海交通大学, 2018. [53]胥鑫. 宁德核电站不锈钢设备腐蚀防护策略研究[J]. 中国高新技术企业, 2010(24): 193-194. [54]刘长勇. 核电厂缝隙结构的腐蚀与防护[J]. 腐蚀与防护, 2019, 040(007): 513-518. [66]陈建伟, 周臣, 刘丹, 李浩, 刘祥亮. “干风+充氮”联合技术在超临界参数机组停运保护中的应用[J]. 东北电力技术, 2020, 41(06): 44-49. [72]陈英, 吴德礼, 张亚雷, 陈杰. 绿锈的结构特征与反应活性[J]. 化工学报, 2014, 65(06): 1952-1960. [73]邱斌, 徐善华. 锈蚀钢板力学性能的退化规律[J]. 机械工程材料, 2014, 38(10): 60-63. [74]张驰, 张春涛, 王汝恒. 腐蚀损伤对Q345钢材力学性能的影响[J]. 西南科技大学学报, 2017, 32(02): 50-55. [75]徐善华, 张宗星, 何羽玲, 秦广冲. 考虑蚀坑影响的腐蚀钢板力学性能退化试验研究[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(02): 164-171. |
中图分类号: | TG174.3 |
开放日期: | 2024-06-19 |