- 无标题文档
查看论文信息

题名:

 深埋高应力矿井采动覆岩强矿压发生机理及防治研究    

作者:

 雷照源    

学号:

 19103077010    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 081901    

学科:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 采矿工程    

研究方向:

 矿山采动灾害机理与控制    

导师姓名:

 崔峰    

导师单位:

 西安科技大学    

提交日期:

 2023-06-26    

答辩日期:

 2023-06-06    

外文题名:

 Mechanism and control of strong ground pressure of overburden at deep-buried high stress coal mine    

关键词:

 黄陵二矿 ; 深埋高应力 ; 采动覆岩 ; 坚硬厚顶板 ; 强矿压防治    

外文关键词:

 Huangling No.2 Mine ; deep-buried strong stress ; overburden under mining ; hard thick roof ; strong ground pressure control    

摘要:

黄陵矿区受深埋高地应力、坚硬厚顶板等赋存条件的影响,在大采高开采工艺的作用下,导致了工作面强矿压显现凸显。当开采空间位置发生改变时,坚硬顶板的约束条件随之改变,进一步加剧了强矿压显现的程度。因此,研究黄陵矿区强矿压显现特征与发生机理,对指导同类型大采高工作面强矿压防治具有重要的科学意义。

以黄陵二矿深埋高应力环境下的大采高工作面强矿压显现防治为目标,采用现场调研、理论分析、物理模拟、数值计算与工程实践等手段,开展覆岩结构空间演化特征、应力与能量传导分布规律、强矿压发生机理的相关研究。最终进行现场防治实践,并综合评价了防控效果。主要取得以下研究成果:

黄陵二矿四盘区厚煤层赋存环境复杂,随工作面倾向开采位置的改变,导致21422工作面矿压显现烈度明显高于首采工作面,且呈分区显现的特征。根据21422工作面采动下的支架压力、微震事件、工作面强矿压显现等特征,明确了其临空侧与实体侧的水平范围。其中21422工作面临空侧支架压力动载约为1.439,微震事件分布集中,此位置的坚硬厚顶板产生了大于104J的微震事件;实体侧的顶板完整性好、裂隙不发育,该区域约90.1%的支架压力低于35.2MPa,微震事件分散且能量值小于104J,出现了超长距离悬顶等。

坚硬厚顶板作为影响工作面强矿压的主控岩层,各工作面开采扰动下将覆岩内部形成了上、下两种梯形运动结构。单一工作面开采弱化了相邻工作面坚硬厚顶板临空区段煤柱处的边界条件,造成了坚硬厚顶板沿相邻工作面倾向的破断具有不对称性。相邻工作面覆岩运动产生的微震与AE事件分别是单一工作面的2.44倍和0.97倍,分别形成了大、小能量的演化特征,同时相邻工作面临空侧覆岩裂隙发育、运动、能量释放的次数及强度均大于实体侧,导致临空侧的破断角大于实体侧,形成了临空侧覆岩运动剧烈,实体侧覆岩相对稳定的分区演化特征。

(3) 相邻工作面开采扰动的覆岩应力与能量传导规律将单一工作面的对称分布转变由临空侧区段煤柱处沿工作面倾向的降低分布特征,并引发了上部覆岩荷载的非对称分布,且各场的影响范围、量值变化等情况也均大于单一工作面。坚硬厚顶板能量和垂直应力分布规律相似,通过引入能量及垂直应力集中差值系数(Ex、σx),明确了工作面临空侧与实体侧范围,其中临空侧能量与应力集中程度较高,实体侧相对稳定的分区显现特征,营造了强矿压分区显现环境。验证了物理相似材料模拟实验的结果,也初步形成了相邻工作面“降低临空侧应力集中程度,阻断实体侧应力传递”的防控思路。

(4) 构建厚顶板三边固支一边自由和两边固支一边简支一边自由模型,采用板结构承载极限分析法,推导出顶板破断几何尺寸的解析方程,分析了顶板破断的影响因素及其敏感性,实现了顶板沿工作面倾向的破断距与工作面倾向长度关系之间的定量表征。建立了相邻工作面顶板破断块体铰接三维力学模型,分析了顶板破断块体沿工作面倾向失稳的全过程,推导出铰接块体的稳定准则(σ),认为坚硬厚顶板两侧破断块体稳定所需的摩擦力不同,是造成了工作面顶板扰动应力演化分区的原因。提前消除破断块体间接触面的摩擦力,是实现相邻工作面强矿压控制的关键。

(5) 基于弱化临空侧顶板的应力集中、阻断实体侧应力传递的分区式强矿压防治技术思路,进行了黄陵二矿21422大采高工作面工程视角下的强矿压防控预判,提出工作面临空侧回风巷、实体侧胶带巷分别选用水力压裂、爆破致裂的分区防控技术方案。实践表明:分区防控方案增加了坚硬厚顶板的裂隙、改变了其边界条件,支架压力、动载系数、安全阀平均开启率降低;微震事件沿工作面开采位置平均分布,平均能量值降低了1个数量级,且未出现大能量事件,原有的强矿压分区现象消失。分区防控方案减弱了临空侧覆岩剧烈运动,破坏了实体侧顶板的长距离悬顶,取得了较好的防控效果。

外文摘要:

Huangling mine area is affected by the deep-buried high ground stress, hard thick roof and other endowment conditions, and under the action of the large mining height mining process, which leads to the strong ground pressure in the working face. When the mining location changes, the constraint condition of the hard roof changes, which further intensifies the strong ground pressure. Therefore, the study of characteristics and mechanism of strong ground pressure at Huangling mining area is of great scientific meaning for the control of strong ground pressure at the same kind of large mining height working faces.

The strong ground pressure control at the deep-buried large mining height working face at Huangling No.2 mine is the research object. The analysis method, combining field research, theoretical analysis, physical simulation, numerical calculation and engineering practice is adopted to study the spatial evolution characteristics of overburden, stress and energy conduction and distribution law, strong ground pressure mechanism. On-site control practices were carried out and the control effects were comprehensively evaluated. The main research results are as follows:

The thick coal seam storage environment at the fourth panel area of Huangling No.2 Mine is complex. The mine pressure intensity at working face 21422 is significantly higher than that at the first mining face when mining position changes. The mine pressure is characterized by zoning. The horizontal extent of the airside and solid side was clarified based on the characteristics of the support pressure, microseismic events, and strong ground pressure manifestation in the working face under the mining of the 21422 working face. The support dynamic load at working face 21422 is about 1.439. The distribution of microseismic events is concentrated, and the hard and thick roof plate at this location generates microseismic events greater than 104J. The roof integrity on the solid side is good and cracks are not developed. About 90.1% of the support pressure in this area is lower than 35.2MPa, microseismic events are scattered and the energy value is less than 104J, and extra-long distance overhanging roofs have occurred.

Hard thick roof plate is the main control rock layer affecting the strong ground pressure in the working face. Mining disturbances at each working face make two kinds of trapezoidal movement structure, up and down forming inside the overlying strata. Single working face mining weakens the boundary conditions at the coal pillars in the air side, which resulting in asymmetrical breaking of hard thick roof along the inclination of the adjacent working face. The microseismic and AE events generated by the overburden movement of the adjacent working face are 2.44 and 0.97 times of those at single working face, creating large and small energy evolutionary features, respectively. The frequency and intensity of fissure development, movement and energy release of the overlying strata on the airside of the adjacent working face are greater than those on the solid side, resulting in the breakage angle of the airside being greater than that of the solid side, which forms the partition evolution characteristics of intense movement of the overlying strata on the airside and relative stability of the overlying strata on the solid side.

(3) The overburden stress and energy conduction law perturbed by the mining of adjacent workings transforms the symmetrical distribution of the single working face into a reduced distribution feature along the workings inclination at the coal pillar of the adjacent section, and triggers an asymmetrical distribution of the upper overburden loads. The scope of influence and change in quantity and value of each field are also larger than that at the single working face. The energy and vertical stress distribution patterns of hard thick roof are similar, and the range between the air side and solid side of the working face is clarified by introducing energy and vertical stress concentration difference coefficients (Ex, σx). The partition characteristics of high energy and stress concentration on the air side and relative stability on the solid side create an environment for strong mineral pressure zoning manifestation. The results of the physically similar material simulation experiments were verified, the control principle of “reducing stress concentration at the air side, blocking the stress transferring at the solid side” was initially formed.

(4) A model of the thick top plate with three sides solidly supported and one side free, and two sides solidly supported and one side simply supported and one side free is constructed, and the analytical equations of the broken geometry of the top plate are derived by using the method of load limit analysis of the plate structure. The influencing factors of roof breakage and its sensitivity were analyzed, and the quantitative characterization of the relationship between the breakage distance of the roof along the working face inclination and the working face inclination length was realized. A three-dimensional mechanical model of the articulation of the broken blocks on the roof of the adjacent working face was established, and the whole process of the destabilization of the broken blocks along the working face tendency was analyzed, and the stability criterion (σ) of the articulated blocks was deduced. The difference in friction required for the stabilization of the broken blocks on both sides of the hard thick roof is the reason for the partitioning of the evolution of the disturbed stress in the roof of the working face. Elimination of friction on the contact surface between the broken blocks is the key to realize the control of strong ground pressure on the adjacent working face.

(5) Based on the control principle of “reducing stress concentration at the air side, blocking the stress transferring at the solid side”, the strong mine pressure control prediction under the engineering perspective at the 21422 large mining height working face in Huangling No.2 Mine was carried out. The technical plan of hydraulic fracturing at air-return roadway of air side and blasting fracturing at belt roadway of solid side was proposed respectively. Practice shows that the partition control program increases the cleavage of hard thick roof, changes the boundary conditions, and reduces the bracket pressure, dynamic load coefficient, and average opening rate of safety valve. Microseismic events were evenly distributed along the mining location of the working face, the average energy value was reduced by one order of magnitude, and there were no large energy events, and the strong mineral pressure partition phenomenon disappeared. The partition control plan attenuates the violent movement of the overlying strata on the adjacent side and destroys the long-distance overhanging roof on the solid side, and achieves an effective control result.

参考文献:

[1] 我国煤炭经济运行情况综述[EB/OL].国土资源部,http://www.gov.cn.

[2] 煤层气(煤矿瓦斯)开发利用“十三五”规划[EB/OL].中国煤炭工业协会,www.coalchina.org.cn.

[3] Pathegama G.Ranjith,Jian Zhao,Minghe Ju,et al.Opportunities and Challenges in Deep Mining: A Brief Review[J].Engineering,2017(3):546–551.

[4] Meifeng Cai,Edwin T. Brown.Challenges in the Mining and Utilization of Deep Mineral Resources[J].Engineering,2017(3):432–433.

[5] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(4):973-984.

[6] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2010.

[7] 姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报,2006,23(1):30-33.

[8] 钱鸣高,许家林.煤炭开采与岩层运动[J].煤炭学报,2019,44(4):973-984.

[9] 梁晓丹,刘刚,赵坚地下工程压力拱拱体的确定与成拱分析[J].河海大学学报(自然科学版),2005,33(3):314-317.

[10] 缪协兴.自然平衡拱与巷道围岩的稳定[J].矿山压力与顶板管理,1990,6(2):55-57.

[11] 王树仁,HAGAN P,程岩,等.岩板断裂铰接成拱过程及其失稳特征试验研究[J].岩石力学与工程学报,2012,31(8):1674-1679.

[12] BAKUN_MAZOR D,HATZOR Y H,DERSHOWITZ W S.Modeling mechanical layering effects on stability of underground openings in jointed sedimentary rocks [J].International Journal of Rock Mechanics and Mining sciences,2009,46(2):262-271.

[13] 钱鸣高,缪协兴,何富连.采场“砌体梁”结构的关键块分析[J].煤炭学报,1994,19(6):557-562.

[14] 钱鸣高,张项立,黎良杰,等.砌体梁的“稳定及其应用矿山压力与顶板管理[J].1994,3:6-10.

[15] 卢国志,汤建泉,宋振骐.传递岩梁周期裂断步距与周期来压步距差异分析岩[J].石力学与工程学报,2010,32(4):538-541.

[16] 钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998,23(2):135-139.

[17] 鞠金峰,许家林,朱卫兵.浅埋特大采高综采工作面关键层“悬臂梁”结构运动对端面漏冒的影响[J].煤炭学报,2014,39(7):1197-4204.

[18] 钱鸣高.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(4):343-348.

[19] 姜福兴,杨淑华,XUN Luo.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报,2003,28(4):357-360.

[20] 姜福兴,张兴民,杨淑华,等.长壁采场覆岩空间结构探讨[J].岩石力学与工程学报,2006,25(5):979-984.

[21] 侯玮,霍海鹰.“C”型覆岩空间结构采场岩层运动规律及动压致灾机理[J].煤炭学报,2012,37(s2):269-274.

[22] 史红,王存文,孔令海,等.“S”型覆岩空间结构煤柱导致冲击失稳的力学机制探讨[J].岩石力学与工程学报,2012,31(s2):3508-3513.

[23] 汪华君.四面采空采场“θ”型覆岩多层空间结构运动及控制研究[D].济南:山东科技大学,2006.

[24] 马其华.长壁采场覆岩“O”型空间结构及相关矿山压力研究[D].济南:山东科技大学,2005.

[25] 窦林名,贺虎.煤矿覆岩空间结构OX-F-T演化规律研究[J].岩石力学与工程学报,2012,31(3):453-460.

[26] Dou L M,Lu C P,Mu Z L,et al.Prevention and forecasting of rock burst hazards in coal mines[J].Mining Science and Technology,2009,19(5):585-591.

[27] 窦林名,赵从国,杨思光,等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006:7–10.

[28] 王金安李大钟,尚新春.采空区坚硬顶板流变破断力学分析[J].北 京 科 技 大 学 学 报,2011,33(2):142-148.

[29] 王新丰,高明中,李隆钦.采场采动应力、覆岩运移以及裂隙场分布的时空耦合规律[J].采矿与安全工程学报,2016,33(4):604-610.

[30] 姚顺利.巨厚坚硬岩层运动诱发动力灾害机理研究[D].北京:北京科技大学.2015.04.

[31] 柴敬,袁强,王帅,等.长壁工作面覆岩采动“横三区”光纤光栅检测与表征[J].中国矿业大学学报,2015,6(44):971-976.

[32] 柴敬,魏世明.相似材料中光纤传感检测特性分析[J].中国矿业大学学报,2007,36(4):458-462.

[33] 来兴平,孙欢,单鹏飞,等.急斜特厚煤层水平分段综放开采覆层类椭球体结构分析[J].采矿与安全工程学报,2014,31(5):714-719.

[34] 来兴平,许慧聪,康延雷.综放面覆岩运动“时-空-强”演化规律分析[J].西安科技大学学报,2018,38(6):871-877.

[35] 孔令海.特厚煤层大空间综放采场覆岩运动及其来压规律研究[J].采矿与安全工程学报,2020,37(5):943-950.

[36] 黄庆享,夏小刚.采动岩层与地表移动的“四带”划分研究[J].采矿与安全工程学报,2016.33(3):393-398.

[37] 王崇革,宋振骐,石永奎,等.近水平煤层开采上覆岩层运动与沉陷规律相关研究[J].岩土力学,2004,25(8):1343-1347.

[38] Qingbin Meng, Lijun Han,Yanlong Chen et al. Influence of dynamic pressure on deep underground soft rock roadway support and its application[J]. International Journal of Mining Science and Technology,2016,26(5),903-912.

[39] Mingzhong Gao, Wencheng Jin, Zhixu Dai et al. Relevance between abutment pressure and fractal dimension of crack network induced by mining[J].International Journal of Mining Science and Technology,2013,23(6),925-930.

[40] Huamin Li, Zuqiang Xiong, Dongyin Li et al. Research on evolution of mining pressure field and fracture field and gas emission features[J]. Engineering Sciences,2012,10(02):49-55.

[41] Lianguo Wang, Yang Song, Xinghua He et al. Side abutment pressure distribution by field measurement[J]. Journal of China University of Mining and Technology,2008,4(5):527-530.

[42] Junfei Zhang, Fuxing Jiang, Sitao Zhu et al. Width design for gobs and isolated coal pillars based on overall burst-instability prevention in coal mines[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016,8(4),551-558.

[43] 王普,周海勇,万广绪,等.硬厚顶板下邻断层工作面不同开采方向应力特征分析[J].采矿与岩层控制工程学报,2021,3(4):043529.

[44] 卜滕滕.深井厚煤层综放工作面顶板运动与沿空巷道围岩变形动态响应关系[J].采矿与岩层控制工程学报,2021,3(2):023-031.

[45] 高学鹏,于凤海,任强,等.西部鄂尔多斯矿区强矿压显现及顶板运动规律[J].金属矿山,2020,5(28):190-196.

[46] 杨敬轩,鲁岩,刘长友,等.坚硬厚顶板条件下岩层破断及工作面矿压显现特征分析[J].采矿与安全工程学报,2013,30(2):211-218.

[47] 于斌,杨敬轩,刘长友,等.大空间采场覆岩结构特征及其矿压作用机理[J].煤炭学报,2019,44(11):3295-3307.

[48] 于斌,刘长友,杨敬轩,等.坚硬厚层顶板的破断失稳及其控制研究[J].中国矿业大学学报,2013,42(3):342-348.

[49] Yu Bing. Behaviors of overlying strata in extra-thick coal seams using top-coal caving method [J].Journal of Rock Mechanics and Geotechnical Engineering. 2016,8(2):238-247

[50] 于斌,邰阳,匡铁军,等.大空间采场远近场坚硬顶板井上下控制理论及技术体系[J/OL].煤炭学报.https://doi.org/10.13225/j.cnki.jccs.2023.0221.

[51] 李化敏,张群磊,刘闯,等.特厚煤层大采高开采覆岩运动与矿压显现特征分析[J].煤炭科学技术,2017,45(1):27-33.

[52] 杨登峰,陈忠辉,洪钦锋,等.浅埋煤层开采顶板切落压架灾害的突变分析[J].采矿与安全工程学报,2016,33(1):122-127。

[53] 刘传孝.坚硬顶板运动特征的数值模拟及非线性动力学分析[J].岩土力学,2005,26(5):759-763.

[54] 夏彬伟,李晓龙,卢义玉,等.大同矿区坚硬顶板破断步距及变形规律研究[J].采矿与安全工程学报,2016,33(6):1038-1045.

[55] 曹胜根,姜海军,王福海,程正刚,武忠进.采场上覆坚硬岩层破断的数值模拟研究[J].采矿与安全工程学报,2013,30(2):205-210.

[56] 王平,姜福兴,冯增强,等.高位厚硬顶板断裂与矿震预测的关系探讨[J].岩土工程学报,2011,33(4):618-624.

[57] 吕进国,姜耀东,李守国,等.巨厚坚硬顶板条件下断层诱冲特征及机制[J].煤炭学报,2014,9(10):1961-1969.

[58] 胡千庭,田成林,谭云亮,等.重复采动条件下坚硬顶板力学试验研究[J].中国矿业大学学报,2018,47(1):67-72.

[59] 王树仁,贾会会,武崇福.动荷载作用下采空区顶板安全厚度确定方法及其工程应用[J].煤炭学报,2010,35(8):1263-1268.

[60] NOMIKOS P P,SOFIANOS A I,TSOUTRELIS C E.Structural response of vertically multi-jointed roof rock beams[J]. International Journal of Rock Mechanics and Mining sciences,2002,39(1):79-94.

[61] 浦海,黄耀光,陈荣华.采场顶板X-O型断裂形态力学分析[J].中国矿业大学学报.2011,40(6):835-840.

[62] 朱卫兵,于斌,鞠金峰,等.采场顶板关键层“横U-Y”型周期破断特征的试验研究[J].煤炭科学技术, 2020,48(2):36-43.

[63] Ju J, Xu J. Structural characteristics of key strata and strata behaviour of a fully mechanized longwall face with 7.0 m height chocks[J]. International Journal of Rock Mechanics and Mining Sciences. 2013,58.(7):333-352.

[64] 李振雷,何学秋,窦林名.综放覆岩破断诱发冲击地压的防治方法与实践[J].中国矿业大学学报.2018;47(1):162-171.

[65] 于斌,高瑞,孟祥斌,等.大空间远近场结构失稳矿压作用与控制技术[J].岩石力学与工程学报.2018;37(5):1134-1145.

[66] 黄庆享,周金龙,马龙涛,等.近浅埋煤层大采高工作面双关键层结构分析[J].煤炭学报.2017,42(10):2504-2510.

[67] 刘长友,杨敬轩,于斌,等.覆岩多层坚硬顶板条件下特厚煤层综放工作面支架阻力确定[J].采矿与安全工程学报.2015,32(1):7-13

[68] 刘长友,杨敬轩,于斌,等.多采空区下坚硬厚层破断顶板群结构的失稳规律[J].煤炭学报,2014,39 3):395-403.

[69] 王金东.综放开采覆岩高位结构稳定性及强矿压形成机理研究[D].西安科技大学,2015.

[70] 张培鹏,蒋力帅,刘绪峰,等.高位硬厚岩层采动覆岩结构演化特征及致灾规律[J].采矿与安全工程学报,2017,34(05):852-860.

[71] 王拓,常聚才,张兵,等.综采面多层坚硬顶板破断特征及其安全控制研究[J].地下空间与工程学报,2017,13(S1):339-343.

[72] 霍丙杰,于斌,张宏伟,等.多层坚硬顶板采场覆岩“拱壳”大结构形成机理研究[J].煤炭科学技术,2016,44(11):18-23.

[73] 潘超.高位坚硬顶板失稳诱发强矿压机理与控制[D].重庆大学,2020.

[74] Andy Ruina. Slip Instability and State Variable Friction Laws[J].Journal of Geophys Research,1983,83:10359-10370.

[75] Rice J R, Ruina. Stability of Steady Frictional Slipping[J].Journal of Applied Mechanics, 1983,50:343-349.

[76] 潘俊锋,齐庆新,刘少虹,等.我国煤炭开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020,45(1):111-121.

[77] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报.2003,22(11):1844-1851.

[78] 何满潮,姜耀东,赵毅鑫.复合型能量转化为中心的冲击地压控制理论[A].资源开采基础理论研究与工程实践[C].北京:科学出版社.2005:205-214.

[79] 齐庆新,欧阳振华,赵善坤,等.我国冲击地压矿井类型及防治方法研究[J].煤炭科学技术,2014,42(10):1-5.

[80] Yaodong Jiang,Yixin Zhao,Hongwei Wang,Jie Zhu.A review of mechanism and prevention technologies of coal bumps in China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2017,9(1):180-194.

[81] 齐庆新,李晓璐,赵善坤.煤矿冲击地压应力控制理论与实践[J].煤炭科学技术,2013,4(6):1-5.

[82] 潘俊锋,宁宇,毛德兵,等.煤矿开采冲击地压启动理论[J].岩石力学与工程学报,2012,31(3):586-596.

[83] 潘一山,李忠华,章梦涛.我国冲击地压分布、类型、机理及防治研究[J].岩石力学与工程学报,2003,22(11):1844-1851.

[84] 煤炭科学研究院北京开采所.冲击地压及其防治[J].世界煤炭技术,1987,13(1):1-4.

[85] 齐庆新,李一哲,赵善坤,等.我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J].煤炭科学技术,2019,47(9):1-40.

[86] 齐庆新,潘一山,舒龙勇,等.煤矿深部开采煤岩动力灾害多尺度分源防控理论与技术架构[J].煤炭学报,2018,43(7):1801-1810.

[87] 齐庆新,潘一山,李海涛,等.煤矿深部开采煤岩动力灾害防控理论基础与关键技术[J].煤炭学报,2020,45(5):1567-4584.

[88] 杨培举,何烨,郭卫彬.采场上覆巨厚坚硬岩浆岩致灾机理与防控措施[J].煤炭学报,2013,38(12):2106-2112.

[89] 何江,窦林名,王崧玮,山长昊.坚硬顶板诱发冲击矿压机理及类型研究[J].采矿与安全工程学报,2017,34(06):1122-1127.

[90] 冯龙飞,窦林名,王晓东,等.回采速度对坚硬顶板运动释放能量的影响机制[J].煤炭学报,2019,44(11):3329-3339.

[91] 贺虎.煤矿覆岩空间结构演化与诱冲机制研究[J].煤炭学报,2012,37(07):1245-1246.

[92] 何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2859.

[93] 谢和平,高峰,鞠杨,等.深部开采的定量界定与分析[J].煤炭学报,2015,40(1):1-10.

[94] Brady B H G,Brown E T.Rock mechanics for undeground mining[M].New York: Kluwer Academic Publishers,2005.

[95] Sellers E J,Klerck P.Modeling of the effect of discontinuities on the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology,2000,15(4):463-469.

[96] Fairhurst C. Deformation,yield,rupture and stability of excavations at great depth[A].In:Faorhurst Ced.Rock at Great Depth[C]. Rotterdam:A.A.Balkema,1990.1103-1114.

[97] 齐庆新,潘一山,舒龙勇,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2018,43(7):1801-1810.

[98] 曹代勇,占文锋,李焕同,等.中国煤矿动力地质灾害的构造背景与风险区带划分[J].煤炭学报,2020,45(7):2376-2388.

[99] 李夕兵,宫凤强,王少锋,等.硬岩矿山岩爆的动静组合加载力学机制与动力判据[J].岩石力学与工程学报,2019,38(4):708-724.

[100] 谢和平,周宏伟,薛东杰,等.煤炭开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-542.

[101] 谢和平.岩体力学与开采理论研究进展[J].煤炭学报,2019,44(5):1283-1305.

[102] 蔡美峰.开采围岩稳定性与岩层控制关键理论和技术[J].采矿与岩层控制工程学报,2020,2(3):033-037.

[103] 何满潮.开采工程岩石力学现状及其展望[A].第八次全国岩石力学与工程学术大会论文集[C].北京:科学出版社,2004:88-94.

[104] Qi Wang, Manchao He, Jun Yang, et al. Study of a no-pillar mining technique with automatically formed gob-side entry retaining for longwall mining in coal mines[J]. International journal of rock mechanics and mining sciences,2018,110(8):l-8.

[105] Xiaoding Xu, Manchao He, Yubing Gao. Study on mining pressure law and pressure relief control under influence of key layer[J]. Mining Metallurgy & Exploration,2021,38:1985-1996.

[106] Singh R, Mandal P.K, Singh A.K, Kumar R, Maiti J, Ghosh A.K. Upshot of strata movement during underground mining of a thick coal seam below hilly terrain[J]. International Journal of Rock Mechanics & Mining ences,2008,45(1):29-46.

[107] Maleki H, Wopat P.F, Repshe R.C. An analysis of violent failure in U.S. coal mines: case studies. Proceedings-mechanics and mitigation of Violent Failure in Coal and Hard-Rock Mines. Spokane, WA: US Department of the Interior, Bureau of Mines;SP:1995;5-25.

[108] Lu Y Y, Gong T, Xia B W, Yu B, Huang F. Target stratum determination of surface hydraulic fracturing for far-field hard roof control in underground extra-thick coal extraction: a case study [J]. Rock Mechanics and Rock Engineering,2019,52(8),2725-2740.

[109] Bai Q S,Tu S H, Wang F T, Zhang C. Field and numerical investigations of gateroad system failure induced by hard roofs in a longwall top coal caving face [J]. International Journal of Coal Geology, 2017,173.

[110] Shen W L, Bai J B, Wang X Y, Yu Y. Response and control technology for entry loaded by mining abutment stress of a thick hard roof [J]. International Journal of Rock Mechanics & Mining Sciences, 2016, 22(9):26-34.

[111] Heunis,R.The development of rock-burst control strategies for South-African-gold mines[J]. Journal- South African Institute of Mining and Metallurgy,1980,80(4):139-150.

[112] Bingxiang Huang,Changyou Liu,Junhui Fu,Hui Guan.Hydraulic fracturing after water pressure control blasting for increased fracturing[J]. International Journal of Rock Mechanics & Mining Sciences,2011,48(6):976-983.

[113] Zhou J, Jin Y, Chen M. Experimental investigation of hydraulic fracturing in random naturally fractured blocks [J]. International Journal of Rock Mechanics & Mining ences,2010,47(7):1193-1199.

[114] Zhou J, Chen M, Jin Y, Zhang, G Q. Analysis of fracture propagation behavior and fracture geometry using a tri-axial fracturing system in naturally fractured reservoirs. International Journal of Rock Mechanics and Mining Sciences,2008,45(7),1143-1152.

[115] Frash L.P, Gutierrez M, Hampton J. True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs [J]. International Journal of Rock Mechanics & Mining ences,2014,70(7):496-506.

[116] W.C.Zhu,C.H.Wei,S.Li,J.Wei,M.S.Zhang.Numerical modeling on destress blasting in coal seam for enhancing gas drainage[J]. International Journal of Rock Mechanics and Mining Sciences,2013,59(5):179-190.

[117] Zhenhua Ouyang,Qingxin Qi,Shankun Zhao,BaoyangWu,Ningbo Zhang.The Mechanism and application of deep-hole precracking blasting on rock burst prevention[J]. Shock and Vibration,2015,2015(1):1-7.

[118] 贾传洋,蒋宇静,张学朋,等.大直径钻孔卸压机理室内及数值试验研究[J].岩土工程学报,2017,39(6):1115-1122.

[119] 潘俊锋,齐庆新,刘少虹,等.我国煤炭开采冲击地压特征、类型及分源防控技术[J].煤炭学报,2020,45(1):111-121.

[120] 潘俊锋,康红普,闫耀东,等.顶板“人造解放层”防治冲击地压方法、机理及应用[J].煤炭学报,2023,48(2):636-648.

[121] 蒋金泉,武泉森,张培鹏,等.巨厚岩浆岩下充填开采的动力灾害控制[J].金属矿山,2015,469:139-143.

[122] 杨俊哲,郑凯歌,王振荣,等.坚硬顶板动力灾害超前弱化治理技术[J].煤炭学报,2020,45(10):3371-3379.

[123] 杨俊哲.井下定向长钻孔水力预裂顶板防治强矿压技术研究与应用[J].能源科技,2020,18(7):8-15.

[124] Bingxiang Huang,Changyou Liu,Junhui Fu,Hui Guan. Hydraulic fracturing after water pressure control blasting for increased fracturing[J]. International Journal of Rock Mechanics & Mining Sciences,2011,48(6):976-983.

[125] 黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技术[J].岩石力学与工程学报, 2017,36(12):2954-2970.

[126] 郑凯歌,王林涛,李彬刚,等.坚硬顶板强矿压动力灾害演化机理与超前区域防治技术[J]. 煤田地质与勘探,2022,50(8):62-71.

[127] 李俊平,王红星,王晓光,等.卸压开采研究进展[J].岩土力学,2014,35(s2):350-359.

[128] 李俊平,肖旭峰,连民杰,等.“V型”切槽顶板闭合方法研究[J].安全与环境学报,2012,12(5):219-222.

[129] 李俊平,张明,柳才旺.高应力下硬岩巷帮钻孔爆破卸压动态模拟[J].安全与环境学报,2017,17(3):922-930.

[130] 甘林堂.煤矿开采动力灾害事故分析及防治对策研究[J].煤炭科学技术,2020,48(12):74-80.

[131] 崔峰,来兴平,曹建涛,等.矿山动力灾害发生机理与防治策略[J].煤矿安全,2017,48(1):191-195.

[132] 张传玖,杜涛涛,李红平,等.坚硬顶板工作面高静载型冲击地压防治研究[J].煤炭科学技术,2019,47(03):112-119.

[133] 李新华,张向东.浅埋煤层坚硬直接顶破断诱发冲击地压机理及防治[J].煤炭学报,2017,42(2):510-517.

[134] 闫少宏,宁宇,康立军,等.用水力压裂处理坚硬顶板的机理及实验研究[J].煤炭学报,2000,25(1):32-35.

[135] 赵峰,齐俊德,丁自伟.华亭煤矿强矿压动力灾害防治技术分析[J].煤田地质与勘探,2015,43(6):75–79.

[136] 赵毅鑫,姜耀东,王涛,等.“两硬”条件下冲击地压微震信号特征及前兆识别[J].煤炭学报,2012,37(12):1960-1966.

[137] 文志杰,景所林,宋振骐,等.采场空间结构模型及相关动力灾害控制研究[J].煤炭科学技术,2019,47(1):52-61.

[138] 陈继刚,高保彬,王祖洸.综放开采滞后型动力灾害演化机理及控制技术[J].煤炭科学技术,2016,44(5):116-121.

[139] 王恩元,冯俊军,孔祥国,等.坚硬顶板断裂震源模型及应力波远场震动效应[J].采矿与安全工程学报,2018,35(4):787-793.

[140] 康红普,林健,吴拥政,等.锚杆构件力学性能及匹配性[J].煤炭学报,2015,40(1):11-23.

[141] 康红普,吴拥政,何杰,等.冲击地压巷道锚杆支护作用研究与实践[J].煤炭学报,2015,40(10):2225-2233.

[142] 侯朝炯,王襄禹,柏建彪,等.巷道围岩稳定性控制的基本理论与技术研究[J].中国矿业大学学报.2021,50(1):1-12.

[143] 谭云亮,郭伟耀,辛恒奇,等.煤矿开采冲击地压监测解危关键技术研究[J].煤炭学报,2019,44(1) :160-172.

[144] 谭云亮,于凤海,宁建国,等.沿空巷旁支护适应性原理与支护方法[J].煤炭学报,2016,41(2):376-382.

[145] 焦建康,鞠文君,吴拥政,等.动载冲击地压巷道围岩稳定性多层次控制技术[J].煤炭科学技术,2019,47(12):10-17.

[146] 郑建伟,鞠文君,吕大钊,等.顶板条带弱化法防治中央大巷冲击地压机制及实践[J].煤炭学报,2023,48(3):1169-1178..

[147] 翟明华,姜福兴,齐庆新,等.冲击地压分类防治体系研究与应用[J].煤炭学报,2017,42(12):3116-3124.

[148] 王涛,由爽,裴峰,等.坚硬顶板条件下临空煤柱失稳机制与防治技术[J].采矿与安全工程学报,2017,34(1):54-60.

[149] 来兴平,杨毅然,陈建强,等.急斜煤层浅转深综放开采煤岩动力灾害诱发机理[J].煤炭学报,2016,41(7):1610-1616.

[150] 崔峰,来兴平,陈建强,等.急斜特厚煤岩体耦合致裂应用研究[J].岩石力学与工程学报,2015,34(8):1569-1581.

[151] 崔峰,来兴平,曹建涛,等.煤岩体耦合致裂作用下的强度劣化研究[J].岩石力学与工程学报,2015,34(s2):3633-3641.

[152] 来兴平,孙欢,蔡明,等.急斜煤层浅转深综放开采煤岩动力灾害诱发机理[J].西安科技大学学报,2017,37(3):305-312.

[153] 单鹏飞,张,帅,来兴平,等.不同卸压措施下“双能量”指标协同预警及调控机制分析[J].岩石力学与工程学报,2021,40(s2):3261-3273.

[154] 来兴平,郑建伟,蒋新军,等.断层破碎区域煤岩体动压影响范围确定[J].采矿与安全工程学报,2016,33(2):361-365.

[155] Cui Feng,Lei Zhaoyuan,Chen Jianqiang,et al.Research on reducing mining-induced disasters by filling in steeply incline[J].sustainability.2019,11(20):1322-1335.

[156] 崔峰,张廷辉,来兴平,等.冲击地压矿井不同采动强度下的开采扰动特征及其产能研究[J].煤炭学报,2021,46(12):3781-3793.

[157] Xingping Lai, Huicong Xu, Jingdao Fan, et al, Study on the Mechanism and control of rock burst of 2 coal pillar under complex conditions, Geofluids,2020,20(11):11-24.

[158] Xu Huicong, Lai Xingping, Zhang Shuai, et al. Multiscale intelligent inversion of water-conducting fractured zone in coal mine based on elastic modulus calibration rate response and Its Application - a case study of Ningdong mining area[J]. Lithosphere,2021,https://doi.org/10.2113/2021/7657143.

[159] 姜福兴,舒凑先,王存文.基于应力叠加回采工作面冲击危险性评价[J].岩石力学与工程学报,2015,34(12):2428-2439.

[160] 崔峰,冯港归,来兴平,等.巨厚强冲击倾向性煤层高强度开采特征与高强度开采定义[J].煤炭学报,2023,48(2):649-665.

[161] 姜福兴,刘懿,张益超,等.采场覆岩的“载荷三带”结构模型及其在防冲领域的应用[J].岩石力学与工程学报,2016,35(12):2398-2408.

[162] 许家林,鞠金峰.特大采高综采面关键层结构形态及其对矿压显现的影响[J].岩石力学与工程学报,2011,30(8):1547-1559.

[163] 雷照源,李团结,崔峰,等.厚煤层动静载荷下区段煤柱损伤演化分析[J].西安科技大学学报,2022,42(1):91-97.

[164] 白贤栖,曹安业,杨耀,等.高位巨厚覆岩运移规律及矿震触发机制研究[J/OL].煤炭科学技术,https://doi.org/10.13199/j.cnki.cst.2022-1613.

[165] 于洋.特厚煤层坚硬顶板破断动载特征及巷道围岩控制研究[D].徐州:中国矿业大学,2015.

[166] 崔峰,杨彦斌,来兴平,等.基于微震监测关键层破断诱发冲击地压的物理相似材料模拟实验研究[J].岩石力学与工程学报,2019,38(4):803-814.

[167] 胡文强.某矿断层切割围岩的巷道稳定性数值分析[D].西安:西安建筑科技大学,2019.

[168] 雷照源,姚一龙,李磊,等.大采高智能化工作面液压支架自动跟机控制技术研究[J].煤炭科学技术,2019,47(7):194-199.

中图分类号:

 TD325    

开放日期:

 2029-03-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式