论文中文题名: | 基于 LAMMPS 的煤纳米孔隙中甲烷吸附和流动规律研究 |
姓名: | |
学号: | 20220226068 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 非常规天然气开采 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-03 |
论文外文题名: | Study on adsorption and flow characteristics of coal nanopores based on LAMMPS |
论文中文关键词: | |
论文外文关键词: | coal nanopores ; methane adsorption ; flow ; LAMMPS ; molecular simulation |
论文中文摘要: |
煤层气是从煤层中开采的天然气,主要成分为甲烷。煤层基质含有大量的纳米级孔隙,具有低孔隙度和低渗透率的特点。实际地质条件下,煤层气具有多储存形式和多尺度流动的特征。本文基于巨正则蒙特卡洛和分子动力学方法,并通过 Python 语言自编程加入力场、原子模型和边界条件等模块,对流体流动进行精确计算。从微观角度揭示了煤纳米孔隙中甲烷吸附、注气驱替、单相流动以及气水两相流动机理。获得的主要结论如下: 明晰了甲烷在煤纳米孔隙中的吸附行为。发现煤表面与甲烷存在分子间相互作用力,煤纳米孔隙中吸附态甲烷含量大于游离态甲烷含量。低压时煤中的小孔隙吸附能力更强,能吸附更多的甲烷。 阐明了煤纳米孔隙中二氧化碳驱替甲烷的作用机制。发现随着孔径的增大,孔隙对二氧化碳封存量逐渐增加,对甲烷的吸附能力逐渐降低。随着地质深度的增加,甲烷的吸附量逐渐增大,二氧化碳的封存量明显减小。纳米孔隙中注入二氧化碳能够驱替出孔隙中吸附态甲烷,提高甲烷采收率。 明确了煤纳米孔隙中甲烷流动的微尺度效应。甲烷在流动过程中会吸附于煤孔隙壁面,增大煤孔径,壁面范德华力对游离态甲烷影响减弱,甲烷流动速度增大,孔隙内出现大量游离态甲烷,甲烷吸附层均表现为两个对称的双峰分布。大孔径中甲烷黏度较低,流动性好,Hagen-Poiseuille 方程更适用于较大孔径中的甲烷流动。升高温度,甲烷分子热运动增强,吸附层密度降低,甲烷流动速度增加,煤孔隙壁上吸附态甲烷解吸为游离态甲烷,甲烷流量增大。增大压力,孔隙内甲烷数量逐渐增多,甲烷分子间强烈的相互碰撞使得甲烷流动阻力增大,流速减小。 厘清了煤纳米孔隙中甲烷和水两相流动规律。发现含水量较低时,孔隙中部产生水桥,形成塞流。随着含水量的增加产生水-气-水层状结构,形成层流。在煤纳米孔隙中,水膜主要改变甲烷与煤壁的相互作用,甲烷气体的流动主要为滑移流动。当水膜存在时,甲烷流量与外力作用呈线性关系。当水膜消失时,甲烷流量与外力作用呈非线性关系。 结合矿井条件和吸附理论,开展分子模拟的工程应用,对平顶山天安煤业八矿煤层甲烷含量进行预测。发现计算结果与现场瓦斯含量实测值较为吻合,研究对预防煤与瓦斯突出及瓦斯治理具有指导意义。 |
论文外文摘要: |
Coal bed methane is a natural gas extracted from coal seams and is mainly composed of methane. Nano pores are prevalent in the coal bed matrix, which is characterized by low porosity and poor permeability. Under actual geological conditions, CBM is characterized by diverse storage forms and multi-scale seepage. In this work, based on the giant regular Monte Carlo and molecular dynamics methods, and through the Python language self-programming with force field, atomic model and boundary conditions and other modules, accurate calculations of fluid flow are achieved. The mechanisms of methane adsorption, gas injection displacement, single-phase flow and gas-water two-phase flow in coal nanopores are revealed from the microscopic perspective. The main conclusions are as follows: The adsorption behaviour of methane in coal nanopores was clarified. It is found that there exists intermolecular interaction forces between the coal surface and methane, and the adsorbed methane content in coal nanopores is greater than the free methane content. The small pores in the coal has a higher adsorption capacity at low pressure and is able to adsorb more methane. The injection of carbon dioxide into the nanopores can displace the methane adsorbed in the pores and improve recovery. The mechanism of carbon dioxide displacement of methane in coal nanopores was elucidated. It is found that with the increase of pore size, the carbon dioxide storage increases, and the adsorption capacity of methane decreases. With the increase of geological depth, the adsorption capacity of methane increases, and the storage capacity of carbon dioxide decreases obviously. Injecting carbon dioxide into nano-pores can displace the adsorbed methane from the pores and improve the methane recovery. The microscale effect of methane flow in coal nanopores is clarified. Methane adsorbs to the walls of coal pores during the flow process, increasing the pore size of the coal, the effect of Van der Waals forces on the free methane at the walls is reduced, the methane flow rateincreases, a large amount of free methane appears in the pores, and the methane adsorption layers all show two symmetrical bimodal distributions. The Hagen-Poiseuille equation is more applicable to methane flow in larger pore sizes, where methane viscosity is lower and mobility is better. By increasing the temperature, the thermal movement of methane molecules increases, the density of the adsorbed layer decreases, the methane flow rate increases, the adsorbed methane on the coal pore wall desorbs to free methane, and the methane flow rate increases. Increase the pressure, the amount of methane in the pore gradually increases, the strong collision between methane molecules makes the methane flow resistance increase, the flow rate decreases. The two-phase flow law of methane and water in coal nano-pore was clarified. It is found that when the water content is low, a water bridge is generated in the middle of pore, and plug flow is formed. With the increase of water content, the water-gas-water layered structure is generated, and laminar flow is formed. In the coal nanopores, the interaction between methane and coal wall is mainly changed by water film, and the flow of methane gas is mainly slip flow. In the presence of a water film, the methane flow rate is linear to the external force. When the water film disappears, the methane flow has a nonlinear relationship with external force. Combining mine conditions and adsorption theory, the engineering application of molecular simulation was studied, and the methane content of the coal seam in Pingdingshan Tianan Coal Mine 8 was predicted. The results show that the calculated results are in good agreement with the actual measured values of gas content in the field, which is of great significance to the prevention of coal and gas outburst and gas control. |
参考文献: |
[3]李波波,李建华,杨康,等.考虑水分影响的煤层气吸附及渗透机理[J].安全与环境学 报,2021,21(02):590-598. [8]张建铭. 煤与瓦斯突出防治技术手册[M]. 中国矿业大学出版社, 2006. [9]姚艳斌, 刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究[J]. 煤炭科学技术, 2006, (03):68-72. [10]张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1):40-44. [12]Gan H, Nandi S P, Jr P. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4):272-277. [13]赵兴龙, 汤达祯, 许浩, 等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学 报, 2010, 35(9): 1506-1511. [14]桑树勋, 朱炎铭, 张井, 等. 煤吸附气体的固气作用机理[J]. 天然气工业, 2005, 25(1): 13-15. [16]王佑安, 杨思敬. 煤和瓦斯突出危险煤层的某些特征[J]. 煤炭学报, 1980, 5(1): 47-53. [17]琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理 [J].地质学报, 2005, 79(2):269-285. [24]林柏泉,李永,杨凯等.H2O和CH4在煤表面竞争吸附机理[J].西安科技大学学 报,2018,38(06):878-885+918. [25]王宝俊,章丽娜,凌丽霞,等.煤分子结构对煤层气吸附与扩散行为的影响[J].化工学 报,2016,67(06):2548-2557. [26]张彬,康天合,康健婷,等.C2H6,CH4在高岭石表面竞争吸附的分子模拟[J].太原理工大 学学报,2019,50(03):297-302. [27]Moore T A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101 (0), 36−81. [31]Flores R M. Coal And Coalbed Gas Fueling The Future.2013. [77]尹光志,蒋长宝,许江,等.煤层气储层含水率对煤层气渗流影响的试验研究[J].岩石力 学与工程学报,2011,30(S2):3401-3406. [78]魏建平,位乐,王登科.含水率对含瓦斯煤的渗流特性影响试验研究[J].煤炭学报,2014,39(01):97-103. [80]Wallis G B. One-dimensional two-phase flow[M]. Courier Dover Publications, 2020. [95]Allinger N L. Molecular Mechanics[M]. American Chemical Society, 1982. [97]Noid D W. Studies in Molecular Dynamics[M]. 1976. [99]Ohno K, Esfarjani K, Kawazoe Y. Ab Initio Methods[J]. Springer Berlin Heidelberg, 1999. [100]Chester M. Primer of quantum mechanics[M]. WILEY, 1987. [103]王春芳,王靖方,栗琳,等. 分子模拟在生物化学中的应用实例[J]. 原子与分子学 报, 2007, 24(2):316-320. [104]聂仪晶,周志平. 分子模拟在高分子物理教学过程中的应用[J]. 广州化工,2015(23):220-221. [109]张明航.伊利石及方解石中 CO2-烷烃吸附扩散的分子模拟研究[D].西南石油大学, 2017. [110]Allen M P, Tildesley D J . Computer simulation of liquids[J]. Clarendon Press, 1987. [114]石油中烃类化合物的粗粒化分子力学/分子动力学力场的建立[D]. 中国石油大学(华东), 2012. [119]Mathews J P, Alan L C. The molecular representations of coal-A review. Fuel,2012,96:1-14. [136]张凯飞,刘汉涛,雷广平,等. 赵庄3#煤中甲烷吸附特性的分子模拟[J].中国科技论文,2020,15(01):94-99. [137]曲国娜,马兆鑫,贾廷贵,等. 高变质煤对CH4和CO2气体吸附试验与分子模拟研究[J].安全与环境学报,2022,22(01):142-147. [138]唐巨鹏,邱于曼,马圆. 煤中CH4扩散影响因素的分子动力学分析[J].煤炭科学技术,2021,49(02):85-92. [146]冯艳艳,储伟,孙文晶. 储层温度下甲烷的吸附特[J]. 煤炭学报,2012,37(09):1488-1492. [147]马向攀,王兆丰,任浩洋.煤吸附甲烷能力对温度压力变化的响应特性[J].煤矿安全,2016,47(12):8-11. |
中图分类号: | TD712 |
开放日期: | 2023-06-16 |