- 无标题文档
查看论文信息

论文中文题名:

 基于 LAMMPS 的煤纳米孔隙中甲烷吸附和流动规律研究    

姓名:

 刘洋    

学号:

 20220226068    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 非常规天然气开采    

第一导师姓名:

 石钰    

第一导师单位:

 西安科技大学    

第二导师姓名:

 贾永勇    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on adsorption and flow characteristics of coal nanopores based on LAMMPS    

论文中文关键词:

 煤纳米孔隙 ; 甲烷吸附 ; 流动 ; LAMMPS ; 分子模拟    

论文外文关键词:

 coal nanopores ; methane adsorption ; flow ; LAMMPS ; molecular simulation    

论文中文摘要:

煤层气是从煤层中开采的天然气,主要成分为甲烷。煤层基质含有大量的纳米级孔隙,具有低孔隙度和低渗透率的特点。实际地质条件下,煤层气具有多储存形式和多尺度流动的特征。本文基于巨正则蒙特卡洛和分子动力学方法,并通过 Python 语言自编程加入力场、原子模型和边界条件等模块,对流体流动进行精确计算。从微观角度揭示了煤纳米孔隙中甲烷吸附、注气驱替、单相流动以及气水两相流动机理。获得的主要结论如下:

明晰了甲烷在煤纳米孔隙中的吸附行为。发现煤表面与甲烷存在分子间相互作用力,煤纳米孔隙中吸附态甲烷含量大于游离态甲烷含量。低压时煤中的小孔隙吸附能力更强,能吸附更多的甲烷。

阐明了煤纳米孔隙中二氧化碳驱替甲烷的作用机制。发现随着孔径的增大,孔隙对二氧化碳封存量逐渐增加,对甲烷的吸附能力逐渐降低。随着地质深度的增加,甲烷的吸附量逐渐增大,二氧化碳的封存量明显减小。纳米孔隙中注入二氧化碳能够驱替出孔隙中吸附态甲烷,提高甲烷采收率。

明确了煤纳米孔隙中甲烷流动的微尺度效应。甲烷在流动过程中会吸附于煤孔隙壁面,增大煤孔径,壁面范德华力对游离态甲烷影响减弱,甲烷流动速度增大,孔隙内出现大量游离态甲烷,甲烷吸附层均表现为两个对称的双峰分布。大孔径中甲烷黏度较低,流动性好,Hagen-Poiseuille 方程更适用于较大孔径中的甲烷流动。升高温度,甲烷分子热运动增强,吸附层密度降低,甲烷流动速度增加,煤孔隙壁上吸附态甲烷解吸为游离态甲烷,甲烷流量增大。增大压力,孔隙内甲烷数量逐渐增多,甲烷分子间强烈的相互碰撞使得甲烷流动阻力增大,流速减小。

厘清了煤纳米孔隙中甲烷和水两相流动规律。发现含水量较低时,孔隙中部产生水桥,形成塞流。随着含水量的增加产生水-气-水层状结构,形成层流。在煤纳米孔隙中,水膜主要改变甲烷与煤壁的相互作用,甲烷气体的流动主要为滑移流动。当水膜存在时,甲烷流量与外力作用呈线性关系。当水膜消失时,甲烷流量与外力作用呈非线性关系。

结合矿井条件和吸附理论,开展分子模拟的工程应用,对平顶山天安煤业八矿煤层甲烷含量进行预测。发现计算结果与现场瓦斯含量实测值较为吻合,研究对预防煤与瓦斯突出及瓦斯治理具有指导意义。

论文外文摘要:

Coal bed methane is a natural gas extracted from coal seams and is mainly composed of methane. Nano pores are prevalent in the coal bed matrix, which is characterized by low porosity and poor permeability. Under actual geological conditions, CBM is characterized by diverse storage forms and multi-scale seepage. In this work, based on the giant regular Monte Carlo and molecular dynamics methods, and through the Python language self-programming with force field, atomic model and boundary conditions and other modules, accurate calculations of fluid flow are achieved. The mechanisms of methane adsorption, gas injection displacement, single-phase flow and gas-water two-phase flow in coal nanopores are revealed from the microscopic perspective. The main conclusions are as follows:

The adsorption behaviour of methane in coal nanopores was clarified. It is found that there exists intermolecular interaction forces between the coal surface and methane, and the adsorbed methane content in coal nanopores is greater than the free methane content. The small pores in the coal has a higher adsorption capacity at low pressure and is able to adsorb more methane. The injection of carbon dioxide into the nanopores can displace the methane adsorbed in the pores and improve recovery.

The mechanism of carbon dioxide displacement of methane in coal nanopores was elucidated. It is found that with the increase of pore size, the carbon dioxide storage increases, and the adsorption capacity of methane decreases. With the increase of geological depth, the adsorption capacity of methane increases, and the storage capacity of carbon dioxide decreases obviously. Injecting carbon dioxide into nano-pores can displace the adsorbed methane from the pores and improve the methane recovery.

The microscale effect of methane flow in coal nanopores is clarified. Methane adsorbs to the walls of coal pores during the flow process, increasing the pore size of the coal, the effect of Van der Waals forces on the free methane at the walls is reduced, the methane flow rateincreases, a large amount of free methane appears in the pores, and the methane adsorption layers all show two symmetrical bimodal distributions. The Hagen-Poiseuille equation is more applicable to methane flow in larger pore sizes, where methane viscosity is lower and mobility is better. By increasing the temperature, the thermal movement of methane molecules increases, the density of the adsorbed layer decreases, the methane flow rate increases, the adsorbed methane on the coal pore wall desorbs to free methane, and the methane flow rate increases. Increase the pressure, the amount of methane in the pore gradually increases, the strong collision between methane molecules makes the methane flow resistance increase, the flow rate decreases.

The two-phase flow law of methane and water in coal nano-pore was clarified. It is found that when the water content is low, a water bridge is generated in the middle of pore, and plug flow is formed. With the increase of water content, the water-gas-water layered structure is generated, and laminar flow is formed. In the coal nanopores, the interaction between methane and coal wall is mainly changed by water film, and the flow of methane gas is mainly slip flow. In the presence of a water film, the methane flow rate is linear to the external force. When the water film disappears, the methane flow has a nonlinear relationship with external force.

Combining mine conditions and adsorption theory, the engineering application of molecular simulation was studied, and the methane content of the coal seam in Pingdingshan Tianan Coal Mine 8 was predicted. The results show that the calculated results are in good agreement with the actual measured values of gas content in the field, which is of great significance to the prevention of coal and gas outburst and gas control.

参考文献:

[1]Wang H, Ma F, Tong X, et al. Assessment of global unconventional oil and gas resources. Petroleum Exploration and Development 2016;43(6):925-40.

[2]Wu Y, Pan Z, Zhang D, et al. Evaluation of gas production from multiple coal seams: a simulation study and economics.International Journal of Mining Science and Technology 2018;28(3):359-71.

[3]李波波,李建华,杨康,等.考虑水分影响的煤层气吸附及渗透机理[J].安全与环境学 报,2021,21(02):590-598.

[4]Gray I. Reservoir engineering in coal seams: Part1. The physical process of gas storage and movement in coal seams.SPE Reservoir Engineering 1987;2:28-34.

[5]Palmer I. Coalbed methane completions: A world view[J]. International Journal of Coal Geology, 2010, 82(3-4):184-195.

[6]Charrière D, Pokryszka Z , Behra P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine basin (France)[J]. International Journal of Coal Geology, 2010, 81(4):373-380.

[7]Kang Y, Huang F, You L, et al. Impact of fracturing fluid on multi-scale mass transport in coalbed methane reservoirs[J]. International Journal of Coal Geology, 2016,154: 123-135.

[8]张建铭. 煤与瓦斯突出防治技术手册[M]. 中国矿业大学出版社, 2006.

[9]姚艳斌, 刘大锰. 煤储层孔隙系统发育特征与煤层气可采性研究[J]. 煤炭科学技术, 2006, (03):68-72.

[10]张慧. 煤孔隙的成因类型及其研究[J]. 煤炭学报, 2001, 26(1):40-44.

[11]Mastalerz M, Drobniak A, Strąpoć D, et al. Variations in pore characteristics in high volatile bituminous coals: implications for coal bed gas content[J]. International Journal of Coal Geology, 2008, 76(3): 205-216.

[12]Gan H, Nandi S P, Jr P. Nature of the porosity in American coals[J]. Fuel, 1972, 51(4):272-277.

[13]赵兴龙, 汤达祯, 许浩, 等. 煤变质作用对煤储层孔隙系统发育的影响[J]. 煤炭学 报, 2010, 35(9): 1506-1511.

[14]桑树勋, 朱炎铭, 张井, 等. 煤吸附气体的固气作用机理[J]. 天然气工业, 2005, 25(1): 13-15.

[15]Yao Y, Liu D, Yan T. Geological and hydrogeological controls on the accumulation of coalbed methane in the Weibei field, southeastern Ordos Basin[J]. International Journal of Coal Geology, 2014, 121: 148-159.

[16]王佑安, 杨思敬. 煤和瓦斯突出危险煤层的某些特征[J]. 煤炭学报, 1980, 5(1): 47-53.

[17]琚宜文, 姜波, 侯泉林, 等. 华北南部构造煤纳米级孔隙结构演化特征及作用机理 [J].地质学报, 2005, 79(2):269-285.

[18]Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal: A review[J]. International Journal of Coal Geology, 2011, 87: 49-71.

[19]Mosher K, He J, Liu Y, et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109-110: 36-44.

[20]Huang L, Zhang L, Shao Q, et al. Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects [J]. Journal of Physical Chemistry C, 2007, 111(32): 11912-11920.

[21]Tenney C, Lastoskie C. Molecular simulation of carbon dioxide adsorption in chemically and structurally heterogeneous porous carbons [J]. Environmental progress, 2006, 25(4): 343-354.

[22]Liu Y, Wilcox J. Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons [J]. Environmental science & technology, 2012, 46(3): 1940-1947.

[23]You J, Tian L, Zhang C, et al. Adsorption behavior of carbon dioxide and methane in bituminous coal :A molecular simulation study[J]. Chinese Journal of Chemical Engineering, 2016, 24(009): 1275-1282.

[24]林柏泉,李永,杨凯等.H2O和CH4在煤表面竞争吸附机理[J].西安科技大学学 报,2018,38(06):878-885+918.

[25]王宝俊,章丽娜,凌丽霞,等.煤分子结构对煤层气吸附与扩散行为的影响[J].化工学 报,2016,67(06):2548-2557.

[26]张彬,康天合,康健婷,等.C2H6,CH4在高岭石表面竞争吸附的分子模拟[J].太原理工大 学学报,2019,50(03):297-302.

[27]Moore T A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101 (0), 36−81.

[28]Busch A, Gensterblum Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87 (2), 49−71.

[29]Bustin R M, Clarkson C R. Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 1998, 38 (1−2), 3−26.

[30]Dutka B, Kudasik M, Pokryszka Z, et al. Balance of CO2/CH4 exchange sorption in a coal briquette. Fuel Process. Technol. 2013, 106 (0), 95−101.

[31]Flores R M. Coal And Coalbed Gas Fueling The Future.2013.

[32]Singh P K, Rajak P K, Singh V K, et al. Studies on thermal maturity and hydrocarbon potential of lignites of Bikaner–Nagaur basin, Rajasthan[J]. Energy Exploration & Exploitation, 2016, 34(1):140-157.

[33]Singh P K. Geological and petrological considerations for coal bed methane exploration: A review[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2011, 33(13): 1211-1220.

[34]Mosher K, He J, Liu Y, et al. Molecular simulation of methane adsorption in micro-and mesoporous carbons with applications to coal and gas shale systems[J]. International Journal of Coal Geology, 2013, 109: 36-44.

[35]Gunter W D, Gentzis T, Rottenfusser B A, et al. Deep coalbed methane in Alberta, Canada: A fuel resource with the potential of zero greenhouse gas emissions[J]. Energy Conversion & Management, 1997,38:S217-S222

[36]Shimada S, Li H, Oshima Y, et al. Displacement behavior of CH4 adsorbed on coals by injecting pure CO2,N2,and CO2–N2 mixture[J]. Environmental Geology, 2005, 49(1):44-52.

[37]Mazumder S, Wolf K H. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology, 2008, 74(2):123-138.

[38]Wang L, Cheng Y, Wang Y. Laboratory Study of the Displacement Coalbed CH4 Process and Efficiency of CO2 and N2 Injection[J]. The Scientific World Journal,2014(5):242947.

[39]Liu Z, Cheng Y, Wang Y, et al. Experimental investigation of CO2 injection into coalseam reservoir at in-situ stress conditions for enhanced coalbed methane recovery[J]. Fuel, 2019, 236: 709-716.

[40]Jessen K, Tang G Q, Kovscek A R. Laboratory and simulation investigation of enhanced coalbed methane recovery by gas injection[J]. Transport in Porous Media, 2008, 73: 141-159.

[41]Li X, Kang Y, Zhou L. Investigation of gas displacement efficiency and storage capability for enhanced CH4 recovery and CO2 sequestration[J]. Journal of Petroleum Science and Engineering, 2018, 169: 485-493.

[42]Mazumder S, Siemons N, Wolf K H. Differential swelling and permeability change of coal in response to CO2 injection for enhanced coalbed methane[C]//2006 International Coal Bed Methane Symposium, Paper. 2006, 602.

[43]Pan Z, Ye J, Zhou F, et al. CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China[J]. International Geology Review, 2018, 60(5-6): 754-776.

[44]Zhang X G, Ranjith P G, Perera M S A, et al. Gas transportation and enhanced coalbed methane recovery processes in deep coal seams: a review[J]. Energy & Fuels, 2016, 30(11): 8832-8849.

[45]Sander R, Connell L D, Pan Z, et al. Core flooding experiments of CO2 enhanced coalbed methane recovery[J]. International Journal of Coal Geology, 2014, 131: 113-125.

[46]Ranathunga A S, Perera M S A, Ranjith P G, et al. An experimental investigation of applicability of CO2 enhanced coal bed methane recovery to low rank coal[J]. Fuel, 2017, 189: 391-399.

[47]Wu K, Chen Z, Li X, et al. A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect–adsorption-mechanic coupling[J]. International Journal of Heat and Mass Transfer, 2016, 93: 408-426.

[48]Xiong X, Devegowda D, Michel G G, et al. A fully-coupled free and adsorptive phase transport model for shale gas reservoirs including non-Darcy flow effects[C]//SPE annual technical conference and exhibition. OnePetro, 2012.

[49]Michel G G, Sigal R F, Civan F, et al. Parametric investigation of shale gas production considering nano-scale pore size distribution, formation factor, and non-Darcy flow mechanisms[C]//SPE annual technical conference and exhibition. OnePetro, 2011.

[50]Mahmoud M. Development of a new correlation of gas compressibility factor (Z-factor) for high pressure gas reservoirs[J]. Journal of Energy Resources Technology, 2014, 136(1).

[51]Jarrahian A, Heidaryan E. A simple correlation to estimate natural gas viscosity[J]. Journal of Natural Gas Science and Engineering, 2014, 20: 50-57.

[52]Zhang Q, Su Y, Wang W, et al. Gas transport behaviors in shale nanopores based on multiple mechanisms and macroscale modeling[J]. International Journal of Heat and Mass Transfer, 2018, 125: 845-857.

[53]Yin T, Liu D, Cai Y, et al. Size distribution and fractal characteristics of coal pores through nuclear magnetic resonance cryoporometry[J]. Energy & Fuels, 2017, 31(8): 7746-7757.

[54]Zhou S, Liu D, Cai Y, et al. Fractal characterization of pore–fracture in low-rank coals using a low-field NMR relaxation method[J]. Fuel, 2016, 181: 218-226.

[55]Maxwell J C. On Stresses in Rarified Gases Arising from Inequalities of Temperature[J]. Philosophical Transactions of the Royal Society of London, 1879, 170:231-256.

[56]Knudsen M . Die Gesetze der Molekularstrmung und der inneren Reibungsstrmung der Gase durch Rhrn[J]. Annalen der Physik, 1909, 333(1):75-130.

[57]Klinkenberg L J. The Permeability of Porous Media To Liquids And Gases[M]. American Petroleum Institute, 1941.

[58]Ertekin T, King G A, Schwerer F C . Dynamic Gas Slippage: A Unique Dual-Mechanism Approach to the Flow of Gas in Tight Formations[J]. Spe Formation Evaluation, 1986, 1(01):43-52.

[59]Thomas J A , Mcgaughey A , Kuter-Arnebeck O. Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation[J]. International Journal of Thermal Sciences, 2010, 49(2):281-289.

[60]Khademi M, Sahimi M. Molecular dynamics simulation of pressure-driven water flow in silicon-carbide nanotubes[J]. Journal of Chemical Physics, 2011, 135(20):351.

[61]Zhu Y, Zhang L, Lu X, et al. Flow resistance analysis of nanoconfined water in silt pores by molecular simulations: Effect of pore wall interfacial properties[J]. Fluid Phase Equilibria, 2014, 362:235-241.

[62]Nan Y, Li W, Jin Z, et al. Slip length of methane flow under shale reservoir conditions: Effect of pore size and pressure - ScienceDirect[J]. Fuel, 259:116237-116237.

[63]Wang S, Feng Q, Zha M, et al. Supercritical Methane Diffusion in Shale Nanopores: Effects of Pressure,Mineral Types,and Moisture Content[J].Energy&Fuels, 2017,32(1)1-48.

[64]Chen Z, Liu J, Kabir A, et al. Impact of various parameters on the production of coalbed methane[J]. SPE Journal, 2013, 18(05): 910-923.

[65]Wang J G, Kabir A, Liu J, et al. Effects of non-Darcy flow on the performance of coal seam gas wells[J]. International Journal of Coal Geology, 2012, 93: 62-74.

[66]Seto C J, Jessen K, Orr F M. A multicomponent, two-phase-flow model for CO2 storage and enhanced coalbed-methane recovery[J]. SPE Journal, 2009, 14(01): 30-40.

[67]Gu F, Chalaturnyk R J. Sensitivity study of coalbed methane production with reservoir and geomechanic coupling simulation[J]. Journal of Canadian Petroleum Technology, 2005, 44(10).

[68]Gu F, Chalaturnyk R J. Numerical simulation of stress and strain due to gas sorption/desorption and their effects on in situ permeability of coalbeds[J]. Journal of Canadian Petroleum Technology, 2006, 45(10).

[69]Connell L D. Coupled flow and geomechanical processes during gas production from coal seams[J]. International Journal of Coal Geology, 2009, 79(1-2): 18-28.

[70]Connell L D, Detournay C. Coupled flow and geomechanical processes during enhanced coal seam methane recovery through CO2 sequestration[J]. International Journal of Coal Geology, 2009, 77(1-2): 222-233.

[71]Brooks R H, Corey A T. Properties of porous media affecting fluid flow[J]. Journal of the irrigation and drainage division, 1966, 92(2): 61-88.

[72]Van Genuchten M T. A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil science society of America journal, 1980, 44(5): 892-898.

[73]Durucan S, Ahsan M, Syed A, et al. Two phase relative permeability of gas and water in coal for enhanced coalbed methane recovery and CO2 storage[J]. Energy Procedia, 2013, 37: 6730-6737.

[74]Shen J, Qin Y, Wang G X, et al. Relative permeabilities of gas and water for different rank coals[J]. International Journal of Coal Geology, 2011, 86(2-3): 266-275.

[75]Xu H, Tang D Z, Tang S H, et al. A dynamic prediction model for gas–water effective permeability based on coalbed methane production data[J]. International Journal of Coal Geology, 2014, 121: 44-52.

[76]Chen D, Pan Z, Liu J, et al. An improved relative permeability model for coal reservoirs[J]. International Journal of Coal Geology, 2013, 109: 45-57.

[77]尹光志,蒋长宝,许江,等.煤层气储层含水率对煤层气渗流影响的试验研究[J].岩石力 学与工程学报,2011,30(S2):3401-3406.

[78]魏建平,位乐,王登科.含水率对含瓦斯煤的渗流特性影响试验研究[J].煤炭学报,2014,39(01):97-103.

[79]Su X, Wang Q, Song J, et al. Experimental study of water blocking damage on coal[J]. Journal of Petroleum Science and Engineering, 2017, 156: 654-661.

[80]Wallis G B. One-dimensional two-phase flow[M]. Courier Dover Publications, 2020.

[81]Wang J, Zhao Y, Mao R. Impact of temperature and pressure on the characteristics of two-phase flow in coal[J]. Fuel, 2019, 253: 1325-1332.

[82]Shimada S , Li H , Oshima Y , et al. Displacement behavior of CH 4 adsorbed on coals by injecting pure CO2, N2, and CO2 –N2 mixture[J]. Environmental Geology, 2005, 49(1):44-52.

[83]Mazumder S et al. Differential swelling and permeability change of coal in response to CO2 injection for ECBM[J]. International Journal of Coal Geology, 2008.74(2):123-138

[84]Wang L, Cheng Y, Wang Y. Laboratory Study of the Displacement Coalbed CH4 Process and Efficiency of CO2 and N2 Injection[J]. The Scientific World Journal,2014,(2014-3-6), 2014, 2014(5):242947.

[85]Smith W, Yong C W, Rodger P M. DL_POLY: Application to molecular simulation[J]. Molecular Simulation, 2002, 28(5):385-471.

[86]Reich S. Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications [J]. Siam Review, 2010(1):213-214.

[87]Leach A R. Molecular Modelling: Principles and Applications[J]. Briefings in Bioinformatics, 2001, 2(2):199-200.

[88]Kremer K, Grest G S. Dynamics of entangled linear polymer melts: A molecular‐dynamics simulation[J]. Journal of Chemical Physics,1990, 92(8):5057-5086.

[89]Hu J, Ruan X, Chen Y P. Thermal Conductivity and Thermal Rectification in Graphene Nanoribbons: a Molecular Dynamics Study[J]. Nano Letters, 2009, 9(7):2730.

[90]Lee C, Wei X, Kysar J W, et al. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J]. Science, 2008, 321(5887):385-388.

[91]Sedigh M G, Onstot W J, Xu L, et al. Experiments and Simulation of Transport and Separation of Gas Mixtures in Carbon Molecular Sieve Membranes[J]. The Journal of Physical Chemistry A, 1998, 102(44):8580-8589.

[92]Jenkins G M, Rambaut A, Pybus O G, et al. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis[J]. Journal of Molecular Evolution, 2002, 54(2):156-165.

[93]Loverde S M. Molecular simulation of the transport of drugs across model membranes[J]. The Journal of Physical Chemistry Letters, 2014, 5(10): 1659-1665.

[94]Jie Z, Li L, Tsao H K, et al. Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study[J]. Biophysical Journal, 2005, 89(1):158-166.

[95]Allinger N L. Molecular Mechanics[M]. American Chemical Society, 1982.

[96]Binder K. The Monte Carlo Method in Condensed Matter Physics[M]. American Institute of PhysicsAIP, 1998.

[97]Noid D W. Studies in Molecular Dynamics[M]. 1976.

[98]Erban R. From Molecular Dynamics to Brownian Dynamics[J]. Proceedings Mathematical Physical & Engineering Sciences, 2014, 470(2167):20140036.

[99]Ohno K, Esfarjani K, Kawazoe Y. Ab Initio Methods[J]. Springer Berlin Heidelberg, 1999.

[100]Chester M. Primer of quantum mechanics[M]. WILEY, 1987.

[101]Smith W, Yong C W, Rodger P M. DL_POLY: Application to molecular simulation[J]. Molecular Simulation, 2002, 28(5): 385-471.

[102]Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications[M]. Elsevier, 2001.

[103]王春芳,王靖方,栗琳,等. 分子模拟在生物化学中的应用实例[J]. 原子与分子学 报, 2007, 24(2):316-320.

[104]聂仪晶,周志平. 分子模拟在高分子物理教学过程中的应用[J]. 广州化工,2015(23):220-221.

[105]Driscoll T A, Maki K L. Searching for Rare Growth Factors Using Multicanonical Monte Carlo Methods[J]. Siam Review, 2007, 49(4):673-692.

[106]Binder K, Mckay S R, Christian W. The Monte Carlo Method in Condensed Matter Physics: Second, Corrected and Updated Edition[M]. Springer-Verlag, 1995.

[107]Alder B J, Wainwright T E. Phase Transition for a Hard Sphere System[J]. Journal of Chemical Physics, 1957, 27(5):1208-1209.

[108]Rapaport D C, Blumberg R L, Mckay S R, et al. The Art of Molecular Dynamics Simulation[J]. Computing in Science & Engineering, 2002, 1(1):70-71.

[109]张明航.伊利石及方解石中 CO2-烷烃吸附扩散的分子模拟研究[D].西南石油大学, 2017.

[110]Allen M P, Tildesley D J . Computer simulation of liquids[J]. Clarendon Press, 1987.

[111]Rapaport D C, Blumberg R L , Mckay S R , et al. The Art of Molecular Dynamics Simulation[J]. Computing in Science & Engineering, 2002, 1(1):70-71.

[112]Gibbs J W. Elementary Principles in Statistical Mechanics, Developed with Especial Reference to the Rational Foundation of Thermodynamics[J]. Dover Publications Inc New York, 1902, 14(1):A55-A59.

[113]Sadus R J. Molecular Simulation of Fluids: Theory[J]. Algorithms and Object-Orientation, 2002, 4: 67-72.

[114]石油中烃类化合物的粗粒化分子力学/分子动力学力场的建立[D]. 中国石油大学(华东), 2012.

[115]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids[J]. Journal of the American Chemical Society, 1996, 118(45): 11225-11236.

[116]Donohue M D,Aranovich G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid & Interface Science, 1998, 76–77:137-152.

[117]Bhoi S,Banerjee T,Mohanty K. Molecular dynamic simulation of spontaneous combustion and pyrolysis of brown coal using ReaxFF[J]. Fuel,2014,136(1):326-333.

[118]Dang Y, Zhao L, Lu X, et al. Molecular simulation of CO2/CH4 adsorption in brown coal: Effect of oxygen-, nitrogen-, and sulfur-containing functional groups[J]. Applied Surface Science, 2017, 423: 33-42.

[119]Mathews J P, Alan L C. The molecular representations of coal-A review. Fuel,2012,96:1-14.

[120]Rieder M, Crelling J C, Sustai O, et al. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin,Czech Republic[J]. International Journal of Coal Geology,2007,71(2-3):115-121.

[121]Mayo S L, Olafson B D, Goddard W A. DREIDING. A generic force field for molecular simulations[J]. The Journal of Physical Chemistry,1990,94(26),8897-8909.

[122]Jorgensen W L. Optimized intermolecular potential functions for liquid alcohols[J]. Journal of Physical Chemistry,1986,90(7):1276-1284.

[123]National Institute of Standards and Technology. Thermophysical properties of fluid systems;2011. http://webbook.nist.gov/chemistry/fluid/

[124]Delavar M, Asghar Ghoreyshi A, Jahanshahi M, et al. Equilibria and kinetics of natural gas adsorption on multi-walled carbon nanotube material[J]. RSC Advances, 2012, 2(10):4490.

[125]Wang S,Feng Q,Zha M,et al. Molecular dynamics simulation of liquid alkane occurrence state in pores and slits of shale organic matter[J]. Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development,2015,42(6):844-851.

[126]Clark C, Burnham A, Harto C, et al. Hydraulic fracturing and shale gas production: technology, impacts, and policy[J]. Argonne National Laboratory, 2012: 1-16.

[127]Connor J A, Molofsky L J, Richardson S D, et al. Environmental issues and answers related to shale gas development[C]. SPE Latin American and Caribbean Health, Safety, Environment and Sustainability Conference. OnePetro, 2015.

[128]Krogulec E, Sawicka K. Groundwater protection in shale gas exploration areas-a Polish perspective[J]. Episodes Journal of International Geoscience, 2015, 38(1): 9-20.

[129]Wu H A, Chen J, Liu H. Molecular dynamics simulations about adsorption and displacement of methane in carbon nanochannels[J]. The Journal of Physical Chemistry C, 2015, 119(24): 13652-13657.

[130]Yuan Q, Zhu X, Lin K, et al. Molecular dynamics simulations of the enhanced recovery of confined methane with carbon dioxide[J]. Physical Chemistry Chemical Physics, 2015, 17(47): 31887-31893.

[131]Pathak M, Pawar G, Huang H, et al. Carbon dioxide sequestration and hydrocarbons recovery in the gas rich shales: an insight from the molecular dynamics simulations[C]//Carbon Management Technology Conference. OnePetro, 2015.

[132]Kowalczyk P, Gauden P A, Terzyk A P, et al. Displacement of methane by coadsorbed carbon dioxide is facilitated in narrow carbon nanopores[J]. The Journal of Physical Chemistry C, 2012, 116(25): 13640-13649.

[133]Liang W G, Zhang B N, Han J J, et al. Experimental study on coal bed methane displacement and recovery by super critical carbon dioxide injection[J]. Journal of China Coal Society, 2014, 39(8): 1511-1520.

[134]Cao D, Zhang X, Chen J, et al. Optimization of Single-Walled Carbon Nanotube Arrays for Methane Storage at Room Temperature[J]. Journal of Physical Chemistry B 2003, 107,13286-13292.

[135]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236.

[136]张凯飞,刘汉涛,雷广平,等. 赵庄3#煤中甲烷吸附特性的分子模拟[J].中国科技论文,2020,15(01):94-99.

[137]曲国娜,马兆鑫,贾廷贵,等. 高变质煤对CH4和CO2气体吸附试验与分子模拟研究[J].安全与环境学报,2022,22(01):142-147.

[138]唐巨鹏,邱于曼,马圆. 煤中CH4扩散影响因素的分子动力学分析[J].煤炭科学技术,2021,49(02):85-92.

[139]Wang S, Feng Q, Zha M,et al. Molecular dynamics simulations of oil transport through inorganic nanopores in shale[J]. Fuel,2016,171:74-86.

[140]Richard R, Anthony S, Aziz G. Pressure-driven molecular dynamics simulations of water transport through a hydrophilic nanochannel[J].Molecular Physic,2016,114(18):2655-2663.

[141]Hansen J S, Todd B D, Daivis P J. Prediction of fluid velocity slip at solid surfaces[J]. Phys Rev E Stat Nonlin Soft Matter Phys,2011,84(01):016313.

[142]Whitby M, Cagnon L, Thanou M, et al. Enhanced Fluid Flow through Nanoscale Carbon Pipes[J]. Nano Letters,2008,8(9):2632-2637.

[143]Botan A, Rotenberg B, Marry V, et al. Hydrodynamics in clay nanopores[J]. The Journal of Physical Chemistry C, 2011,115(32): 16109-16115.

[144]Thomas J A, Mcgaughey A. Reassessing Fast Water Transport Through Carbon Nanotubes[J]. Nano Letters,2008,8(9):2788-2793.

[145]Heinbuch U, Fischer J. Liquid flow in pores:Slip, no-slip, or multilayer sticking[J]. Physical Review A,1989,40(2):1144-1146.

[146]冯艳艳,储伟,孙文晶. 储层温度下甲烷的吸附特[J]. 煤炭学报,2012,37(09):1488-1492.

[147]马向攀,王兆丰,任浩洋.煤吸附甲烷能力对温度压力变化的响应特性[J].煤矿安全,2016,47(12):8-11.

[148]Bourg I C, Steefel C I. Molecular dynamics simulations of water structure and diffusion in silica nanopores[J]. The Journal of Physical Chemistry C,2012,116(21): 11556-11564.

[149]Wu K, Chen Z, Li J, et al. Wettability effect on nanoconfined water flow[J]. Proceedings of the National Academy of Sciences, 2017, 114(13): 3358-3363.

[150]Cao B Y, Chen M, Guo Z Y. Effect of surface roughness on gas flow in microchannels by molecular dynamics simulation[J]. International Journal of Engineering Science, 2006,44(13-14): 927-937.

[151]Shi J, Zhang L, Li Y, et al. Diffusion and flow mechanisms of shale gas through matrix pores and gas production forecasting[C]. SPE unconventional resources conference Canada. OnePetro, 2013.

中图分类号:

 TD712    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式