- 无标题文档
查看论文信息

论文中文题名:

 永磁同步电机有限集模型预测速度控制研究    

姓名:

 校珂怡    

学号:

 21206227110    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 永磁同步电机控制技术    

第一导师姓名:

 潘红光    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Research on Finite Control Set Model Predictive Speed Control of Permanent Magnet Synchronous Motor    

论文中文关键词:

 永磁同步电机 ; 模型预测速度控制 ; 扩展卡尔曼滤波器 ; 模型参考自适应系统 ; 三矢量    

论文外文关键词:

 Permanent magnet synchronous motor ; Model predictive speed control ; Extended Kalman filter ; Model reference adaptive system ; Three vector    

论文中文摘要:

永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)具有负载性能好、效率高等特点,在工业领域已获得广泛关注。有限集模型预测控制在电机驱动系统中具有明显优势,但面对越来越高的工业需求,其在动态响应速度和稳态性能等方面仍有较大提升空间。为提高PMSM控制性能,本文以传统FCS-MPC策略为基础,提出三种有限集模型预测速度控制(Finite Control Set-Model Predictive Speed Control, FCS-MPSC)策略,具体研究内容如下:
1.为改善传统FCS-MPC策略的动态响应速度,本文将转速偏差引入代价函数,采用扩展卡尔曼滤波器(Extended Kalman Filter, EKF)和模型参考自适应系统(Model Reference Adaptive System, MRAS)分别观测负载转矩和转动惯量,得到相对准确的预测模型,构建基于EKF和MRAS的FCS-MPSC策略,提高了PMSM的控制性能。

2.为提高输出电压矢量的准确性,本文利用虚拟电压矢量改进控制集,并引入三矢量控制方法,输出幅值和相角均可变的合成矢量,形成基于三矢量的FCS-MPSC策略,进一步提高PMSM的控制性能。为了降低电压矢量选择过程的遍历计算,本文利用期望电压矢量的角度直接定位最优电压矢量所在扇区,减少计算量,同时对调制区域进行分区,不同区域在控制周期内输出不同数目的电压矢量,构建改进型三矢量FCS-MPSC策略,实现了PMSM的高效控制。

3.为对本文所提出的基于EKF和MRAS的FCS-MPSC策略、基于三矢量的FCS-MPSC策略和改进型三矢量FCS-MPSC策略进行对比验证,采用DSP28335控制芯片搭建了PMSM实验台,分别进行空载启动和突加负载的对比实验。

本文对FCS-MPC策略进行改进,提出了三种性能优越的FCS-MPSC策略,其中改进型三矢量FCS-MPSC策略性能最好,能够有效减少电流脉动、提高动态响应和抗负载性能,更好的满足了PMSM的应用需求。

论文外文摘要:

Permanent magnet synchronous motor (PMSM) has good load performance and high efficiency, and has been widely concerned in the industrial field. Finite control set-model predictive control (FCS-MPC) has obvious advantages in motor drive systems, but for increasingly high industrial demand, its dynamic response speed and steady-state performance still have great space for improvement. In order to improve the control performance of PMSM, based on the traditional FCS-MPC strategy, three finite control set-model predictive speed control (FCS-MPSC) strategies are proposed in this paper. The specific research content is as follows:

1.To improve the dynamic response speed of FCS-MPC strategy of traditional PMSM, the speed deviation is introduced into the cost function. The extended Kalman filter (EKF) and model reference adaptive system (MRAS) are used to observe the load torque and moment of inertia respectively, and a relatively accurate prediction model is obtained. The FCS-MPSC strategy of PMSM based on EKF and MRAS is constructed to improve the control performance of PMSM.
2.To improve the accuracy of the output voltage vector, this paper uses the virtual voltage vector to improve the control set, and introduces the three-vector control method. The synthetic vector with variable output amplitude and phase angle forms a three-vector-based permanent magnet synchronous motor FCS-MPSC strategy, which further improves the control performance of PMSM. To reduce the ergodic calculation in the voltage vector selection process, this paper uses the angle of the expected voltage vector to directly locate the sector where the optimal voltage vector is located to reduce the calculation amount. At the same time, the modulation region is partitioned, and different regions output different number of voltage vectors within the control period. An improved three-vector permanent magnet synchronous motor FCS-MPSC strategy is constructed, realizing the effective control of PMSM.
3.To compare and verify the proposed FCS-MPSC strategy based on EKF and MRAS, the FCS-MPSC strategy based on three vector and the improved three-vector FCS-MPSC strategy, a PMSM experimental platform is built using the DSP28335 control chip, and the comparative experiments of no-load starting and sudden loading are conducted respectively.

In this paper, the FCS-MPC strategy is improved, and three kinds of FCS-MPSC strategies with superior performance are proposed. Among them, the improved three-vector FCS-MPSC strategy has the best performance, which can effectively reduce current pulsation, improve dynamic response and anti-load performance, and better meet the application requirements of PMSM.

参考文献:

[1] 崔慧明, 陈林. “中国制造 2025”战略之“智能制造”[J]. 科技经济市场, 2022,29(4): 7–9.

[2] 张春华, 陈业生, 张国田, 等. 浅析自动化技术在机械制造行业中的应用 [J]. 中国设备工程, 2023, 30(17): 15–17.

[3] Sun X, Wu M, Lei G, et al. An Improved Model Predictive Current Control for PMSMDrives Based on Current Track Circle[J]. IEEE Transactions on Industrial Electronics,2021, 68(5): 3782–3793.

[4] Niu S, Luo Y, Fu W, et al. An Indirect Reference Vector-Based Model Predictive Controlfor a Three-Phase PMSM Motor[J]. IEEE Access, 2020, 8: 29435–29445.

[5] Trancho E, Ibarra E, Arias A, et al. Sensorless control strategy for light-duty EVs andefficiency loss evaluation of high frequency injection under standardized urban drivingcycles[J]. Applied Energy, 2018, 224: 647–658.

[6] Sun X, Shi Z, Cai Y, et al. Driving-Cycle-Oriented Design Optimization of a Permanent Magnet Hub Motor Drive System for a Four-Wheel-Drive Electric Vehicle[J]. IEEETransactions on Transportation Electrification, 2020, 6(3): 1115–1125.

[7] 杨朋. 稀土永磁电机的应用现状及其发展趋势 [J]. 中国设备工程, 2019(01): 190–191.

[8] 张鑫森. 高速永磁同步电机预测控制研究 [D]. 北京: 北方工业大学, 2021.

[9] 王跃龙. 基于负载转矩观测器的 PMSM 新型趋近律滑模控制算法研究 [D]. 石家庄:河北科技大学, 2019.

[10] 朱元, 肖明康, 孟令, 等. 永磁同步电机基于双积分器模型实现的改进离散准谐振控制器设计 [J]. 中国电机工程学报, 2023, 43(9): 3599–3610.

[11] Barkas DA, Ioannidis GC, Psomopoulos CS, et al. Brushed DC Motor Drives for Industrialand Automobile Applications with Emphasis on Control Techniques: A ComprehensiveReview[J]. ELECTRONICS, 2020, 9(6): 887–913.

[12] Yao H, Yan Y, Shi T, et al. A Novel SVPWM Scheme for Field-Oriented Vector-ControlledPMSM Drive System Fed by Cascaded H-Bridge Inverter[J]. IEEE Transactions on PowerElectronics, 2021, 36(8): 8988–9000.

[13] Zhang Q, Guo H, Guo C, et al. An adaptive proportional-integral-resonant controller forspeed ripple suppression of PMSM drive due to current measurement error[J]. International Journal of Electrical Power & Energy Systems, 2021, 129: 106866.

[14] Vaez-Zadeh S. Analysis of a DTC With Back EMF Oriented Voltage for PMS MotorDrives[J]. IEEE Transactions on Energy Conversion, 2018, 33(3): 1594–1596.

[15] Sun X, Diao K, Lei G, et al. Direct Torque Control Based on a Fast Modeling Method for a Segmented-Rotor Switched Reluctance Motor in HEV Application[J]. IEEE Journal ofEmerging and Selected Topics in Power Electronics, 2021, 9(1): 232–241.

[16] 洪俊杰, 何衍东, 黄健钊, 等. 采用改进复矢量的 PMSM 电流解耦控制 [J]. 电机与控制学报, 2023, 27(6): 106–115.

[17] Gao P, Zhang G, Ouyang H, et al. An Adaptive Super Twisting Nonlinear Fractional OrderPID Sliding Mode Control of Permanent Magnet Synchronous Motor Speed RegulationSystem Based on Extended State Observer[J]. IEEE Access, 2020, 8: 53498–53510.

[18] 韩如成, 潘峰, 智泽英. 直接转矩控制理论及应用 [M]. 北京: 电子工业出版社,2012: 12.

[19] Sheng L, Wang G, Fan Y, et al. An Improved Direct Predictive Torque Control for TorqueRipple and Copper Loss Reduction in SRM Drive[J]. Applied Sciences, 2023, 13(9):5319–5337.

[20] 雷世钰. 基于滑模观测器的永磁同步电机的无位置传感器矢量控制研究 [D]. 广东:广东工业大学, 2022.

[21] Ping Z, Wang T, Huang Y, et al. Internal Model Control of PMSM Position Servo System:Theory and Experimental Results[J]. IEEE Transactions on Industrial Informatics, 2020,16(4): 2202–2211.

[22] Jin Z, Sun X, Lei G, et al. Sliding Mode Direct Torque Control of SPMSMs Based ona Hybrid Wolf Optimization Algorithm[J]. IEEE Transactions on Industrial Electronics,2022, 69(5): 4534–4544.

[23] 梅善瑜, 陶为戈, 侯虎. 永磁同步电机模糊控制和前馈补偿研究 [J]. 中国测试, 2023:1–6.

[24] Wang X, Fang X, Lin S, et al. Predictive Common-Mode Voltage Suppression MethodBased on Current Ripple for Permanent Magnet Synchronous Motors[J]. IEEE Journal ofEmerging and Selected Topics in Power Electronics, 2019, 7(2): 946–955.

[25] 熊永跃. 永磁同步电机的模型预测转矩控制研究 [D]. 株洲: 湖南工业大学, 2022.

[26] Rodriguez J, Garcia C, Mora A, et al. Latest Advances of Model Predictive Control inElectrical Drives—Part I: Basic Concepts and Advanced Strategies[J]. IEEE Transactionson Power Electronics, 2022, 37(4): 3927–3942.

[27] Rodriguez J, Garcia C, Mora A, et al. Latest Advances of Model Predictive Control inElectrical Drives—Part II: Applications and Benchmarking With Classical Control Methods[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5047–5061.

[28] Sun X, Li T, Yao M, et al. Improved Finite-Control-Set Model Predictive Control WithVirtual Vectors for PMSHM Drives[J]. IEEE Transactions on Energy Conversion, 2022,37(3): 1885–1894.

[29] Wang F, He L, Rodriguez J. FPGA-Based Continuous Control Set Model Predictive Current Control for PMSM System Using Multistep Error Tracking Technique[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13455–13464.

[30] Kouro S, Perez MA, Rodriguez J, et al. Model Predictive Control: MPC’s Role in theEvolution of Power Electronics[J]. IEEE Industrial Electronics Magazine, 2015, 9(4):8–21.

[31] Lim CS, Levi E, Jones M, et al. FCS-MPC-Based Current Control of a Five-Phase Induction Motor and its Comparison with PI-PWM Control[J]. IEEE Transactions on IndustrialElectronics, 2014, 61(1): 149–163.

[32] Su D, Zhang C, Dong Y. Finite-State Model Predictive Current Control for SurfaceMounted Permanent Magnet Synchronous Motors Based on Current Locus[J]. IEEE Access, 2017, 5: 27366–27375.

[33] Sun X, Wu M, Yin C, et al. Model Predictive Thrust Force Control for Linear MotorActuator used in Active Suspension[J]. IEEE Transactions on Energy Conversion, 2021,36(4): 3063–3072.

[34] Fei Q, Deng Y, Li H, et al. Speed Ripple Minimization of Permanent Magnet SynchronousMotor Based on Model Predictive and Iterative Learning Controls[J]. IEEE Access, 2019,7: 31791–31800.

[35] Yan L, Dou M, Hua Z. Disturbance Compensation-Based Model Predictive Flux Controlof SPMSM With Optimal Duty Cycle[J]. IEEE Journal of Emerging and Selected Topicsin Power Electronics, 2019, 7(3): 1872–1882.

[36] Kawai H, Zhang Z, Kennel R, et al. Direct Speed Control Based on Finite Control SetModel Predictive Control With Voltage Smoother[J]. IEEE Transactions on IndustrialElectronics, 2023, 70(3): 2363–2372.

[37] Wang W, Liu C, Zhao H, et al. Improved Deadbeat-Direct Torque and Flux Control forPMSM With Less Computation and Enhanced Robustness[J]. IEEE Transactions on Industrial Electronics, 2023, 70(3): 2254–2263.

[38] Luo Y, Liu C. A Flux Constrained Predictive Control for a Six-Phase PMSM MotorWith Lower Complexity[J]. IEEE Transactions on Industrial Electronics, 2019, 66(7):5081–5093.

[39] Zhang Y, Xu D, Liu J, et al. Performance Improvement of Model-Predictive Current Control of Permanent Magnet Synchronous Motor Drives[J]. IEEE Transactions on IndustryApplications, 2017, 53(4): 3683–3695.

[40] Yang J, Chen WH, Li S, et al. Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives—A Survey[J]. IEEE Transactions on Industrial Electronics, 2017,64(4): 3273–3285.

[41] Niu S, Luo Y, Fu W, et al. Robust Model Predictive Control for a Three-Phase PMSMMotor With Improved Control Precision[J]. IEEE Transactions on Industrial Electronics,2021, 68(1): 838–849.

[42] Yuan X, Zhang S, Zhang C, et al. Improved Model Predictive Current Control for SPMSMDrives Using Current Update Mechanism[J]. IEEE Transactions on Industrial Electronics, 2021, 68(3): 1938–1948.

[43] Brosch A, Hanke S, Wallscheid O, et al. Data-Driven Recursive Least Squares Estimationfor Model Predictive Current Control of Permanent Magnet Synchronous Motors[J]. IEEETransactions on Power Electronics, 2021, 36(2): 2179–2190.

[44] Saeed MSR, Song W, Huang L, et al. Double-Vector-Based Finite Control Set Model Predictive Control for Five-Phase PMSMs With High Tracking Accuracy and DC-Link Voltage Utilization[J]. IEEE Transactions on Power Electronics, 2022, 37(12): 15234–15244.

[45] Yuan Q, Ma T, Zhao R, et al. A General Double Vector-Based Model Predictive CurrentControl for the Dual Three-Phase Motors[J]. ELECTRONICS, 2020, 9(12): 2000–2014.

[46] 张传畅. 基于预测误差补偿的永磁同步电机简化三矢量模型预测电流控制研究 [D].哈尔滨: 哈尔滨理工大学, 2023.

[47] 王其铭. 低速大转矩永磁同步电机控制方法研究 [D]. 长春: 长春工业大学, 2022.

[48] 秦铭珠. 具有参数辨识功能的永磁同步电机无位置传感器控制 [D]. 浙江: 浙江大学,2022.

[49] 李晨鑫. 基于 STM32 的永磁同步电机控制系统设计与实现 [D]. 兰州: 兰州交通大学, 2023.

[50] 郭前. 永磁同步电机连续控制集模型预测控制研究 [D]. 江苏: 江苏大学, 2022.

[51] 赵其进, 魏曙光, 廖自力, 等. 装甲车用轮毂电机转矩观测及无位置传感器改进控制[J]. 机械工程学报, 2021, 57(18): 252–263.

[52] 李洪凤, 徐浩博, 徐越. 扩展卡尔曼滤波参数辨识下永磁同步电机模型预测转矩控制[J]. 电机与控制学报, 2023, 27(9): 19–30.

[53] 段乾超, 李玉东, 孟娟娟. 基于新型滑模控制和 STSM-MRAS 观测器的 SPMSM 转速估计研究 [J]. 电动工具, 2023(6): 4–11.

[54] 李嘉诚, 全力, 左月飞, 等. 考虑测量噪声的朗道自适应惯量辨识方法 [J]. 电机与控制应用, 2019, 46(2): 32–39.

中图分类号:

 TM341    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式