论文中文题名: |
高导热液晶环氧单体/环氧聚合物分散膜的制备与导热性能研究
|
姓名: |
龚昌丹
|
学号: |
20211025016
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
080502
|
学科名称: |
工学 - 材料科学与工程 - 材料学
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
材料科学与工程学院
|
专业: |
材料科学与工程
|
研究方向: |
导热聚合物及液晶材料
|
第一导师姓名: |
李颖
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-19
|
论文答辩日期: |
2023-06-06
|
论文外文题名: |
Preparation and thermal conductive performance of high thermal conductive liquid crystalline epoxy monomer/epoxy polymer dispersion film
|
论文中文关键词: |
本征型导热聚合物 ; 液晶环氧单体 ; 微观有序结构 ; 电场取向成型 ; 导热模型构建
|
论文外文关键词: |
Intrinsic thermal conductive polymer ; liquid crystalline epoxy monomer ; micro-ordered structure ; electric field orientation molding ; construction of thermal conductive model
|
论文中文摘要: |
︿
导热高分子材料具有重量轻、比强度和模量高、易加工、化学稳定性优异和成本低等优点,在5G通信、雷达技术、显示器屏幕以及高集成电路等领域得到了广泛的应用。但是,高分子材料由于其本身微观分子链结构的关系,导热系数一般都在0.1-0.3 W/m·K之间,很难满足实际生产需求。因此,兼具高导热性和优异拉伸强度的高分子导热材料的设计和研发具有重要的研究意义。本论文从聚合物微观结构出发,将刚性取向有序的液晶结构引入到聚合物微观结构上来,借以改善聚合物分子链的聚集形态,在聚合物体系内引入规整的微观液晶有序区,形成高效且连续的导热通路。本论文系统地研究了液晶环氧单体结构、含量以及聚合物基体分子链结构等对液晶环氧单体/环氧聚合物分散膜内分子链有序排列的影响以及导热性能的影响,并通过多物理场耦合分析软件COMSOL Multiphysics建立液晶环氧单体/环氧聚合物分散膜的最佳参数导热模型,进一步验证了液晶环氧单体/环氧聚合物分散膜的导热机理。本论文的主要研究内容如下:
(1)设计和合成了两种近晶相液晶环氧单体4,4’-双(2,3-环氧基丙氧基)联苯(LCEM1)和4,4’-(缩水甘油基)苯甲酸联苯二酚酯(LCEM2)。结果表明:两种液晶环氧单体的熔点分别达到128 ºC和240 ºC,LCEM1在XRD小角区3.56º和6.77º,呈现出液晶的小板块织构,LCEM2在小角区4.78º和8.42º都出现强烈的衍射峰,呈现出液晶的焦锥织构,LCEM1和LCEM2均呈现高有序度,且都为近晶相液晶单体。
(2)使用硫醇固化剂对环氧单体进行固化得到环氧聚合物溶液,将含有刚性结构的液晶环氧单体(LCEM1和LCEM2)分散于环氧聚合物溶液中,采用溶液浇铸和高压电场取向成型的方法制备液晶环氧单体/环氧聚合物分散膜(LCEF1和LCEF2)。导热系数测试结果表明:当LCEM1含量为30 wt%时,将LCEM1均匀分散在LCEF1中形成层状有序结构,LCEF1的导热系数达到1.27 W/m·K,是纯Epoxy-thiol膜导热系数的4.5倍高(纯Epoxy-thiol膜导热系数为0.28 W/m·K)。当LCEM2含量为30 wt%时,将LCEM2均匀分散在LCEF2中形成有序聚集结构,LCEF2的导热系数达到2.36 W/m·K,是纯Epoxy-thiol分散膜的8.4倍。LCEF2的导热系数比LCEF1的导热系数更高的原因是LCEM2分子结构上含有的羰基和环氧聚合物分子链上的羟基形成氢键作用,提高了分子链排列的有序度。力学性能测试结果表明:相同LCEM含量下,LCEF2的拉伸强度要优于LCEF1的拉伸强度。当LCEM2的含量为10 wt%时,LCEF2的拉伸强度可达23.8 MPa,断裂伸长率可达46.7%。
(3)在一维和二维稳定热传导方程的基础上,建立了三维稳定热传导方程,可在本征型导热高分子材料体系内传热过程中用来预测材料的导热系数。选用COMSOL Multiphysics软件对液晶环氧单体/环氧聚合物分散膜进行仿真模拟,使用软件中的三维稳态固体传热物理场模块,建立液晶环氧单体代表性体积元模型与液晶环氧单体/环氧聚合物分散膜代表性体积元模型,建立了三维稳态有限元模型,研究不同液晶环氧单体加入到环氧聚合物体系中制备得到的液晶环氧单体/环氧聚合物分散膜的热传导问题,探究温度、网格化程度和液晶单体分散程度等因素对液晶环氧单体/环氧聚合物分散膜导热性能的影响。根据理论计算模型使用软件进行数值模拟,将实验数据和软件模拟计算出的数据进行对比,发现液晶环氧单体/环氧聚合物分散膜的导热系数和实验测得的导热系数结果有较好的一致性。
﹀
|
论文外文摘要: |
︿
Thermally conductive polymer materials have the advantages of light weight, high specific strength and modulus, easy processing, excellent chemical stability and low cost. They have been widely used in 5G communication, radar technology, display screen and high integrated circuit. However, the thermal conductivity of polymer materials is generally between 0.1-0.3 W/m·K, due to their own microscopic molecular chain structure, which is difficult to meet the actual production needs. Therefore, the design and development of polymer thermal conductive materials with high thermal conductivity and excellent tensile strength have important research significance. In this paper, starting from the polymer microstructure, the rigidly oriented ordered liquid crystal structure is introduced into the polymer microstructure to improve the aggregation morphology of the polymer molecular chain, and a regular microscopic liquid crystal ordered region is introduced into the polymer system to form an efficient and continuous thermal conduction path. In this paper, the effects of the structure and content of liquid crystal epoxy monomer and the molecular chain structure of polymer matrix on the orderly arrangement of molecular chains and thermal conductivity of liquid crystal epoxy monomer/epoxy polymer dispersion film were systematically studied. The optimal parameter thermal conductive model of liquid crystal epoxy monomer/epoxy polymer dispersion film was established by multi-physics coupling analysis software COMSOL Multiphysics, and the thermal conductive mechanism of the liquid crystal epoxy monomer/epoxy polymer dispersion film was further verified. The main research contents of this paper are as follows:
(1) Two smectic liquid crystalline epoxy monomers including 4,4’-diepoxybiphenyl (LCEM1) and 4,4’-(glycidyl) benzoate biphenyldiol ester (LCEM2), were designed and synthesized. The results show that the melting points of the two liquid crystal epoxy monomers reach 128 ºC and 240 ºC, respectively. LCEM1 exhibits a small plate texture of liquid crystal in the small angle region of XRD (3.56 ºC and 6.77 ºC). LCEM2 has strong diffraction peaks in the small angle region of XRD (4.78 ºC and 8.42 ºC), showing a focal cone texture of liquid crystal. Both LCEM1 and LCEM2 show high order and are smectic liquid crystal monomers.
(2) The liquid crystalline epoxy monomers (LCEM1 and LCEM2) with rigid structure were dispersed in the epoxy polymer solution. The liquid crystalline epoxy monomer/epoxy polymer dispersion films (LCEF1 and LCEF2) were prepared by solution casting and high voltage electric field orientation molding. The thermal conductivity test results show that when the LCEM1 content is 30 wt %, LCEM1 is uniformly dispersed in LCEF1 to form a layered ordered structure. The thermal conductivity of LCEF1 reaches 1.27 W/m·K, which is 4.5 times higher than that of pure Epoxy-thiol film (the thermal conductivity of pure Epoxy-thiol film is 0.28 W/m·K). When the content of LCEM2 is 30 wt%, LCEM2 is uniformly dispersed in LCEF2 to form an ordered aggregation structure. The thermal conductivity of LCEF2 reaches 2.36 W/m·K, which is 8.4 times that of pure Epoxy-thiol dispersion film. The reason why the thermal conductivity of LCEF2 is higher than that of LCEF1 is that the carbonyl group contained in the molecular structure of LCEM2 and the hydroxyl group on the molecular chain of epoxy polymer form hydrogen bonding, which improves the order degree of molecular chain arrangement. The mechanical properties test results show that the tensile strength of LCEF2 is better than that of LCEF1 under the same LCEM content. When the content of LCEM2 is 10 wt%, the tensile strength and the elongation at break of LCEF2 can reach 23.8 MPa and 46.7 %, respectively.
(3) Based on the one-dimensional and two-dimensional stable thermal conductive equations, a three-dimensional stable thermal conductive equation is established, which can be used to predict the thermal conductivity of the material during the heat transfer process in the intrinsic thermal conductive polymer material system. COMSOL Multiphysics software was used to simulate the liquid crystalline epoxy monomer/epoxy polymer dispersion film. Using the three-dimensional steady-state solid heat transfer physical field module in the software, the representative volume element model of liquid crystalline epoxy monomer and the representative volume element model of liquid crystalline epoxy monomer/epoxy polymer dispersion film were established. The three-dimensional steady-state finite element model was established to study the heat conduction problem of liquid crystal crystalline epoxy monomer/epoxy polymer dispersion film prepared by adding different liquid crystalline epoxy monomers to epoxy polymer system. The effects of temperature, grid degree and dispersion degree of liquid crystal crystalline epoxy monomer on the thermal conductivity of liquid crystalline epoxy monomer/epoxy polymer dispersion film were investigated. According to the theoretical calculation model, the numerical simulation is carried out by software. The experimental data and the data calculated by software are compared. It is found that the thermal conductivity of liquid crystalline epoxy monomer/epoxy polymer dispersion film is in good agreement with the experimental results.
﹀
|
参考文献: |
︿
[1]Dai W, Lv L, Ma T, et al. Multiscale structural modulation of anisotropic graphene framework for polymer composites achieving highly efficient thermal energy management [J]. Advanced Science, 2021, 8(7): 2003734. [2]Tan X, Ying J, Gao J, et al. Rational design of high-performance thermal interface materials based on gold-nanocap-modified vertically aligned graphene architecture [J]. Composites Communications, 2021, 24: 100621. [3]Zeng X, Sun J, Yao Y, et al. A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity [J]. ACS Nano, 2017, 11(5): 5167-5178. [4]He Z, Yan Y, Zhang Z. Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review [J]. Energy, 2021, 216: 119223. [5]杨斌, 孙蓉. 热界面材料产业现状与研究进展 [J]. 中国基础科学, 2020, 22(2): 56-62. [6]赵长生, 顾宜. 材料科学与工程基础 [M]. 北京: 化学工业出版社, 2020. [7]虞锦鸿. 高导热聚合物基复合材料研究 [D]. 上海: 上海交通大学, 2012. [8]刘少刚,王李波,王晓龙, 等. 高导热网络聚合物基复合材料的研究进展 [J]. 中国塑料, 2019, 33(8): 127-135. [9]Guo Y, Ruan K, Shi X, et al. Factors affecting thermal conductivities of the polymers and polymer composites: A review [J]. Composites Science and Technology, 2020, 193: 106685. [10]Li R, Yang X, Li J, et al. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging [J]. Materials Today Physics, 2022, 22: 100594. [11]Yu X, Bhatti M R, Ren X, et al. Dielectric polymer composites with ultra-high thermal conductivity and low dielectric loss [J]. Composites Science and Technology, 2022, 229: 109695. [12]An D, Duan X, Cheng S, et al. Enhanced thermal conductivity of natural rubber based thermal interfacial materials by constructing covalent bonds and three-dimensional networks [J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105928. [13]Chen C, Lin Y, Miyane S, et al. Thermally and mechanically stable polyimides as flexible substrates for organic field-effect transistors [J]. ACS Applied Polymer Materials, 2020, 2(8): 3422-3432. [14]Liao L, Chen Z, Xu X, et al. Effects of oxidation curing and sintering temperature on the microstructure formation and heat transfer performance of freestanding polymer-derived SiC films for high-power LEDs [J]. Ceramics International, 2018, 44(6): 6072-6080. [15]Ruan K, Shi X, Guo Y, et al. Interfacial thermal resistance in thermally conductive polymer composites: A review [J]. Composites Communications, 2020, 22: 100518. [16]Ohki Y. Development of epoxy resin composites with high thermal conductivity [J]. IEEE Electrical Insulation Magazine, 2010, 26(1): 48-49. [17]Huang C, Qian X, Yang R. Thermal conductivity of polymers and polymer nanocomposites [J]. Materials Science and Engineering: R: Reports, 2018, 132: 1-22. [18]Chen H, Ginzbburg V V, Yang J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications [J]. Progress in Polymer Science, 2016, 59: 41-85. [19]Hansson J, Nilsson T M J, Ye L, et al. Novel nanostructured thermal interface materials: A review [J]. International Materials Reviews, 2018, 63(1): 22-45. [20]杨菊香, 杨莹, 贾园, 等. 导热高分子材料的制备及其应用研究进展 [J]. 高分子通报, 2021, (08): 1-8. [21]Li C, Zeng X, Tan L, et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer [J]. Chemical Engineering Journal, 2019, 368: 79-87. [22]Wang Y, Zhou Z, Zhou C, et al. Lightweight and robust carbon nanotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption [J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8704-8712. [23]Tan C, Dong Z, Li Y, et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring [J]. Nature Communications, 2020, 11: 3530. [24]Zhou H, Zhang Z, Sun C, et al. Biomimetic approach to facilitate the high filler content in free-standing and flexible thermoelectric polymer composite films based on PVDF and Ag2Se nanowires [J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51506-51516. [25]Song Y, Jiang F, Song N, et al. Multilayered structural design of flexible films for smart thermal management [J]. Composites Part A: Applied Science and Manufacturing, 2021, 141: 106222. [26]Zhai S, Zhang P, Xian Y, et al. Modelling and analysis of effective thermal conductivity for polymer composites with sheet-like nanoparticles [J]. Journal of Materials Science, 2019, 54: 356-369. [27]Bin K C, Lee J, Cho J, et al. Thermal conductivity enhancement of reduced graphene oxide via chemical defect healing for efficient heat dissipation [J]. Carbon, 2018, 139: 386-392. [28]Xu S, Liu J, Zeng Q. Towards better characterizing thermal conductivity of cement-based materials: The effects of interfacial thermal resistance and inclusion size [J]. Materials & Design, 2018, 157: 105-118. [29]Li J, Yin J, Ji T, et al. Microstructure evolution effect on high-temperature thermal conductivity of LDPE/BNNS investigated by in-situ SAXS [J]. Materials Letters, 2019, 234: 74-78. [30]Yang X, Zhu J, Yang D, et al. High-efficiency improvement of thermal conductivities for epoxy composites from synthesized liquid crystal epoxy followed by doping BN fillers [J]. Composites Part B: Engineering, 2020, 185: 107784. [31]李颖, 李成功, 后振中, 等. 本征型导热液晶聚合物的制备及导热模型构建: 一种提升聚合物基体热导率的方法 [J]. 材料导报, 2020, 34(10): 10192-10196. [32]周文英, 王蕴, 曹国政, 等. 本征导热高分子复合材料研究进展 [J]. 复合材料学报, 2021, 38(07): 2038-2055. [33]温变英, 崔云超. 聚合物本征导热研究进展 [J]. 高分子材料科学与工程, 2022, 38(07): 175-182. [34]Yang X, Zhong X, Zhang J, et al. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. Journal of Materials Science & Technology, 2021, 68: 209-215. [35]Li Y, Gong C, Hou Z, et al. Flexible epoxy-dispersed liquid crystal membranes of intrinsic thermal conductivity with high voltage orientation molding [J]. Journal of Applied Polymer Science, 2022, 139(44): 53077. [36]Ruan K, Guo Y, Gu J. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness [J]. Macromolecules, 2021, 54(10): 4934-4944. [37]Akatsuka M, Takezawa Y. Study of high thermal conductive epoxy resins containing controlled high-order structures [J]. Journal of Applied Polymer Science, 2003, 89(9): 2464-2467. [38]Zhou Y, Liu F, Wang H. Novel organic-inorganic composites with high thermal conductivity for electronic packaging applications: A key issue review [J]. Polymer Composites, 2017, 38(4): 803-813. [39]Kubiak J M, Li B, Suazo M, et al. Polymer Grafted Nanoparticle Composites with Enhanced Thermal and Mechanical Properties [J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21535-21543. [40]Mu L, Li Y, Mehra N, et al. Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals [J]. ACS Applied Materials & Interfaces, 2017, 9(13): 12138-12145. [41]敬超, 曹世勋, 张金仓. 固体物理学 [M]. 北京: 科学出版社, 2021. [42]周文英, 党智敏, 丁小卫, 等. 聚合物基导热复合材料 [M]. 北京: 国防工业出版社, 2017. [43]Mehra N, Mu L, Ji T, et al. Thermal transport in polymeric materials and across composite interfaces [J]. Applied Materials Today, 2018, 12: 92-130. [44]Burger N, Laachachi A, Ferriol M, et al. Review of thermal conductivity in composites: Mechanisms, parameters and theory [J]. Progress in Polymer Science, 2016, 61: 1-28. [45]Tanatar M A, Suzuki M, Ishiguro T, et al. Thermal conductivity of organic superconductors in oriented magnetic field [J]. Synthetic Metals, 2003, 137(1): 1291-1293. [46]Wang X, Ho V, Segalman R A, et al. Thermal conductivity of high-modulus polymer fibers [J]. Macromolecules, 2013, 46(12): 4937-4943. [47]Kurabayashi K, Asheghi M, Touzelbaev M, et al. Measurement of the thermal conductivity anisotropy in polyimide films [J]. Journal of Microelectromechanical Systems, 1999, 8(2): 180-191. [48]Shen S, Henry A, Tong J, et al. Polyethylene nanofibres with very high thermal conductivities [J]. Nature Nanotechnology, 2010, 5: 251-255. [49]Li Y, Gong C, Li C, et al. Liquid crystalline texture and hydrogen bond on the thermal conductivities of intrinsic thermal conductive polymer films [J]. Journal of Materials Science & Technology, 2021, 82: 250-256. [50]Kim G H, Lee D, Shanker A, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions [J]. Nature Materials, 2014, 14: 295. [51]Zhai S, Zhang P, Xian Y, et al. Effective thermal conductivity of polymer composites: Theoretical models and simulation models [J]. International Journal of Heat and Mass Transfer, 2018, 117: 358-374. [52]梁运民. 聚合物基导热材料的设计、制备及性能分析与预测方法研究 [D]. 武汉: 华中科技大学, 2021. [53]王璞玉, 胡旭晓, 周洁, 等. 聚合物基复合材料导热模型的研究现状及应用 [J]. 材料导报, 2010, 24(9): 108-112. [54]孙颖颖. 高分子复合材料导热性能的调控机制研究 [D]. 北京: 华北电力大学, 2018. [55]Maxwell J C. A treatise on electricity and magnetism [M]. London: Oxford University Press, 1873. [56]Hashin Z, Shtrikman S. A variational approach to the theory of the effective magnetic permeability of multiphase materials [J]. Journal of Applied Physics, 1962, 33(10): 3125-3131. [57]Bruggeman. Berechnung verschiedener physikalischer konstanten von heterogenen substanzen [J]. Annalen Der Physik, 1935, 416(7): 636-664. [58]Bruggeman D. Calculation of various physics constants in heterogenous substances dielectricity constants and conductivity of mixed bodies from isotropic substances [J]. 1935, 24(2): 160-178. [59]Hatta H. Thermal diffusivities of composites with various types of filler [J]. Journal of Composite Materials, 1992, 26(5): 612-625. [60]Agari Y, Ueda A, Tanaka M, et al. Thermal conductivity of a polymer filled with particles in the wide range from low to super-high volume content [J]. Journal of Applied Polymer Science, 1990, 40(5-6): 929-941. [61]Kim K, Kim J. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method [J]. Ceramics International, 2014, 40(4): 5181-5189. [62]Wang X, Ho V, Segalman R A, et al. Thermal conductivity oh high-modulus polymer fibers [J]. Macromolecules, 2013, 46(12): 4937-4943. [63]Sun F, Zhang T, Jobbins M M, et al. Molecular bridge enables anomalous enhancement in thermal transport across hard-soft material interfaces [J]. Advanced Materials, 2014, 26(35): 6093-6099. [64]Henry A, Chen G. Anomalous heat conduction in polyethylene chains: Theory and molecular dynamics simulations [J]. Physical Review B, 2009, 79(14): 897-899. [65]Henry A, Chen G, Plimpton S J, et al. 1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations [J]. Physical Review B Condensed Matter, 2010, 82(14): 557-557. [66]Zhang T, Luo T. High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers [J]. ACS Nano, 2013, 7(9): 7592. [67]Zhang T, Luo T. Morphology-influenced thermal conductivity of polyethylene single chains and crystalline fibers [J]. Journal of Applied Physics, 2012, 112(9): 1571. [68]Zhang T, Wu X, Luo T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties [J]. The Journal of Physical Chenistry C, 2014, 118(36): 21148-21159. [69]Liu J, Yang R G. Tuning the thermal conductivity of polymers with mechanical strains [J]. Physical Review B, 2010, 81(17): 174122. [70]Sha W H, Guo F L, Wang H Z. Tuning thermal conductivity of surface-initiated polymer brushes [J]. Journal of Materials Science, 2022, 57: 5346-5357. [71]Zhang T, Luo T F. High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers [J]. ACS Nano, 2013, 7: 7592-7600. [72]Ronca S, Igarashi T, Forte G, et al. Metallic-like thermal conductivity in a lightweight insulator: Solid-state processed ultra high molecular weight poly-ethylene tapes and films [J]. Polymer, 2017, 123: 203-210. [73] Zhang T, Luo T F. Role of morphology and stiffness in thermal conductivity of amorphous polymers [J]. The Journal of Physical Chemistry B, 2016, 120: 803-812. [74]周其凤. 液晶高分子 [M]. 北京: 科学出版社, 2010. [75]张其锦. 聚合物液晶导论 [M]. 合肥: 中国科学技术大学出版社, 2013. [76]高鸿锦. 液晶化学 [M]. 北京: 清华大学出版社, 2011. [77]Jackson C L, Shaw M T. Polymer liquid crystalline materials [J]. International Materials Reviews, 1991, 36(1): 165-186. [78]刘盈. 含液晶结构的高导热聚苯并噁嗪 [D]. 山东: 山东大学, 2018. [79]Islam A M, Lim H J, You N-H, et al. Enhanced thermal conductivity of liquid crystalline epoxy resin using controlled linear polymerization [J]. ACS Macro Letters, 2018, 7(10): 1180-1185. [80]Hong Y G, Goh M J. Advances in Liquid Crystalline Epoxy Resins for High Thermal Conductivity [J]. Polymers, 2021, 13(8): 1302-1315. [81]Maciej K, Beata M.-L. Development in liquid crystalline epoxy resins and composites-a review [J]. European Polymer Journal, 2020, 124: 109507. [82]沈文波. 环氧聚合物/液晶复合材料光学薄膜的制备及性能研究 [D]. 北京: 北京科技大学, 2019. [83]Wu W Q, Li Z Y, Zhang B Y. Rational design and synthesis of a novel LCE material and its curing behaviours [J]. Liquid Crystals, 2021, 48(12): 1723-1732. [84]Carfagna C, Amendola E, Giamberini M. Liquid crystalline epoxy based thermosetting polymers [J]. Progress in Polymer Science, 1997, 22(8): 1607-1647. [85]Shen W B, Wang L, Cao Q P, et al. Cationic photopolymerization of liquid crystalline epoxide in mesogenic solvents and its application in polymer-stabilized liquid crystals [J]. Polymer, 2019, 172: 231-238. [86]Kawamoto S, Fujiwara H, Nishimura S. Hydrogen characteristics and ordered structure of mono-mesogen type liquid-crystalline epoxy polymer [J]. International Journal of Hydrogen Energy, 2016, 41(18): 7500-7510. [87]Ruan K P, Zhong X, Shi X T, et al. Liquid crystal epoxy resins with high intrinsic thermal conductivities and their composites: A mini-review [J]. Materials Today Physics, 2021, 20: 100456. [88]Tanaka S, Hojo F, Takezawa Y, et al. Highly oriented liquid crystalline epoxy film: Robust high thermal-conductive ability [J]. ACS Omega, 2018, 3(3): 3562-3570. [89]Yuan S J, Peng Z Q, Rong M Z, et al. Enhancement of intrinsic thermal conductivity of liquid crystalline epoxy through the strategy of interlocked polymer networks [J]. Materials Chemistry Frontiers, 2022, 6(9): 1137-1149. [90]Akatsuka M, Takezawa Y. Study of high thermal conductive epoxy resins containing controlled high-order structures [J]. Journal of Applied Polymer Science, 2003, 89(9): 2464-2467. [91]Yang X T, Zhong X, Zhang J, et al. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance [J]. Journal of Materials Science & Technology, 2021, 68: 209-215. [92]Harada M, Kawasaki Y. High toughness and thermal conductivity of thermosets from liquid crystalline epoxy with low melting point [J]. Journal of Applied Polymer Science, 2022, 139(25): 52391. [93]Beata M L, Barbara P P, Jacek K, et al. The application of liquid crystalline epoxy resin for forming hybrid powder coatings [J]. Progress in Organic Coatings, 2022, 168: 106873. [94]Zhang Q, Chen G K, Wu K, et al. Biphenyl liquid crystal epoxy containing flexible chain: Synthesis and thermal properties [J]. Journal of Applied Polymer Science, 2020, 137(38): 49143. [95]李桂林. 环氧树脂与环氧涂料 [M]. 北京: 化学工业出版社, 2003. [96]陈平, 刘胜平, 王德中. 环氧树脂及其应用 [M]. 北京: 化学工业出版社, 2011. [97]Nabipour H, Wang X, Song L, et al. A high performance fully bio-based epoxy thermoset from a syringaldehyde-derived epoxy monomer cured by furan-derived amine [J]. Green Chemistry, 2021, 23(1): 501-510. [98]Michael D G, Markku A S, Andrew P C, et al. Synthesis and characterization of high-performance, bio-based epoxy-amine networks derived from resveratrol [J]. ACS Sustainable Chemistry & Engineering, 2020, 8(37): 14137-14149. [99]Lv G X, Jensen E, Shen C T, et al. Effect of amine hardener molecular structure on the thermal conductivity of epoxy resins [J]. ACS Applied Polymer Materials, 2020, 3(1): 259-267 [100]Ali O K, Xavier F-F, Xavier R. Latent curing of epoxy-thiol thermosets [J]. Polymer, 2017, 116: 191-203. [101]Zhang H M, Zhao Y Z, Yu P, et al. Fabrication of epoxy/thiol polymer-based polymer-dispersed liquid crystals containing a catalyst with multi-amine structures [J]. Optical Materials, 2022, 133: 112883. [102]Konuray A O, Fernandez F X, Ramis X. Latent curing of epoxy-thiol thermosets [J]. Polymer, 2017, 116: 191-203. [103]Li Y, Liu C, Zhou W, et al. Microscopic ordered structure compactness and intrinsic thermal conductivity improvement of dispersed liquid crystal films of flexible epoxy-thiol polymers [J]. Materials Today Communications, 2021, 29: 102792. [104]Jiang J H, Yang D K. Bipolar to toroidal configuration transition in liquid crystal droplets [J]. Liquid Crystals, 2018, 45(1): 102-111. [105]Zhang H M, Miao Z C, Shen W B. Development of polymer-dispersed liquid crystals: From mode innovation to applications [J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107234.
﹀
|
中图分类号: |
TQ317
|
开放日期: |
2025-06-19
|