- 无标题文档
查看论文信息

论文中文题名:

 氧化改性柴油强化神东长焰煤浮选的实验研究    

姓名:

 吴思萍    

学号:

 19213077024    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 矿物加工理论、工艺及设备    

第一导师姓名:

 李振    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-28    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Experimental study on enhancing flotation of Shendong long-flame coal by diesel modification via oxidation    

论文中文关键词:

 长焰煤 ; 浮选 ; 改性柴油 ; 浮选动力学 ; 相互作用能    

论文外文关键词:

 Long-Flame coal ; Flotation ; Modified diesel oil ; Flotation dynamics ; interaction energy    

论文中文摘要:

煤炭是我国能源供给的压舱石,煤炭产业的可持续发展攸关国家能源安全和经济命脉。我国的低阶煤资源储量丰富,是煤炭生产和供应的重要组成部分。然而,采煤机械化程度的不断提高在满足产能需求的同时,也带来了细粒低阶煤含量和灰分急剧上升的严重问题。浮选是细粒煤泥降灰提质的有效手段,但由于低阶煤表面含氧基团丰富,润湿性强、可浮性差,其浮选过程回收率低、捕收剂用量大,难以实现它的高效经济回收,是煤炭行业迫切需要解决的重大技术难题。本文针对这一技术难题,以神东矿区长焰煤为研究对象,首先详细研究了煤样的基本性质和表面特征。针对低阶煤的浮选特性,提出了通过闪蒸-氧化法来改性烃类油捕收剂(柴油)以增强其吸附活性和浮选性能的创新思路,使用获得的改性柴油进行低阶煤的单因素浮选试验,初步探索长焰煤浮选的最佳工艺参数,并参考单因素试验结果利用Expert Design软件设计四因素三水平的浮选正交试验,对正交试验结果进行拟合分析,构建改性捕收剂条件下的低阶煤可燃体回收率模型,找到最优浮选工艺参数组合,评价捕收剂改性方案强化低阶煤回收的可行性。最后,通过界面相互作用能理论研究常规/改性捕收剂与低阶煤表面的相互作用,通过分析测试手段探讨常规/改性捕收剂对煤表面性质、可浮性的影响,进而从理论计算和实验研究两个层面来揭示柴油改性强化低阶煤浮选的作用机制。研究成果对突破低阶煤浮选的技术瓶颈,推动其浮选产业化进而实现其清洁高效资源化利用具有重要的现实意义。

对神东长焰煤进行煤质分析发现,原煤的氧元素含量23.52%,煤中的矸石矿物主要为石英、高岭石、白云母以及少量的黄铁矿等。通过XPS和FTIR对煤样表面官能团进一步分析测试,发现煤中的氧元素主要以羧基、羰基、羟基等含氧官能团存在,这些基团的总含量为34.89%,这导致煤样的表面亲水性强、可浮性极差。常规捕收剂浮选低阶煤的实验结果表明,当捕收剂柴油用量高达100 kg/t时,可燃体回收率仅达到了67.25%,此时浮选完善指标为38.84%,浮选效果仍不理想,说明常规捕收剂在低阶煤表面的吸附效果很差,无法有效改善低阶煤的可浮性。

通过自组装的氧化-冷凝装置对捕收剂柴油进行活化改性,成功地在捕收剂分子中引入了含氧官能团(极性亲固基),使部分捕收剂转变成了双亲分子。FTIR分析表明,改性处理后的柴油在3444 cm-1、1090 cm-1和1723 cm-1处新增了羟基峰(–OH)和羰基峰(>C=O)。使用改性捕收剂进行煤样的浮选实验发现,当捕收剂用量为2 kg/t时,获得了可燃体回收率73.22%、灰分10.40%的良好指标。通过Box-Behnken试验设计和响应面分析,建立了低阶煤浮选可燃物回收率关于浮选条件的二次函数模型,并进一步求解浮选模型确定了改性捕收剂浮选低阶煤的最优工艺参数:当捕收剂用量4.179 kg/t、转速1718.636 r/min、矿浆浓度40 g/L、充气量0.02 m3/h时,浮选可燃体回收率达到了85.49%,远高于常规柴油用量为100 kg/t时的浮选指标,相当于把捕收剂用量降低了95.82%。通过常规捕收剂的活化改性实现了低阶煤的高效浮选。

界面相互作用能计算结果表明,常规/改性柴油-煤两相之间的相互作用自由能分别为-64.00 mJ和-84.90 mJ,说明改性柴油与煤表面间的相互引力更大,更容易在煤表面吸附,常规/改性捕收剂在煤表面的润湿速率实验也证实了这一计算结果,这与浮选实验结果一致。而在捕收剂-水-长焰煤三相体系中却出现了与之相反的计算结果,发现常规/改性柴油与煤表面间的相互能分别为-59.10 mJ和-31.88 mJ,出现这一现象的原因可能是因为,捕收剂改性引入了极性含氧基团提高了自身分子的极性,使得捕收剂分子与水分子的相互作用更强。同时还发现,相比于捕收剂分子来说,长焰煤煤与水分子的相互作用更强。因此,改性捕收剂取得更好浮选效果的作用机制可以解释为,改性捕收剂是通过水分子的架桥作用吸附在低阶煤的表面,以此来提高长焰煤的疏水性。对常规/改性捕收剂调浆后的煤样进行XPS和FTIR测试分析,发现经改性捕收剂处理后的煤样表面的亲水基团出现了更为显著的降低,表现出了更大的接触角,证实了改性捕收剂的有效吸附。更为重要的是,改性捕收剂同常规捕收剂一样对矸石矿物的疏水性影响很小,具有良好的选择性。

论文外文摘要:

Coal is the ballast stone of China's energy supply, the sustainable development of coal industry is vital to national energy security and economic lifeline. China's low rank coal resources are rich in reserves, which is an important part of coal production and supply. However, the continuous improvement of coal mining mechanization not only meets the demand of production capacity, but also brings about the serious problem of the sharp rise of fine low rank coal content and ash. Flotation is an effective means of reducing ash and improving quality of fine coal slime. However, due to the rich oxygen-containing groups on the surface of low-rank coal, strong wettability and poor floatability, its flotation process has low recovery rate and large amount of collector, so it is difficult to realize its efficient and economic recovery, which is a major technical problem urgently needed to be solved in the coal industry. Aiming at this technical problem, this paper takes the long-flame coal of Shendong mining area as the research object, and firstly studies the basic properties and surface characteristics of the coal sample in detail. According to the flotation characteristics of low-rank coal, the innovative idea of modifying hydrocarbon oil collector by flash-oxidation method to enhance its adsorption activity and flotation performance was put forward. The single factor flotation test of low-rank coal was carried out by using the modified collector, and the optimal flotation test conditions were obtained. And refer to the single factor test results using the Expert Design software design of four factors three levels orthogonal experiment of flotation and fitting analysis, the result of the orthogonal experiment to build modified collector under the condition of low rank coal burning body recovery model, to find the optimal flotation process parameters combination, evaluation of collector modification method to strengthen the feasibility of low rank coal recovery. Finally, through the interface interaction energy theory research routine/modification on the surface of the collector and the low rank coal interaction, through the analysis of testing methods conventional/modified collector for coal, the influence of the floatability of surface properties, and then from two aspects: theoretical calculation and experimental study to reveal collector modification to strengthen the mechanism of action of low rank coal flotation. The research results have important practical significance for breaking through the technical bottleneck of low-rank coal flotation, promoting its flotation industrialization and realizing its clean and efficient resource utilization.

The coal quality analysis of Shendong long-flame coal shows that the content of oxygen element in raw coal is 23.52%, and the gangue minerals in coal are mainly quartz, kaolinite, muscovite and a small amount of pyrite. XPS and FTIR were used to further analyze and test the surface functional groups of coal samples. It was found that oxygen elements in coal mainly existed in oxygen-containing functional groups such as carboxyl group, carbonyl group and hydroxyl group, and the total content of these groups was 34.89%, which resulted in strong hydrophilicity and poor floatability of coal samples. The experimental results of low-rank coal flotation with conventional collector show that when the amount of collector diesel oil is as high as 100 kg/t, the recovery rate of combustible body only reaches 67.25%. At this time, the flotation perfect index is 38.84%, and the flotation effect is still not ideal, indicating that the adsorption effect of conventional collector on the surface of low-rank coal is very poor, and the floatability of low-rank coal cannot be effectively improved.

A self-assembled oxidation-condensation device was used to activate and modify the collector diesel oil. Oxygen-containing functional groups (polar solid loving groups) were successfully introduced into the collector molecule, and some collectors were converted into parental molecules. FTIR analysis showed that hydroxyl peak (–OH) and carbonyl peak (>C=O) increased at 3444 cm-1, 1090 cm-1 and 1723 cm-1. Flotation experiments on coal samples with modified collector show that when the collector dosage is 2 kg/t, the good indexes of combustible body recovery of 73.22% and ash content of 10.40% are obtained. Through Box-Behnken test design and response surface analysis, the quadratic function model of fuel recovery in low-rank coal flotation was established, and the optimal process parameters of low-rank coal flotation with modified collector were determined by further solving the flotation model: When the amount of collector was 4.179 kg/t, the speed was 1718.636 r/min, the pulp concentration was 40 g/L, and the gas volume was 0.02 m3/h, the recovery rate of flotation combustible reached 85.49%, which was far higher than the flotation index when the conventional diesel consumption was 100 kg/t. It is equivalent to reducing the amount of collector by 95.82%. High efficiency flotation of low rank coal was realized by activation modification of conventional collector.

Calculated interface interaction energy shows that the conventional/modified diesel oil coal the interaction of two free energy of -64.00 mJ and -84.90 mJ respectively, it shows that the mutual attraction between modified diesel oil and coal surface is larger, more easily in the coal surface adsorption, experiments on wettability rate of conventional/modified collector on coal surface also confirm this calculation result, this is consistent with the flotation experiment results. However, in the three-phase system of collector-water- long flame coal, the calculation results are opposite, and it is found that the mutual energy between conventional/modified diesel oil and coal surface is -59.10 mJ and -31.88 mJ respectively. This phenomenon may be caused by the introduction of polar oxygen-containing groups by collector to improve the polarity of its own molecules. The interaction between the collector molecule and the water molecule is stronger. It is also found that the interaction between long-flame coal and water molecules is stronger than that of collector molecules. Therefore, the mechanism of the modified collector to achieve better flotation effect can be explained as that the modified collector is adsorbed on the surface of long-flame coal through the bridging action of water molecules, so as to improve the hydrophobicity of long-flame coal. XPS and FTIR tests were carried out on the coal samples treated with the conventional/modified collector, it was found that the hydrophilic groups on the surface of the coal samples treated with the modified collector decreased more significantly and showed a larger contact angle, which confirmed the effective adsorption of the modified collector. More importantly, the modified collector has little effect on the hydrophobicity of gangue minerals, and has good selectivity.

参考文献:

[1] 谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测 [J]. 煤炭学报, 2019, 44(07): 1949-1960.

[2] BP.《BP2035世界能源展望》——中国专题 [EB/OL].https://www.bp.com/content/dam/bp/country-sites/zh_cn/china/home/reports/bp-energy-outlook/2017/bp-eo-2017-china-special.pdf.

[3] 屈进州. 低阶煤活性油泡浮选行为与浮选工艺研究 [D]. 徐州: 中国矿业大学, 2015.

[4] Chen S, Li L, Qu J, Liu Q, Tang L, Tao X, Fan H. Oily bubble flotation technology combining modeling and optimization of parameters for enhancement of flotation of low-flame coal [J]. Powder Technology, 2018, 335: 171-185.

[5] Hołysz L. Surface free energy and floatability of low-rank coal [J]. Fuel, 1996, 75(6): 737-742.

[6] Gutierrez-Rodriguez J A, Aplan F F. The effect of oxygen on the hydrophobicity and floatability of coal [J]. Colloids and surfaces, 1984, 12: 27-51.

[7] Bolat E, Saǧlam S, Pişkin S. The effect of oxidation on the flotation properties of a Turkish bituminous coal [J]. Fuel processing technology, 1998, 55(2): 101-105.

[8] 李少章, 朱书全. 低阶煤泥浮选的研究 [J]. 煤炭工程, 2004, (12): 60-62.

[9] 王永刚, 周剑林, 林雄超. 低阶煤含氧官能团赋存状态及其对表面性质的影响 [J]. 煤炭科学技术, 2013, 41(9): 182-184, 187.

[10] Fuerstenau D W, Rosenbaum J M, Laskowski J. Effect of surface functional groups on the flotation of coal [J]. Colloids and Surfaces, 1983, 8(2): 153-173.

[11] 荣国强. 低阶煤浮选的界面特性及药剂捕收作用机理研究 [D]. 徐州:中国矿业大学, 2019.

[12] 刘文礼, 高丰, 赵红霞. 风化氧化对煤可浮性影响的试验研究 [J]. 煤炭加工与综合利用, 2003(5): 11-13.

[13] 夏文成. 太西氧化煤难浮机理及其可浮性改善研究 [D]. 徐州: 中国矿业大学, 2014.

[14] 王全强. 改善难浮煤泥浮选效果的途径探讨 [J]. 选煤技术, 2005(1): 38-40.

[15] 刘文礼, 高丰, 赵红霞. 风化氧化对煤可浮性影响的试验研究 [J]. 煤炭加工与综合利用, 2003(5): 11-13.

[16] Sarikaya M, Özbayoǧlu G. Flotation characteristics of oxidized coal [J]. Fuel, 1995, 74(2): 291-294.

[17] Fuerstenau D W, Yang G C C, Laskowski J S. Oxidation phenomena in coal flotation part I. Correlation between oxygen functional group concentration, immersion wettability and salt flotation response [J]. Coal Perparation, 1987, 4(3-4): 161-182.

[18] Sarikaya M, Özbayoǧlu G. Flotation characteristics of oxidized coal [J]. Fuel, 1995, 74(2): 291-294.

[19] 王泽南, 谢广元. FCMC 型浮选柱处理难浮煤的探讨 [J]. 煤炭工程, 2006 (5): 86-88.

[20] 李国洲, 谢广元, 代敬龙, 等. 物理-化学交互作用对煤炭浮选的影响 [J]. 选煤技术, 2007(2): 5-7.

[21] Dey S. Enhancement in hydrophobicity of low rank coal by surfactants——A critical overview [J]. Fuel Processing Technology, 2012, 94(1): 151-158.

[22] 王宝俊, 李敏, 赵清艳, 等.煤的表面电位与表面官能团间的关系 [J].化工学报, 2004(08): 1329-1334.

[23] Xia W, Yang J, Zhao Y, et al. Improving floatability of Taixi anthracite coal of mild oxidation by grinding [J]. Physicochemical Problems of Mineral Processing, 2012, 48(2): 393-401.

[24] Xia W, Yang J, Zhu B. Flotation of oxidized coal dry-ground with collector [J]. Powder Technology, 2012, 228: 324-326.

[25] Sokolovic J M, Stanojlovic R D, Markovic Z S. Activation of oxidized surface of anthracite waste coal by attrition [J]. Physicochemical Problems of Mineral Processing, 2012, 48(1): 5-18.

[26] Feng D, Aldrich C. Effect of preconditioning on the flotation of coal [J]. Chemical Engineering Communications, 2005, 192(7): 972-983.

[27] Chen S, Tao X, Tang L, et al. Application of ultrasonic pretreatment for coking coal flotation and its mechanism [J]. International Journal of Coal Preparation and Utilization, 2019: 1-13.

[28] Mao Y, Xia W, Peng Y, et al. Ultrasonic-assisted flotation of fine coal: A review [J]. Fuel Processing Technology, 2019, 195: 106150.

[29] Peng Y, Mao Y, Xia W, et al. Ultrasonic flotation cleaning of high-ash lignite and its mechanism [J]. Fuel, 2018, 220: 558-566.

[30] Ozkan S G. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes [J]. Fuel, 2012, 93: 576-580.

[31] Çınar M. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment [J]. Fuel Processing Technology, 2009, 90(10): 1300-1304.

[32] Xia W, Niu C, Ren C. Enhancement in floatability of sub-bituminous coal by low-temperature pyrolysis and its potential application in coal cleaning [J]. Journal of Cleaner Production, 2017, 168: 1032-1038.

[33] Özbayoğlu G, Depci T, Ataman N. Effect of microwave radiation on coal flotation [J]. Energy Sources, Part A, 2009, 31(6): 492-499.

[34] Sahoo B K, De S, Meikap B C. Improvement of grinding characteristics of Indian coal by microwave pre-treatment [J]. Fuel processing technology, 2011, 92(10): 1920-1928.

[35] Xia W, Zhou C, Peng Y. Enhancing flotation cleaning of intruded coal dry-ground with heavy oil [J]. Journal of Cleaner Production, 2017, 161: 591-597.

[36] Xia W, Yang J. Effect of pre-wetting time on oxidized coal flotation [J]. Powder technology, 2013, 250: 63-66.

[37] 陈斌. 风氧化煤浮选预处理优化研究 [J]. 煤矿现代化, 2019(03):121-124.

[38] Xu M, Xing Y, Gui X, et al. Effect of ultrasonic pretreatment on oxidized coal flotation [J]. Energy & Fuels, 2017, 31(12): 14367-14373.

[39] 康文泽, 荀海鑫, 李明明. 超声波预处理对稀缺难浮煤浮选的作用 [J]. 中国矿业大学学报, 2013, 42(4): 625-630.

[40] Çınar M. Floatability and desulfurization of a low-rank (Turkish) coal by low-temperature heat treatment [J]. Fuel Processing Technology, 2009, 90(10): 1300-1304.

[41] Ateşok G, Celik M S. A new flotation scheme for a difficult-to-float coal using pitch additive in dry grinding [J]. Fuel, 2000, 79(12): 1509-1513.

[42] 黄亚军, 周蕊, 吴任超, 等. 热处理和添加煤焦油对褐煤可磨性与可浮性影响的研究 [J]. 选煤技术, 2014 (4): 19-22.

[43] 许宁, 陶秀祥, 张星. 微波辐照对低阶煤的表面改性作用 [J]. 化学工程师, 2018, 32(05): 68-70+74.

[44] Polat M, Polat H, Chander S. Physical and chemical interactions in coal flotation [J]. International Journal of Mineral Processing, 2003, 72(1-4): 199-213.

[45] Xia Y, Zhang R, Cao Y, et al. Role of molecular simulation in understanding the mechanism of low-rank coal flotation: A review [J]. Fuel, 2020, 262: 116535.

[46] Chang Z, Chen X, Peng Y. The interaction between diesel and surfactant Triton X-100 and their adsorption on coal surfaces with different degrees of oxidation [J]. Powder Technology, 2019, 342: 840-847.

[47] Cebeci Y. The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors [J]. Fuel, 2002, 81(3): 281-289.

[48] Chen S, Wang S, Li L, et al. Exploration on the mechanism of enhancing low-rank coal flotation with cationic surfactant in the presence of oily collector [J]. Fuel, 2018, 227: 190-198.

[49] Cheng G, Li Z, Ma Z, et al. Optimization of collector and its action mechanism in lignite flotation [J]. Powder Technology, 2019, 345: 182-189.

[50] Chen S J, Tao, X X, He H, et al. Attachment characteristics between oily bubbles and low rank coal particles [J]. China Coal Society, 2017, 42(745–752).

[51] Huang B, Xu H X, Li, X L. Experimental study on stability and flotation performance of micro-emulsion collector [J]. China Coal Society, 2019, 44(2878–2885).

[52] Qu J, Tao X, He H, et al. Synergistic effect of surfactants and a collector on the flotation of a low-rank coal [J]. International Journal of Coal Preparation and Utilization, 2015, 35(1): 14-24.

[53] Sokolović J M, Miskovic S. The effect of particle size on coal flotation kinetics: A review [J]. Physicochemical Problems of Mineral Processing, 2018, 54, 1172–1190.

[54] Li S, Gao L, Wang J, et al. Enhancement of floatability of low-rank coal using oxidized paraffin soap [J]. RSC Advances, 2020, 10(26): 15098-15106.

[55] Xu M, Xing Y, Li M, et al. Oxidized coal flotation enhanced by adding n-octylamine [J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(20): 2394-2399.

[56] Jia R, Harris G H, Fuerstenau D W. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal [J]. International Journal of Mineral Processing, 2000, 58(1-4): 99-118.

[57] 杨阳. 低阶煤浮选的试验研究. [J]. 煤炭工程, 2013, 03):105-107.

[58] Polat H, Chander S. Adsorption of PEO/PPO triblock co-polymers and wetting of coal [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 146(1-3): 199-212.

[59] Ceylan K, Küçük M Z. Effectiveness of the dense medium and the froth flotation methods in cleaning some Turkish lignites [J]. Energy conversion and management, 2004, 45(9-10): 1407-1418.

[60] Cebeci Y. The investigation of the floatability improvement of Yozgat Ayrıdam lignite using various collectors [J]. Fuel, 2002, 81(3): 281-289.

[61] Wen B, Xia W, Sokolovic J M. Recent advances in effective collectors for enhancing the flotation of low rank/oxidized coals [J]. Powder Technology, 2017, 319: 1-11.

[62] Polat M, Polat H, Chander S. Physical and chemical interactions in coal flotation [J]. International Journal of Mineral Processing, 2003, 72(1-4): 199-213.

[63] Chen S, Tang L, Tao X, et al. Enhancing flotation performance of low rank coal by improving its hydrophobicity and the property of oily bubbles using 2-ethylhexanol [J]. International Journal of Mineral Processing, 2017, 167: 61-67.

[64] Xia Y, Yang Z, Zhang R, et al. Enhancement of the surface hydrophobicity of low-rank coal by adsorbing DTAB: An experimental and molecular dynamics simulation study [J]. Fuel, 2019, 239: 145-152.

[65] Chen S, Wang S, Li L, et al. Exploration on the mechanism of enhancing low-rank coal flotation with cationic surfactant in the presence of oily collector [J]. Fuel, 2018, 227: 190-198.

[66] 徐亚男. 新型浮选药剂的研制及其在太西氧化无烟煤中的应用研究 [D]. 西安科技大学, 2019.

[67] Jia R, Harris G H, Fuerstenau D W. Chemical reagents for enhanced coal flotation [J]. Coal Preparation, 2002, 22(3): 123-149.

[68] Cebeci. Y. The investigation of floatability improve-ment of Yozgat Ayridam lignite using various collectors [J]. Fuel, 2002, 81(3):281-289.

[69] Gui X, Xing Y, Wang T, et al. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid [J]. Powder Technology, 2017, 305: 109-116.

[70] Niu C K, Xia W C, Xie G Y. Effect of low-temperature pyrolysis on surface properties of ub-bituminous coal sample and its relationship to flotation response [J]. Fuel, 2017, 208(11): 469-475.

[71] 柳泉洲. 低阶煤油泡浮选过程特征及其动力学研究 [D]. 中国矿业大学, 2017.

[72] 高广阔. 白钨与含钙脉石矿物浮选分离过程及机理研究 [D]. 江西理工大学, 2014.

[73] 岳涛. 微细粒级黑钨矿浮选动力学研究 [D]. 赣州: 江西理工大学. [J]. 2013.

[74] 樊民强. 选煤数学模型与数据处理 [M]. 北京: 煤炭工业出版社, 2005.

[75] Bayat O, Ucurum M, Poole C. Effects of size distribution on flotation kinetics of Turkish sphalerite [J]. Mineral Processing and Extractive Metallurgy, 2004, 113(1): 53-59.

[76] 刘逸超. 浮选动力学物理逻辑模型研究 [J]. 有色金属 (选矿部分), 1981, 2: 2-4.

[77] 陈子鸣, 吴多才. 浮选动力学研究之一―矿物浮选速度模型[J]. 有色金属 (冶炼部分), 1978, 10: 28-33.

[78] 徐长连. 浮选速度模型 [J]. 有色金属(选矿部分), 1981(05): 32-37.

[79] 吴亦瑞. 目标矿物与全浮成分兼用分速浮选模型 [J].矿冶工程, 1986(03): 33-37.

[80] 李少章, 刘传巨, 张运鑫. 抑制剂在浮选脱硫中的应用 [J]. 煤炭科学技术, 2001(05):26-28.

[81] 王永田, 田全志, 张义,等.低阶煤浮选动力学过程研究 [J].中国矿业大学学报, 2016, 45(02): 398-404.

[82] 金会心, 李军旗, 吴复忠.织金新华含稀土磷矿浮选动力学及三维图形表征 [J].中国稀土学报, 2011, 29(02): 239-247.

[83] 陈松降. 神东长焰煤的表/界面特征及与活性油泡粘附的作用机制 [D]. 徐州: 中国矿业大学, 2020.

[84] 许光前. 基于静态矿浆/泡沫界面区的气泡-颗粒脱附机理研究 [D].徐州:中国矿业大学, 2018.

[85] Bennani N A, Fujiwara A, Takagi S, et al. Coarse particles sedimentation within a quasi two-dimensional rising foam [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309(1-3): 7-12.

[86] Jameson G J. The effect of surface liberation and particle size on flotation rate constants [J]. Minerals Engineering, 2012, 36: 132-137.

[87] Xing Y, Gui X, Cao Y, et al. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification [J]. Journal of Cleaner Production, 2017, 153: 657-672.

[88] Tao D, Li B, Johnson S, et al. A flotation study of refuse pond coal slurry [J]. Fuel Processing Technology, 2002, 76(3): 201-210.

[89] 张义, 田全志, 魏锦扬. 高岭石在煤泥浮选中的夹带研究 [J]. 矿山机械, 2016, 44(2): 68-71.

[90] 张义, 王永田, 邢耀文, 等. 煤泥浮选固体和水的回收特性研究 [J]. 矿山机械, 2015, 43(9): 100-105.

[91] Chen S, Tang L, Tao X, et al. Effect of oxidation processing on the surface properties and floatability of Meizhiyou long-flame coal [J]. Fuel, 2017, 210: 177-186.

[92] Saramago B. Thin liquid wetting films [J]. Current Opinion in Colloid & Interface Science, 2010, 15(5): 330-340.

[93] Acuña S M, Toledo P G. Nanoscale repulsive forces between mica and silica surfaces in aqueous solutions [J]. Journal of colloid and interface science, 2011, 361(1): 397-399.

[94] 朱志波, 朱书全, 陈慧昀, 等. 浮选动力学模型研究进展及展望 [J].洁净煤技术, 2017, 23(02): 20-24.

[95] 王婷霞. 捕收剂与煤表面分子间作用研究 [D]. 徐州: 中国矿业大学, 2016.

[96] Gui X, Xing Y, Wang T, et al. Intensification mechanism of oxidized coal flotation by using oxygen-containing collector α-furanacrylic acid [J]. Powder Technology, 2017, 305: 109-116.

中图分类号:

 TD94    

开放日期:

 2022-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式