- 无标题文档
查看论文信息

论文中文题名:

 考虑碳排放的煤炭供应链网络优化研究    

姓名:

 王亚宁    

学号:

 19202097054    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 120100    

学科名称:

 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 管理科学与工程    

研究方向:

 物流与供应链管理    

第一导师姓名:

 王新平    

第一导师单位:

 西安科技大学    

第二导师姓名:

 雷卫东    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on coal supply chain network optimization considering carbon emissions    

论文中文关键词:

 煤炭供应链 ; 网络优化 ; 碳排放 ; 改进量子进化算法 ; 强化学习    

论文外文关键词:

 Coal supply chain ; Network optimization ; Carbon emissions ; Improved quantum evolutionary algorithm ; Reinforcement learning    

论文中文摘要:

煤炭是我国重要的战略能源,煤炭消费量占一次能源消费总量的56.8%(2020年)。煤炭供应链网络包括从坑口至最终用户的一系列作业,例如:开采、洗配、运输、销售等。煤炭供应链的网络优化可以实现煤炭产销优化配置,解决煤炭生产销售不匹配问题,使煤炭消费客户与煤炭企业实现互利共赢。传统煤炭供应链网络优化通常以经济效益为主,但在全球变暖以及环境问题日益显著的背景下,煤炭供应链网络优化亟需兼顾经济效益和环境效益,对考虑碳排放的煤炭供应链网络优化进行深入研究尤为重要。基于此,本文的主要研究工作如下:
首先,对煤炭供应链网络、考虑碳排放的供应链网络以及求解该问题的智能优化算法——量子进化算法(QEA)的研究现状进行综述;分析煤炭供应链网络、碳排放核算理论、多目标优化理论及元启发式算法的相关概念及理论。其次,建立了基于成本最小化和碳排放量最小化的多目标混合整数规划模型,该模型对节点数量、煤炭流量平衡、产能以及供求关系、转运情况等进行约束限制,主要通过铁路、公路、水路三种运煤方式使用不同燃料所产生的直接碳排放量,来核算煤炭供应链网络的碳排放情况。最后,提出了改进量子进化算法(IQEA)求解此类问题,根据问题特性,创新设计了基于量子比特与序列相结合的改进编解码机制,引入三种旋转角度更新策略来改进量子旋转门更新机制,并设计了强化学习机制来实现量子旋转门更新步骤的自学习;使用IQEA算法和Pareto最优思想对本文所选案例的煤炭供应链网络布局方案进行优化,通过10组不同规模的算例仿真实验,对传统QEA和IQEA算法的求解质量进行对比分析,实验表明所提IQEA算法在求解此类问题时具备高效性,并且在探索和应用两个方面达到了有效平衡,算法的收敛效果和全局搜索能力均得到提升。
本文所建立的考虑碳排放的混合整数规划模型,为研究煤炭供应链网络优化问题提供了一个新的视角,所设计的IQEA算法为求解煤炭供应链网络优化等组合优化问题提供了一种新型智能优化求解方法。本研究在煤炭供应链网络布局优化、运输路线优化、运输方式优化及降低供应链碳排放等方面具备重要价值。

论文外文摘要:

Coal is an important strategic energy in China, and its consumption accounts for 56.8% of the total primary energy consumption (in 2020). Coal supply chain network includes a series of operations from pithead to end user, such as mining, washing, transportation, sales, etc.The network optimization of coal supply chain can realize the optimal allocation of coal production and sales, solve the mismatch between coal production and sales, and make customers and coal enterprises achieve mutual benefit and win-win.Traditional coal supply chain network optimization usually focuses on economic benefits. However, under the background of global warming and increasingly prominent environmental problems, coal supply chain network optimization needs to give consideration to both economic benefits and environmental benefits. It is particularly important to conduct in-depth research on coal supply chain network optimization considering carbon emissions.Based on the above analysis, the main research work of this paper is as follows:
Firstly, the research status of coal supply chain network, supply chain network considering carbon emissions and intelligent optimization algorithm -- Quantum evolution algorithm (QEA) for solving this problem are summarized.And this study analyzes the related concepts and theories of coal supply chain network, carbon emission measurement model, multi-objective optimization theory and algorithm.
Secondly, a multi-objective mixed integer programming model based on cost and carbon emission minimization is established, which imposes constraints on node number, coal flow balance, capacity, supply and demand relationship, and transshipment.The carbon emissions of coal supply chain network are calculated mainly through the carbon emission measurement of transportation link, and the direct carbon emissions generated by the fuel consumption of different fuels used in railway, highway and waterway transportation mode in transportation link are calculated.
Finally, an improved quantum evolutionary algorithm (IQEA) is proposed to solve this kind of problems. According to the characteristics of the problem, an improved coding and decoding mechanism based on the combination of quantum bit and sequence decoding is innovatively designed. Three rotation angle updating strategies are introduced to improve the updating mechanism, and a reinforcement learning mechanism is designed to realize the self-learning of selecting one suitable rotation angle updating strategy during each generation.In this study, IQEA algorithm and Pareto optimal concept are used to optimize the coal supply chain network. Through 10 groups of simulation experiments with different scales, the traditional QEA and IQEA are compared and analyzed, and it is verified that the proposed IQEA algorithm is efficient in solving such problems, and it achieves an effective balance between exploration and application. The convergence effect and global search ability of the algorithm are improved.
The mixed integer programming model considering carbon emissions established in this paper provides a new perspective for studying the optimization of coal supply chain network. The improved quantum evolutionary algorithm designed in this paper provides a new intelligent optimization method for solving combinatorial optimization problems such as coal supply chain network optimization. This method has important value for optimizing the network layout, transportation route and transportation mode of coal supply chain, and then reducing the carbon emission of supply chain.

参考文献:

参考文献

[1]IPCC.Summary for policymakers.In:Climate Change 2021:The Physical Science Basis.Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press,2021.

[2]World Meteorologic Organization.WMO Greenhouse Gas Bulletin:the state of greenhouse gases in the atmosphere based on global observations through 2020[EB/OL].[2022-02-21].https://library.wmo.int/doc_num.php?explnum_id=10904.

[3]WESSEH P K, LIN B Q.Optimal Carbon taxes for China and implications for power generation,welfare,and the environment[J].Energy Policy,2018,118:1-8.

[4]国家统计局.2021中国统计年鉴[M].北京:中国统计出版社,2020.

[5]Conradie D G,Morison L E,Joubert J W.Scheduling at coal handling facilities using simulated annealing[J].Mathematical Methods of Operations Research,2008,68(2):277-293.

[6]Peng H J,Zhou M H,Liu M Z,et al.A dynamic optimization model of an integrated coal supply chain system and its application[J].Mining Science and Technology,2009,19(6):842-846.

[7]Boland N,Kalinowski T,Waterer H,et al.Mixed integer programming based maintenance scheduling for the Hunter Valley coal chain[J].Journal of Scheduling,2013,16(6):649-659.

[8]Boland N,Savelsbergh M,Waterer H.A Decision support tool for generating shipping data for the Hunter Valley coal chain[J].Computers & Operations Research,2015, 53:54-67.

[9]Singh G,David S,Andteas T.Ernst.A mixed integer programming model for long term capacity expansion planning[J].European Journal of Operation Research,2012,220(1): 210-224.

[10]Benalcazar P,Kaminski J,Saluga P W.The storage location problem in a coal supply chain:background and methodological approach[J].Gospodarka Surowcami Mineralnymi-Mineral Resources Management,2017,33(1):5-14.

[11]Xu X Z,Niu Y F,Li Q.Performance assessment of a freight network with stochasticcapacities[J].Complexity,2018:1-9.

[12]Zhou R J,Li L J.Joint capacity planning and distribution network optimization of coal supply chains under uncertainty[J].Aiche Journal,2018,64(4):1246-1261.

[13]Liu N,Wang Q,Zhong W,et al.Multi-echelon distribution large-scale coal supply chain management based satisfactory degree method[J].Lecture Notes on Multi-disciplinary Industrial Engineering,2019(1):1453-1463.

[14]彭晨,岳东.基于开放式功能体系的煤炭供应链结构研究[J].煤炭学报,2003(03):326-331.

[15]彭永涛,张锦,陈刚.多商品多运输方式的煤炭供应链网络均衡[J].工业工程,2013,16(3):50-56.

[16]吴玛佳,阳瑞新.煤炭运输路径选择与运输效率的关系模型仿真[J].计算机仿真,2014,31(09):445-448.

[17]袁旭梅,张旭.考虑港口物流能力的多目标海运煤炭供应链网络优化模型[J].数学的实践与认识,2016,46(11):75-82.

[18]吉峰,姚稳,张婷等.基于改进MOPSO的煤炭企业内部供应链优化研究[J].中国矿业大学学报,2016,45(06):1300-1306.

[19]李丹,路世昌,刘士伟.大型煤炭企业供应链多目标优化研究[J].数学的实践与认识,2019,49(01):1-8.

[20]陈红梅.煤炭物流供应链信息协同共享研究[J].生态经济,2013(05):109-113.

[21]陈红梅,杨美美.秦皇岛港煤炭供应链牛鞭效应形成因素分析[J].北京交通大学学报(社会科学版),2017,16(01):102-109.

[22]高太光,丛配玉,刘丹等.共享经济视阈下煤炭物流供应链供需匹配机制分析[J].煤炭经济研究,2020,40(07):49-55.

[23]云小红,张金锁.基于ES预测技术的煤炭供应链牛鞭效应抑制方法[J].数学的实践与认识,2020,50(19):1-8.

[24]王新平,王亚宁.陕西省公路煤炭物流网络节点布局优化研究——基于AHP—因次分析法[J].物流科技,2022,45(01):1-5+14.

[25]Zhang B,Qu X,Meng J,et al.Identifying primary energy requirements in structural path analysis:a case study of China 2012[J].Applied Energy,2017,191:425-435.

[26]Luo G F,Zhang J J,Rao Y H,et al.Coal supply chains:a whole-process-based measurement of carbon emissions in a mining city of China[J].Energies,2017,10(11):59-68.

[27]Wang B,Wu Y,Zhao J.Comprehensive evaluation on low-carbon development of coal enterprise groups[J].Environmental Science&Pollution Research,2017(10):1-11.

[28]Aguirre-Villegas H A,Benson C H.Case history of environment impacts of an indonesian coal supply chain[J].Journal of Cleaner Production,2017,157:47-56.

[29]Vatalis K I,Charalampides G,Platias S.CCS Ready innovative technologies in coal-fired power plants as an effective tool for a Greek low carbon energy policy[J].Procedia Economics and Finance,2014,14:634-643.

[30]Gonela V.Stochastic optimization of hybrid electricity supply chain considering carbon emission schemes[J].Sustainable Production & Consumption, 2018,14:96-105.

[31]Daniel R.Framing low-carbon pathways:a discursive analysis of contending story lines surrounding the phase-out of coal-fired power in Ontario[J].Environmental Innovationand Societal Transitions,2018(27):129-145.

[32]Pezhman G,Wang C,Azadnia A H,et al.Life cycle-based environment performance i-ndicator for the coal-to-energy supply chain:a Chinese case application[J].Resources,Conservation & Recycling,2019,147:28-38.

[33]Cao Y,Zhao Y H,Meng J,et al.System dynamics simulation for co2 emission mitigation in green electric-coal supply chain[J].Journal of Cleaner Production,2019,232:759-773.

[34]Li J Y,Wang L,Tan X.Sustainable Design and optimization of coal supply chain network under different carbon emission polices[J].Journal of Cleaner Production,2020,250,Article ID:119548.

[35]夏德建,任玉珑,史乐峰.中国煤电能源链的生命周期碳排放系数计量[J].统计研究,2010,27(08):82-89.

[36]王超,穆东,姜庆国.煤炭产供链的碳排放经济测度模型和治理效益模型研究[J].北京交通大学学报(社会科学版),2011(4):64-70.

[37]姜庆国,穆东,王立海等.电煤供应链碳排放的经济测度研究[J].北京交通大学学报(社会科学版),2012,11(04):45-50.

[38]吴磊.碳排放约束下电煤物流网络优化模型研究[D].华北电力大学(北京),2018.

[39]路世昌,李丹,张荣兰.基于博弈论视角的绿色煤炭供应链库存问题研究[J].环境污染与防治,2013,35(03):111.

[40]李丹,路世昌,赵球等.煤炭企业绿色供应链系统仿真模型构建研究[J].计算机仿真,2013,30(06):239-243.

[41]廖诺,赵亚莉,贺勇等.碳交易政策对电煤供应链利润及碳排放量影响的仿真分析[J].中国管理科学,2018(8):154-163.

[42]靳妮倩君.政府环境规制下的煤炭产业供应链动态减排策略研究[J].中国矿业,2020,29(08):24-30.

[43]慈铁军,马皓璨,杜恒等.电煤供应链碳排放分析与预测[J].电力科学与工程,2021,37(09):62-70.

[44]范志强.多阶段煤炭供应链网络设计及其遗传算法[J].计算机工程与应用,2012,48(24):206-211.

[45]范志强.考虑复杂需求特性的多级煤炭供应链网络优化[J].计算机工程与应用,2014,50(5):21-28.

[46]潘冯超,刘勤明,叶春明等.基于改进PSO算法的分布式能源供应链配置研究[J].上海理工大学学报,2021,43(04):393-399.

[47]Narayanan A,Moore M.Quantum-inspired genetic algorithm[C]//Proc of IEEE Int Conf on Evolutionary Computation.Piscataway:IEEE Press,1996:61-66.

[48]Han K H,Kim J H.Genetic quantum algorithm and itsapplication to combinatorial optimization problem[C]//Proc of IEEE Congress on Evolutionary Computation,2000:1354-1360.

[49]Han K H,Kim J H.Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J].IEEE Transactions on Evolutionary Computation,2002,6(6):580-593.

[50]Han K H,Kim J H.Quantum-inspired evolutionary algorithms with a new termination criterion,Hε gate,and two-phase scheme[J].IEEE Trans on Evolutionary Computation,2004,8(2):156-169.

[51]Li P C,Li S Y.Quantum-inspired evolutionary algorithm for continuous spaces opti-mization[J].Chinese Journal of Electronics,2008,17(1):80-84.

[52]Li P C,Li S Y.Quantum-inspired evolutionary algorithm for continuous spaces opti-mization baced on bloch coordinates of qubits[J].Neurocomputing,2008,72(3):581-591.

[53]Wu X L,Wu S M.An elitist quantum inspired evolutionary algoritnm for the flexible job-shop scheduling problem[J].Journal of Intelligent Manufacturing,2017,28(6):1441-1457.

[54]Patvardhan C,Bansal S,Srivastav A.Parallel improved quantum inspired evolutionary algorithm solve large size quadratic knapsack problems[J].Swarm and Evolutionary Computation,2016,26:175-190.

[55]Xiong H G,Wu Z Y,Fan H,et al.Quantum rotation gate in quantum-inspired evolutionary algorithm:a review,analysis and comparison study[J].Swarm and Evolution- ary Computation,2018,42:43-57.

[56]Meng Y Y,Liu X Y.Quantum-inspired evolutionary algorithm for community detection in complex networks[J].Physics Letters A,2018,382(34):2305-2312.

[57]Mohammad H T N.How to exploit fitness landscape properties of timetabling problem:a new operator for quantum evolutionary algorithm[J]Expert Systems with Applications,2020,114211.

[58]覃朝勇,郑建国,朱佳俊.一种实数编码量子进化算法及其收敛性[J].控制与决策,2009,24(6):854-858.

[59]高辉,张锐.改进实数编码量子进化算法及其在参数估计中的应用[J].控制与决策,2011,26(3):2207-2214.

[60]宋强磊,车阿大.量子进化算法在生产调度中的应用综述[J].计算机应用研究,2012,29(05):1601-1605.

[61]蔡延光,张敏捷,章云.混合混沌量子进化算法[J].系统工程理论与实践,2012,32(10):418-422.

[62]雷霖,罗小勇.一种新的量子进化算法实数编码方式及应用[J].广西师范大学学报,2013,31(4):23-26.

[63]李盼池,施光尧,王海英.一种量子行为进化算法及应用[J].控制与决策,2013,28(3):402-406.

[64]刘振,胡云安,彭军.协同进化扩展紧致量子进化算法[J].控制与决策,2014,29(2):320-325.

[65]张磊,方洋旺,毛东辉等.一种新的相位角编码量子进化算法[J].控制与决策,2015,30(4):739-744.

[66]余发军,瞿博阳,刘义才.基于量子进化的信号稀疏分解方法[J].量子电子学报,2019,36(04):393-401.

[67]蒋海青,赵燕伟,张景玲等.基于碳排放的开放选址-路径问题及算法[J].系统工程理论与实践,2020,40(01):182-194.

[68]杨浩,陈红梅.基于量子进化算法的非平衡数据混合采样算法[J].计算机科学,2020,47(11):88-94.

[69]闫旭,叶春明,姚远远.量子鲸鱼优化算法求解作业车间调度问题[J].计算机应用研究,2019,36(04):975-979.

[70]何国松,董泽,孙明.基于混合量子麻雀算法的过热汽温模型参数辨识[J/OL].华北电力大学学报(自然科学版):1-9.

[71]Deb K,Pratap A,Agarwal S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.

[72]Rao R V.Jaya:A simple and new optimization algorithm for solving constrained and unconstrained optimization problems[J].International Journal of Industrial Engineering Computations,2016,7(1):19-34.

[73]谭鑫.低碳政策下的电煤供应链网络优化研究[D].华北电力大学,2019.

[74]张旭,袁旭梅,降亚迪.需求与碳交易价格不确定下多式联运路径优化[J].系统工程理论与实践,2021,41(10):2609-2620.

中图分类号:

 F426.21    

开放日期:

 2022-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式