- 无标题文档
查看论文信息

论文中文题名:

 电动汽车锂离子电池SOC与SOP估计算法研究    

姓名:

 王甜甜    

学号:

 19205201045    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 新能源智能网联车辆    

第一导师姓名:

 寇发荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-26    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on SOC and SOP Estimation Algorithm for Lithium Ion Batteries of Electric Vehicles    

论文中文关键词:

 SOC估计 ; SOP估计 ; 二阶RC模型 ; 人工蜂群算法 ; 双容积Kalman滤波    

论文外文关键词:

 SOC estimation ; SOP estimation ; second-order RC model ; artificial bee colony algorithm ; double-cubature kalman filter    

论文中文摘要:

锂离子电池精确的荷电状态(SOC)和功率状态(SOP)是电动汽车能否稳定运行的关键,也是电池管理系统的核心问题和技术难点。为充分发挥锂电池性能并使车用动力电池BMS系统安全可靠的工作,需采用荷电状态和持续峰值放电功率状态作为判断电池性能的重要指标。为了精准地获取锂离子电池模型参数和内部状态估计值,本文建立二阶RC等效电路模型,设计基于双容积卡尔曼滤波(D-CKF)的锂电池SOC估计与多参数约束的SOP估计算法。

在分析锂离子电池结构与工作原理的基础上,开展动态容量测试、开路电压测试、快速脉冲放电工况以及EPA城市动力工况(UDDS)测试,完成动态容量建模、SOC-OCV曲线标定。建立二阶RC等效电路模型,利用人工蜂群算法对模型参数进行初始最优解标定,为模型参数辨识初始化作参考。采用双容积卡尔曼滤波算法同时进行锂电池模型参数辨识和SOC估计。设计基于SOC的锂电池多参数约束SOP估计方法,能实现最优BMS配置,延长电池使用寿命;在基于SOC、端电压和单体峰值电流约束条件计算峰值电流,根据多参数约束下的峰值放电电流计算不同持续时间峰值放电功率。将半实物仿真系统与锂电池测试系统相结合,在快速脉冲放电工况和UDDS工况下,对SOC估计算法和多参数约束条件下SOP估计方法的精度实现快速控制原型(RCP)验证。

试验结果表明:无论是恒电流放电还是复杂交变电流放电,选用D-CKF算法进行锂电池模型参数辨识均能够提高模型端电压预测精度。在快速脉冲放电工况和UDDS工况下,基于D-CKF算法的模型参数辨识端电压平均误差分别为0.0067和0.0066。选用D-CKF算法进行锂电池SOC估计能够较快修正初始误差,具有较强的跟踪收敛能力。在快速脉冲放电工况和UDDS工况下,D-CKF算法的SOC估计平均误差保持在0.01左右,相较于传统CKF算法分别降低34.7%和41.9%。所设计的锂电池多参数约束下SOP估计能够在定义的持续放电时间内提高电池利用率及保障系统安全性。在快速脉冲放电工况和UDDS工况下,电池SOP估计平均误差均在4W左右,不同SOC区间的峰值电流约束条件不同,如果仅单约束条件进行峰值SOP估计,会造成某一区间内电流偏大,缩短电池使用寿命。

论文外文摘要:

Accurate State of Charge (SOC) and State of Power(SOP) of lithium-ion batteries are the keys to electric vehicles stable operation, and also the core issues and technical difficulties of battery management system. In order to full play performance of lithium battery and make the vehicle power battery BMS system work safely and reliably, State of Charge and sustained peak discharge State of Power are used as important indicators to judge battery performance. For the good of accurately obtain the lithium-ion battery model parameters and internal state estimate. this thesis establishes the second-order RC equivalent circuit model, the lithium battery SOC estimation and multi-parameter constrained SOP estimation algorithm based on the double-cubature kalman filter (D-CKF) are designed.

On the basis of analyzing the structure and working principle of lithium-ion batteries, the dynamic capacity tests, open-circuit voltage tests, rapid pulse discharge conditions and EPA urban dynamic conditions (UDDS) tests were carried out, dynamic capacity modeling and SOC-OCV curve calibration are completed. The second-order RC equivalent circuit model is established, the artificial bee colony algorithm is used to model parameters initial optimal solution calibration, which provides reference for the initialization of model parameter identification; The double-cubature kalman filter algorithm is used to concurrence lithium battery model parameter identification and SOC estimation. Design a lithium batteries multi-parameter constrained SOP estimation method based on SOC, which can achieve optimal BMS configuration and prolong battery life; Calculate the peak discharge current based on SOC, terminal voltage and single maximum peak current constraints, according to multi-parameter constraint peak discharge current calculate peak discharge power of different duration. The hardware-in-the-loop simulation system and lithium battery test system are combined, under rapid pulse discharge conditions and UDDS conditions, the accuracy of SOC estimation algorithm and SOP estimation method under multi-parameter constraints is verified by rapid control prototype(RCP).

The test results show that whether is constant current discharge or complex alternating current discharge, the D-CKF algorithm is used to identify lithium battery model parameters, which can improve model terminal voltage prediction accuracy. Under rapid pulse discharge conditions and UDDS conditions, the model parameter identification based on D-CKF algorithm terminal voltage average errors separately for 0.0067 and 0.0066. The D-CKF algorithm for lithium battery SOC estimation can quickly correct initial error and has strong tracking convergence ability. Under rapid pulse discharge conditions and UDDS conditions, the average error of SOC estimation based on the D-CKF algorithm remains at about 0.01, compared with the traditional CKF algorithm separately for decreases 34.7% and 41.9%. The designed lithium battery multi-parameter constraint SOP estimation can improve the battery utilization rate and ensure system security within the defined continuous discharge time. Under rapid pulse discharge conditions and UDDS conditions, the average error of the battery SOP estimation is about 4W, the peak current constraints in different SOC intervals are different, if only single constraint is used to peak SOP estimation, peak current discharge will be too large at a certain interval, which battery service life will shorten.

参考文献:

[1]曹铭. 电池管理系统关键技术研究及测试系统构建[D]. 南昌: 南昌大学, 2020.

[2]L. Lu, X. Han, J. Li, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Power Sources 2013, 226 :272-288.

[3]Xiong R, Ma S X, Li H L, et al. Toward a Safer Battery Management System: A Critical Review on Diagnosis and Prognosis of Battery Short Circuit[J]. iScience, 2020, 23(4): 2589-0042.

[4]Lee J, Kim J M, Yi J S, et al. Battery management system algorithm for energy storage systems considering battery efficiency[J]. Electronics, 2021, 10(15): 1859.

[5]蔡雪, 张彩萍, 张琳静, 等. 基于等效电路模型的锂离子电池峰值功率估计的对比研究[J]. 机械工程学报, 2021, 57(14): 64-76.

[6]杨新波, 郑岳久, 高文凯, 等. 基于改进等效电路模型的高比能量储能锂电池系统功率状态估计[J]. 电网技术, 2021, 45(01): 57-66.

[7]曹铭, 黄菊花, 杨志平, 等. 车用锂离子动力电池自适应状态联合估计研究[J]. 控制理论与应用, 2020, 37(09): 1951-1962.

[8]Doyle M, Fuller T F, Newman J. Comparison of modeling predictions with exrerimental data from plastic Lithium ion cells[J]. Journal of the Electrochemical Socitey, 1996, 143(6): 1890-1903.

[9]Shepherd C M. Design of primary and secondary cells: II. An equation describing battery discharge[J]. Journal of the Electrochemical Society, 1965, 112(7): 657.

[10]Unnewehr L E, Nasar S A. Electric vehicle technology[M].US:John Wiley, 1982, pp 81-91.

[11]Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1. Background[J]. Journal of Power sources, 2004, 134(2): 252-261.

[12]Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Modeling and identification[J]. Journal of power sources, 2004, 134(2): 262-276.

[13]Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation[J]. Journal of Power sources, 2004, 134(2): 277-292.

[14]黄海宏, 汪宇航, 王海欣. 基于锂电池等效电路模型的阻抗曲线拟合算法[J]. 仪器仪表学报, 2021, 41(08): 70-77.

[15]嵇艳鞠, 邱仕林, 李刚. 基于可变电阻和电容的锂电池二阶RC等效电路模型的仿真(英文)[J]. Journal of Central South University, 2020, 27(09): 2606-2613.

[16]王晓兰, 靳皓晴, 刘祥远. 基于融合模型的锂离子电池荷电状态在线估计[J]. 工程科学学报, 2020, 42(09): 1200-1208.

[17]陈英杰, 杨耕, 祖海鹏, 等. 基于恒流实验的锂离子电池开路电压与内阻估计方法[J]. 电工技术学报, 2018, 33(17): 3976-3988.

[18]王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201-5212.

[19]刘新天, 张恒, 何耀, 等. 基于IMM-UPF的锂电池寿命估计[J]. 湖南大学学报(自然科学版), 2020, 47(02): 102-109.

[20]李超然, 肖飞, 樊亚翔, 等. 一种基于LSTM-RNN的脉冲大倍率工况下锂离子电池仿真建模方法[J]. 中国电机工程学报, 2020, 40(09): 3031-3042.

[21]WANG J, CHEN Q, CAO B. Support vector machine based battery model for electric vehicles[J]. Energy Conversion and Management, 2006, 47(07): 858-864.

[22]徐保荣, 王兴成, 张齐, 等. 自适应扩展卡尔曼滤波电池荷电状态估算方法[J]. 哈尔滨工业大学学报, 2021, 53(07): 92-98.

[23]陈玉珊, 秦琳琳, 吴刚, 等. 基于渐消记忆递推最小二乘法的电动汽车电池荷电状态在线估计[J]. 上海交通大学学报, 2020, 54(12): 1340-1346.

[24]Yin L, LI Q, Hong Z, et al. FFRLS Online Identification and Real-time Optimal Temperature Generalized Predictive Control Method of PEMFC Power Generation System[J]. Proceedings of the CSEE, 2017: 11.

[25]谢文超, 赵延明, 方紫微, 等. 带可变遗忘因子递推最小二乘法的超级电容模组等效模型参数辨识方法[J]. 电工技术学报, 2021, 36(05): 996-1005.

[26]Zhang T, Yang S, Hu J, et al. State of Charge Estimation of Lithium Battery Based on FFRLS-SRUKF Algorithm[C]//2020 IEEE 3rd International Conference on Electronics Technology (ICET). IEEE, 2020: 433-437.

[27]李凌峰, 宫明辉, 乌江. 采用多模模型的锂离子电池荷电状态联合估计算法[J]. 西安交通大学学报, 2021, 55(01): 78-85.

[28]Kim M, Kim K, Han S. Low computational cost method for online parameter identification of Li-ion battery in battery management systems using matrix condition number[J]. arXiv preprint arXiv: 1912.02600, 2019.

[29]王志福, 刘兆健, 李仁杰. 基于BCRLS-AEKF的锂离子电池荷电状态估计及硬件在环验证[J]. 北京理工大学学报, 2020, 40(03): 275-281.

[30]项宇, 马晓军, 刘春光, 等. 基于改进的粒子群优化扩展卡尔曼滤波算法的锂电池模型参数辨识与荷电状态估计[J]. 兵工学报, 2014, 35(10): 1659-1666.

[31]杨世春, 华旸, 顾启蒙, 等. 锂离子电池SOC及容量的多尺度联合估计[J]. 北京航空航天大学学报, 2020, 46(08): 1444-1452.

[32]ZONG Changfu, HU Dan, ZHENG Hongyu. Dual Extended Kalman Filter for Combined Estimation of Vehicle State and Road Friction[J]. Chinese Journal of Mechanical Engineering, 2013, 26(02): 313-324.

[33]王笑天, 杨志家, 王英男, 等. 双卡尔曼滤波算法在锂电池SOC估算中的应用[J]. 仪器仪表学报, 2013, 34(08): 1732-1738.

[34]黄冉军, 周维, 王旭. 一种改进的动力电池阻抗参数和荷电状态分层在线联合估计方法[J]. 汽车工程, 2020, 42(08): 1000-1007.

[35]吴忠强, 赵德隆, 王云青, 等. 基于改进蜻蜓算法的蓄电池参数辨识[J]. 电机与控制学报, 2020, 24(12): 152-160.

[36]吴忠强, 刘重阳, 赵德隆, 等. 基于IEHO算法的太阳电池模型参数辨识[J]. 太阳能学报, 2021, 42(09): 97-103.

[37]刘芳, 马杰, 苏卫星, 等. 基于模型参数在线辨识技术的SOC估算方法[J]. 东北大学学报(自然科学版), 2020, 41(11): 1543-1549.

[38]Zhang J, Xia P. An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models[J]. Journal of Sound and Vibration, 2017, 389: 153-167.

[39]张照娓, 郭天滋, 高明裕, 等. 电动汽车锂离子电池荷电状态估算方法研究综述[J]. 电子与信息学报, 2021, 43(07): 1803-1815.

[40]Xiong R, Cao J, Yu Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. Ieee Access, 2017, 6: 1832-1843.

[41]Zhou W, Zheng Y, Pan Z, et al. Review on the battery model and SOC estimation method[J]. Processes, 2021, 9(09): 1685.

[42]Song Y, Park M, Seo M, et al. Improved SOC estimation of lithium-ion batteries with novel SOC-OCV curve estimation method using equivalent circuit model[C]//2019 4th International Conference on Smart and Sustainable Technologies (SpliTech). IEEE, 2019: 1-6.

[43]Fang L, Li J, Peng B. Online Estimation and Error Analysis of both SOC and SOH of Lithium-ion Battery based on DEKF Method[J]. Energy Procedia, 2019, 158: 3008-3013.

[44]戴海峰, 王冬晨, 姜波. 基于电化学阻抗谱的电池荷电状态估计[J]. 同济大学学报(自然科学版), 2019, 47(S1): 95-98.

[45]庄全超, 杨梓, 张蕾, 等. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(06): 761-791.

[46]罗勇, 祁朋伟, 黄欢, 等. 基于容量修正的安时积分SOC估算方法研究[J]. 汽车工程, 2020, 42(05): 681-687.

[47]Liu Z, Li Z, Zhang J, et al. Accurate and efficient estimation of lithium-ion battery state of charge with alternate adaptive extended Kalman filter and ampere-hour counting methods[J]. Energies, 2019, 12(4): 757.

[48]Xu Y, Chen M, Jiang J, et al. Li-ion batteries SOC observation method based on model with variable parameters[C]//2017 Chinese Automation Congress (CAC). IEEE, 2017: 2502-2507.

[49]冯代伟, 陆超, 陈勇, 等. 具有电流偏差和噪声扰动的H_∞观测器在线估计电池SoC状态[J]. 电子科技大学学报, 2017, 46(04): 547-553.

[50]He T, Li D, Wu Z, et al. A modified luenberger observer for SOC estimation of lithium-ion battery[C]//2017 36th Chinese Control Conference (CCC). IEEE, 2017: 924-928.

[51]周娟, 孙啸, 刘凯. 联合扩展卡尔曼滤波的滑模观测器SOC估算算法研究 [J]. 中国电机工程学报, 2021, 41(02): 692-703.

[52]Gao W, Zhang G, Hang M, et al. Sensorless Control Strategy of a Permanent Magnet Synchronous Motor Based on an Improved Sliding Mode Observer[J]. World Electric Vehicle Journal, 2021, 12(02): 74.

[53]何耀, 曹成荣, 刘新天, 等. 基于可变温度模型的锂电池SOC估计方法[J]. 电机与控制学报, 2018, 22(01): 43-52.

[54]王笑天, 杨志家, 王英男, 等. 双卡尔曼滤波算法在锂电池SOC估算中的应用[J]. 仪器仪表学报, 2013, 34(08): 1732-1738.

[55]章军辉, 李庆, 陈大鹏, 等. 基于快速SR-UKF的锂离子动力电池SOC联合估计[J]. 工程科学学报, 2021, 43(07): 976-984.

[56]丁镇涛, 邓涛, 李志飞, 等. 基于安时积分和无迹卡尔曼滤波的锂离子电池SOC估算方法研究[J]. 中国机械工程, 2020, 543(15): 1823-1830.

[57]刘新天, 李涵琪, 魏增福, 等. 基于Drift-Ah积分法的CKF估算锂电池SOC[J]. 控制与决策, 2019, 34(03): 535-541.

[58]Wei M, Ye M, Li J B, et al. State of Charge estimation of lithium-ion batteries using LSTM and NARX neural networks[J] IEEE Access, 2020, 8: 189236-189245.

[59]李超然, 肖飞, 樊亚翔. 基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法 [J]. 电工技术学报, 2020, 35(09): 2051-2062.

[60]徐艳民. 基于BP-EKF算法的电池SOC估计[J]. 汽车技术, 2018, 53(02): 19-23.

[61]寇发荣, 王思俊, 王甜甜, 等. VCM模型下的IBAS-EKF锂电池荷电状态估计[J]. 机械科学与技术, 2021, 40(12): 1929-1938.

[62]Wei C, Benosman M, Kim T. Online parameter identification for state of power prediction of lithium-ion batteries in electric vehicles using extremum seeking[J]. International Journal of Control, Automation and Systems, 2019, 17(11): 2906-2916.

[63]Tan Y, Luo M, She L, et al. Joint estimation of ternary lithium-ion battery state of charge and state of power based on dual polarization model[J]. International Journal of Electrochemical. Science, 2020, 15(02): 1128-1147.

[64]Liu C, Hu M, Jin G, et al. State of power estimation of lithium-ion battery based on fractional-order equivalent circuit model[J]. Journal of Energy Storage, 2021, 41: 102954.

[65]刘新天, 何耀, 曾国建, 等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163.

[66]熊瑞. 动力电池管理系统核心算法[M]. 北京: 机械工业出版社, 2018.

[67]Sun F, Xiong R, He H. Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions [J]. Journal of Power Sources, 2014, 259(07): 166-176.

[68]Lin P, Jin P, Hong J, et al. Battery voltage and state of power prediction based on an improved novel polarization voltage model[J]. Energy Reports, 2020, 6: 2299-2308.

[69]Xie W, Ma L, Zhang S, et al. Predicting the State of Power of an Iron-Based Li-Ion Battery Pack Including the Constraint of Maximum Operating Temperature[J]. Electronics, 2020, 9(10): 1737.

[70]程泽, 孙幸勉, 程思璐. 一种锂离子电池荷电状态估计与功率预测方法[J]. 电工技术学报, 2017, 32(15): 180-189.

[71]Haiying W, Zhonghua H, Yu H, et al. Power state prediction of battery based on BP neural network[C]//2012 7th International Forum on Strategic Technology (IFOST). IEEE, 2012: 1-4.

[72]He L, Hu M K, Wei Y J, et al. State of charge estimation by finite difference extended Kalman filter with HPPC parameters identification[J]. Science China(Technological Sciences), 2020, 63(03): 410-421.

[73]裴普成, 陈嘉瑶, 吴子尧. 锂离子电池自放电机理及测量方法[J]. 清华大学学报(自然科学版), 2019, 59(01): 53-65.

[74]董明, 范文杰, 刘王泽宇, 等. 基于特征频率阻抗的锂离子电池健康状态评估[J/OL]. 中国电机工程学报: 1-11 [2022-01-19]. DOI: 10.13334/ j.0258-8013. pcsee.212036.

[75]王帅, 尹忠东, 郑重, 等. 电池模组一致性影响因素在放电电压曲线簇上的表征[J]. 电工技术学报, 2020, 35(08): 1836-1847.

[76]来鑫, 李云飞, 郑岳久, 等. 基于SOC-OCV优化曲线与EKF的锂离子电池荷电状态全局估计[J]. 汽车工程, 2021, 43(01): 19-26.

[77]Gao H, Shi Y, Pun C M, et al. An improved artificial bee colony algorithm with its application[J]. IEEE Transactions on Industrial Informatics, 2018, 15(04): 1853-1865.

[78]简献忠, 武杰, 郭强. 蜂群算法在太阳电池寿命预测参数辨识中的应用[J]. 太阳能学报, 2018, 39(12): 3392-3398.

[79]Zeng T, Wang W, Wang H, et al. Artificial bee colony based on adaptive search strategy and random grouping mechanism[J]. Expert Systems with Applications, 2021, 192(15): 116332.

[80]蔡军, 邹鹏, 沈弼龙, 等. 基于改进轮盘赌策略的反馈式模糊测试方法[J]. 四川大学学报(工程科学版), 2016, 48(02): 132-138.

[81]王联国, 刘小娟. 基于采蜜机制的正弦余弦算法及其在机械优化设计中的应用[J]. 中国机械工程, 2021, 32(21): 2577-2589.

[82]Tran V, Zhang H. Optimal PMU placement using modified greedy algorithm[J]. Journal of Control, Automation and Electrical Systems, 2018, 29(01): 99-109.

[83]Xu W, Xu J, Yan X. Lithium-ion battery state of charge and parameters joint estimation using cubature Kalman filter and particle filter[J]. Journal of Power Electronics, 2020, 20(01): 292-307.

[84]Shen J, Xiong J, Shu X, et al. State of charge estimation framework for lithium‐ion batteries based on square root cubature Kalman filter under wide operation temperature range[J]. International Journal of Energy Research, 2021, 45(04): 5586-5601.

[85]刘俊, 刘瑜, 徐从安, 等. 基于高斯似然近似的自适应球面径向积分滤波算法[J]. 控制与决策, 2016, 31(06): 1073-1079.

[86]Singh A K, Bhaumik S. Higher degree cubature quadrature Kalman filter[J]. International Journal of Control, Automation and Systems, 2015, 13(05): 1097-1105.

[87]崔乃刚, 张龙, 王小刚, 等. 自适应高阶容积卡尔曼滤波在目标跟踪中的应用[J]. 航空学报, 2015, 36(12): 3885-3895.

[88]李睿, 李春明, 苏杰, 等. 考虑轨迹预测补偿的履带车辆滑动参数估计方法[J]. 清华大学学报(自然科学版), 2022, 62(01): 133-140.

[89]Yu C X, Xie Y M, Sang Z Y, et al. State-of-charge estimation for lithium-ion battery using improved dukf based on state-parameter separation[J]. Energies, 2019, 12(21): 4036.

[90]戴海峰, 孙泽昌 ,魏学哲. 利用双卡尔曼滤波算法估计电动汽车用锂离子动力电池的内部状态[J]. 机械工程学报, 2009, 45(06): 95-101.

[91]侍壮飞. 三元锂离子电池SOC在线估计算法研究[D]. 温州: 温州大学, 2018.

[92]孙志祥. 考虑温度影响的动力锂电池SOC估计算法和验证[D]. 长春: 吉林大学, 2018.

[93]叶明, 李鑫, 程越. 搭载机电控制CVT的电动车快速控制原型 [J]. 中国公路学报, 2015, 28(01): 112-119.

[94]朱冰, 贾晓峰, 王御, 等. 基于双dSPACE的汽车动力学集成控制快速原型试验[J]. 吉林大学学报(工学版), 2016, 46(01): 8-14.

[95]顾启蒙, 华旸, 潘宇巍, 等. 锂离子电池功率状态估计方法综述[J]. 电源技术, 2019, 43(09): 1563-1567.

[96]张宵洋, 张振福, 毛顺永, 等. 锂电池SOC与持续峰值SOP的联合估计[J/OL]. 控制工程: 1-10[2022-03-27]. DOI:10.14107/j.cnki.kzgc.20200397.

王琦, 季顺祥, 钱子伟. 基于熵理论和改进ELM的光伏发电功率预测 [J]. 太阳能学报, 2020, 41(10): 151-158

中图分类号:

 TM912    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式