- 无标题文档
查看论文信息

论文中文题名:

 线    

姓名:

 张浩楠    

学号:

 20207035007    

保密级别:

     

论文语种:

 chi    

学科代码:

 0809    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2023    

培养单位:

 西    

院系:

 通信与信息工程学院    

专业:

 电子科学与技术    

研究方向:

 线    

第一导师姓名:

 王树奇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-05-31    

论文外文题名:

 Research and design of Broadband circularly polarized microstrip antenna    

论文中文关键词:

 宽带圆极化 ; 微带天线 ; 毫米波 ; 阵列 ; 亚毫米波    

论文外文关键词:

 Broadband circular polarization ; Microstrip antenna ; Millimeter wave ; Array ; Submillimeter wave    

论文中文摘要:
<p>线线线</p> <p>N258线线&ldquo;C&rdquo;线仿线63.8%(15.39-29.83GHz)47.38%(17.78-28.82GHz)N2584.46dBi</p> <p>FR2线&ldquo;C&rdquo;仿线81.25%(19.21-45.50GHz)60.2%(20.59-38.33GHz)4.2dBiFR22&acute;2线90&deg;仿99.5%(19.21-56.89GHz)132%(12.29-60GHz)FR210.72dBi</p> <p>340 GHz线线&ldquo;?&rdquo;2&times;4线线仿线67.42%(193.86-391.02GHz)76.19%(193.68-432.09 GHz)15dBi</p> <p>N258FR2340GHz线40%线线</p>
论文外文摘要:
<p>In the complex and changeable communication environment, circularly polarized antenna has the characteristics of strong resistance to multipath interference, thus research and design of circularly polarized antennas has significant importance. Three microstrip broadband circularly polarized antennas are designed, the broadband characteristics and circular polarization characteristics are studied and analyzed. The main work contents are as follows:</p> <p>A broadband circularly polarized antenna operating in the millimeter-wave N258 band is designed. Based on a square-ring monopole antenna, the impedance bandwidth is extended by incorporating a &ldquo;C&rdquo;-shaped structure on the upper surface and a stepped feed. The lower surface consisted of a ground plane with two perturbation structures, enabling circularly polarized wave radiation by adjusting the transverse-to-longitudinal current ratio on the antenna surface. Simulation results that the antenna has an impedance bandwidth of 63.8% (15.39-29.83 GHz) and an axial ratio bandwidth of 47.38% (17.78-28.82 GHz), fully including the N258 band, with a peak gain of 4.46 dBi.</p> <p>An ultra-wideband circularly polarized antenna array operating in the millimeter-wave FR2 band is designed. The top layer features a &ldquo;C&rdquo;-shaped radiating structure, the bottom layer features a feed structure generating high-frequency resonant extended impedance bandwidth and radiating circularly polarized waves. Simulation and measurement results show that the antenna has an impedance bandwidth of 81.25% (19.21-45.50 GHz) and an axial ratio bandwidth of 60.2% (20.59-38.33 GHz), having wideband circular polarization performance with a peak gain of 4.2 dBi. To fully cover the FR2 frequency band, a 2x2 sequentially rotated feed antenna array is designed, with each element being fed with a 90&deg; phase difference. Simulation results show that the impedance bandwidth reaches 99.5% (19.21-56.89 GHz), and the axial ratio bandwidth reaches 132% (12.29-60 GHz), fully including the FR2 band. The antenna array achieves a peak gain of 10.72 dBi.</p> <p>A submillimeter wave 340 GHz atmospheric window band ultra-wideband circularly polarized antenna array is designed. Based on the square ring monopole antenna, the upper surface features a &ldquo;?&rdquo; structure, and the lower surface is composed of an improved structure with triangular perturbation, they can generate resonance to expand the impedance bandwidth and control the transverse-to-longitudinal ratio of the current, circularly polarized wave can be generated; Adopting 2&times;4 antenna array not only improves the antenna gain, but also enhances its directional characteristics. The simulation results show that the impedance bandwidth of the array antenna is 67.42% (193.86-391.02GHz), the circular polarization axis ratio bandwidth is 76.19% (193.68-432.09 GHz), and the peak gain reaches 15dBi.</p> <p>The three circularly polarized antennas designed in the thesis in the millimeter wave N258 band, FR2 band, and sub millimeter wave 340GHz atmospheric window band all have operating bandwidths greater than 40%, which has a significant bandwidth advantage compared to existing circularly polarized antennas, providing important ideas for the design of high-performance microstrip broadband circularly polarized antennas.</p>
参考文献:

[1] Chen Z, Song W, Wu G, et al. Circular Polarized 3-D-Printed Dielectric Loaded Antenna Using Inset Waveguide-to-Dielectric Transition for 5G Millimeter-Wave Application[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(11): 1929-1932

[2] Bertenyi B. 5G evolution: What's next? [J]. IEEE Wireless Communications, 2021, 28(1): 4-8.

[3] Wang C, Rahman A. Quantum-Enabled 6G Wireless Networks: Opportunities and Challenges[J]. IEEE Wireless Communications, 2022, 29(1): 58-69.

[4] Ali M M M, Sebak A. Printed RGW circularly polarized differential feeding antenna array for 5G communications[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3151-3160.

[5] Serghiou D, Khalily M, Singh V, et al. Sub-6 GHz Dual-Band 8×8 MIMO Antenna for 5G Smartphones[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(9): 1546-1550.

[6] Kao C C, Young H C. Opportunities, Challenges, and Solutions in the 5G Era[J]. IEICE Transactions on Communications, 2022, 105(11): 1291-1298.

[7] Wu Z, Wu B, Su Z, et al. Development challenges for 5G base station antennas[C]//2018 International Workshop on Antenna Technology (iWAT). IEEE, 2018: 1-3.

[8] Dicandia F A, Genovesi S. Exploitation of triangular lattice arrays for improved spectral efficiency in massive MIMO 5G systems[J]. IEEE Access, 2021, 9: 17530-17543.

[9] 吴举秀,杨蕾,窦芳丽, 等.星载太赫兹双频云雷达对冰云探测能力研究[J].红外与毫米波学报,2020,39(06):718-727.

[10] Liu H, Qing A, Xu Z, et al. Low-Cost and High-Gain W-Band Circularly Polarized SIW Slot Antenna[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 661-662.

[11] 张若峤,于志强,周健义.一种基于电调移相器的可重构天线[J].微波学报,2019,35(03):7-10+15.

[12] Lam K, Luk K, Kai F L, et al. Small Circularly Polarized U-Slot Wideband Patch Antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2011, 10: 87-90.

[13] Li W, Liu B, Zhao H. The U-Shaped Structure in Dual-Band Circularly Polarized Slot Antenna Design[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 447-450.

[14] Zhao P, Liu Y, Lu H, et al. Experimental realization of terahertz waveguide-fed circularly polarized double-fan-shaped slot antenna[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2066-2069.

[15] 陈峤羽, 张金栋, 吴文. 一种单层双频双圆极化微带天线的设计[J]. 微波学报, 2015, 31(S2): 87-91.

[16] Alibakhshikenari M, Virdee B S, Rajaguru R K, et al. High performance antenna-on-chip inspired by SIW and metasurface technologies for THz band operation[J]. Scientific Reports, 2023, 13(1): 56.

[17] Deng H W, Xue Y F, Sun L, et al. Differential SIW slot antenna array with intrinsic common‐mode rejection[J]. IET Microwaves, Antennas & Propagation, 2020, 14(10): 1132-1136.

[18] Liu H, Qing A, Xu Z, et al. Low-Cost and High-Gain W-Band Circularly Polarized SIW Slot Antenna[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 661-662.

[19] Ho-Quang S., Ta S. X., Huynh-Nguyen-Bao P., et al. Compact circularly polarized slotted SIW cavity antenna for 5G application[C]//2017 International Conference on Advanced Technologies for Communications (ATC). IEEE, 2017: 75-79.

[20] Zhang L, Wu K, Wong S W, et al. Wideband high-efficiency circularly polarized SIW-fed S-dipole array for millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(3): 2422-2427.

[21] Le Z Q, Chen B J, Chan K F, et al. Terahertz Circularly-and Linearly Polarized Leaky-Wave Antennas Based on Spin–Orbit Interaction of Spoof Surface Plasmon Polaritons[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(8): 4347-4358.

[22] Warmowska D, Abdalmalak K A, Munoz L E G, et al. High-gain, circularly-polarized THz antenna with proper modeling of structures with thin metallic walls[J]. IEEE Access, 2020, 8: 125223-125233.

[23] Wu G B, Zeng Y S, Chan K F, et al. 3-D printed circularly polarized modified Fresnel lens operating at terahertz frequencies[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(7): 4429-4437.

[24] Shu C, Hu S, Cheng X, et al. Wideband Dual-Circular-Polarization Antenna with High Isolation for Millimeter-Wave Wireless Communications[J]. IEEE Transactions on Antennas and Propagation, 2022,70(3):1750-1765

[25] Gupta R, Varshney G, Yaduvanshi R S. Tunable terahertz circularly polarized dielectric resonator antenna[J]. Optik, 2021, 239: 166800.

[26] 武哲, 杨林, 栗曦. 宽带圆极化微带缝隙天线的设计[J]. 微波学报, 2018(A01): 175-177.

[27] Cao R, Yu S. Wideband Compact CPW-Fed Circularly Polarized Antenna for Universal UHF RFID Reader[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4148-4151.

[28] 王丽黎,雷兰,杨海龙, 等.一种共面波导馈电的圆极化天线的设计[J].微波学报,2018,34(03):37-40.

[29] Manjunath M N, Dwivedi A K, Narayanaswamy N K, et al. Circularly Polarized Parasitic Strips Loaded Broadband Printed Antenna for Sub-6 GHz (n77/n78/n79) Domain[J]. IETE Journal of Research, 2023: 1-10.

[30] Zhang Ruipan, Huang Jiawei, Ding Jun, et al. Compact broadband circularly polarized microstrip antenna with a cross-slotted ground plane[C]//2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. IEEE, 2019: 1753-1754.

[31] Al-Saedi H., Ali J. K., Abdel-Wahab W. M., et al. A dual circularly polarized patch antenna for broadband millimeter wave (MMW) communication systems[C]//2016 IEEE International Symposium on Antennas and Propagation/USNC-URSI National Radio Science meeting. Fajardo, Puerto Rico: IEEE, 2016: 593-594.

[32] Akbari M., Farahani M., Sebak A. R., et al. A 30GHz high-gain circularly-polarized pattem-steerable antenna based on parasitic patches[C]//2017 11th European Conference on Antennas & Propagation (EUCAP). Paris: IEEE, 2017: 3044-3046.

[33] 严冬,程威,郭琪富, 等.一种适用于5G网络的宽带圆极化天线设计[J]. 电子元件与材料,2020,39(09):83-89.

[34] Li Y, Luk K M. A 60-GHz wideband circularly polarized aperture-coupled magneto-electric dipole antenna array[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(4): 1325-1333.

[35] Cheng Y, Dong Y. Wideband circularly polarized planar antenna array for 5G millimeter-wave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 69(5): 2615-2627.

[36] Liu C, Guo Y X, Bao X, et al. 60-GHz LTCC integrated circularly polarized helical antenna array[J]. IEEE Transactions on Antennas and Propagation, 2011, 60(3): 1329-1335.

[37] Chen Z, Tian J, Deng J Y, et al. Low-Profile Circularly Polarized Staircase Curl Antenna Array With 2: 1 Impedance and 50% AR Bandwidths for 5G mmW Communications[J]. IEEE Transactions on Antennas and Propagation, 2021, 70(4): 3082-3087.

[38] Deng C, Li Y, Zhang Z, et al. A Wideband Sequential-Phase Fed Circularly Polarized Patch Array[J]. IEEE Transactions on Antennas & Propagation, 2014, 62(7): 3890-3893.

[39] 李蕾,张舜,季红妍, 等.小型化双频圆极化天线设计[J].电子元件与材料,2022,41(12):1339-1345.

[40] 廖超,卢忠亮,彭强, 等.一种小型宽波束圆极化天线[J].电子元件与材料,2022,41(08):848-853.

[41] Mohammadi-Asl S, Nourinia J, Ch. G, et al. Targeting Wideband Circular Polarization: An Efficient 2×2 Sequentially-Phase-Fed Rotated Array Antenna[J]. Radio engineering, 2018, 27(1): 79-84.

[42] Wang, L, Zhu Z, En Y. Performance Enhancement of Broadband Circularly Polarized Slot-Microstrip Antenna Using Parasitic Elements[J]. IEEE Antennas and Wireless Propagation Letters, 2021. 20(12): 2255-2259.

[43] 李晨枫. Q波段圆极化平面天线阵列研究[D].东南大学,2019.

[44] Pandhare R A, Zade P L, Abegaonkar M P. Miniaturized microstrip antenna array using defected ground structure with enhanced performance[J]. Engineering Science and Technology, an International Journal, 2016, 19(3): 1360-1367.

[45] 郑庚琪,孙保华.新型宽带小型化微带天线[J].西安电子科技大学学报,2017,44(04):47-50+137.

[46] 侯翔宇,张兴红,曾凡峰, 等.基于分形结构的超宽带单陷波天线的设计[J].无线电工程,2021,51(11):1343-1349.

[47] 韩国栋,陈侃,袁家德.应用于北斗导航终端的小型圆极化微带天线[J].现代雷达,2017,39(12):64-66+77.

[48] 罗艺,柳志荣.小型圆极化天线的交叉极化抑制方法研究[J].电子学报,2021,49(12):2490-2496.

[49] 蔡敏康,卫雯洁,杜凡, 等.一种小型化缝隙加载圆极化微带贴片天线仿真[J].微波学报,2018,34(S1):228-230.

[50] Lei G, Jiang W, Chen Q, et al. Method to Estimate Antenna Mode Radar Cross Section of Large-Scale Array Antennas. IEEE Transactions on Antennas and Propagation, 2021. 69(10): 7029-7034.

[51] 李振亚,竺小松,张建华, 等.新型超宽带圆极化印刷天线[J].系统工程与电子技术,2019,41(01):9-13.

[52] 王树奇,张浩楠.基于环形极子的太赫兹超宽带圆极化阵列天线[J].半导体光电,2022,43(05):881-885.

中图分类号:

 TN821    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式