- 无标题文档
查看论文信息

论文中文题名:

 热辐射条件下煤体自燃特性研究    

姓名:

 李启鹏    

学号:

 18220214065    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 陈晓坤    

第一导师单位:

  西安科技大学    

第二导师姓名:

 张玉涛    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Study on spontaneous combustion characteristics of coal under thermal radiation    

论文中文关键词:

 热辐射 ; 煤自燃 ; 升温特性 ; 瓦斯燃烧 ; 临界条件    

论文外文关键词:

 Heat radiation ; Coal spontaneous combustion ; Temperature rise characteristics ; Methane Combustion ; Critical condition    

论文中文摘要:

煤炭开采过程中,煤自燃始终威胁着矿井的安全生产。随着矿井开采深度和强度的增加,在瓦斯存在的情况下,煤自燃所引发的灾害往往更为严重。在矿井火区中,燃烧的瓦斯很容易将煤引燃,热辐射作为瓦斯燃烧传递热量的主要形式,在很大程度上影响瓦斯燃烧引燃煤体的过程。因此,对热辐射引燃煤体特性和临界条件进行研究,有助于探明瓦斯燃烧引燃煤体的途径,在一定程度上降低煤矿井下煤自燃和瓦斯爆炸的危险,从而减少煤矿重特大事故的发生,保障煤矿安全生产。

本文设计并搭建了热辐射下煤样燃烧特性测试实验台,该实验台包含了热流控制系统、数据采集系统及样件处理装置。通过该实验台对三种热流强度下(11.52kW/m2、8.15kW/m2、5.68kW/m2)、两种不同距离(8cm、12cm)、四种不同粒径(30-60目、60-100目、100-120目、120-180目)的东滩气煤煤样进行热辐射特性测试,研究了不同辐射强度、不同辐射距离,不同粒径煤样对热辐射的响应机制,实现了辐射作用下煤体在氧化燃烧不同阶段表观形态的可视化呈现;测试了煤体氧化燃烧过程中特征温度、质量损失速率的变化特性,并对热辐射条件下煤体升温模型进行了验证。初步确定了煤体被辐射引燃的临界时空条件。

研究表明,热流强度、煤样粒径和火源与煤样之间的相对距离都是影响热辐射引燃煤体的重要因素,在热流强度稳定的情况下改变任何一种变量都可能直接影响煤样燃烧特性。本文根据煤样升温特性,将热辐射条件下煤样燃烧过程为空气域升温、煤体蓄热、煤体燃烧三个阶段,将煤样受热辐射过程中蓄热期和燃烧期的交叉点定为是否发生燃烧的着火点。研究发现,随着热流强度的提高,煤样在最高温度的停留时间变短,升温速率加快;同种热辐射条件下随着煤样粒径的减小,煤样升温速率逐渐升高,蓄热期时间变短,煤样表面干裂程度加剧,小粒径煤样对热辐射的吸收能力更强;辐射热源与煤样之间相对距离的减少会导致氧化燃烧更加剧烈,煤样在各个时期的时间明显缩短,失重速率整体升高且在峰值的持续时间变短。在两种相对距离下粒径为0.975mm的煤样在热流强度小于5.68kW/m2时不会发生自燃。根据热辐射特性测试结果,将热辐射条件下煤体燃烧结果划分成了引燃区和非引燃区,初步确定了热辐射引燃煤体的临界条件,本研究对瓦斯与煤自燃耦合致灾防控具有重要的理论和实际意义。

论文外文摘要:

In the process of coal mining, coal spontaneous combustion has always threatened the safety of mine production. As the mining depth and intensity of mines increase, the disasters caused by spontaneous combustion of coal are often more serious in the presence of gas. In the mine fire area, burning gas can easily ignite coal. Thermal radiation, as the main form of heat transfer in gas combustion, greatly affects the process of gas combustion and igniting coal.Therefore, research on the characteristics and critical conditions of thermal radiation ignited coal is helpful to explore the way of gas combustion ignited coal, to a certain extent, to reduce the risk of coal spontaneous combustion and gas explosion in underground coal mines, and to ensure safe production in coal mines.

This paper designs and builds an experimental platform for testing coal sample combustion characteristics under thermal radiation. The experimental platform includes a heat flow control system, a data acquisition system and a sample processing device.Through the experimental platform, under three heat flow intensities (11.52kW/m2, 8.15kW/m2, 5.68kW/m2) and two different distances (8cm, 12cm), four different particle sizes (30-60 , 60-100, 100-120, 120-180 mesh) the radiation characteristics of Dongtan gas coal samples. The response mechanism of coal samples with different radiation intensities, different radiation distances and different particle sizes to thermal radiation was studied. Visual representation of the apparent morphology of coal at different stages of oxidative combustion under the action of radiation.The change characteristics of characteristic temperature and mass loss rate in the process of coal oxidation and combustion were tested, and the coal heating model under thermal radiation conditions was verified. The critical time and space conditions for coal ignited by radiation have been preliminarily determined.

Studies have shown that the intensity of heat flow, the particle size of the coal sample and the relative distance between the fire source and the coal sample are all important factors that affect coal by thermal radiation. When the intensity of heat flow is stable, changing any variable may directly affect Combustion characteristics of coal samples.In this paper, based on the heating characteristics of coal samples, the coal sample combustion process under thermal radiation conditions is divided into three stages: air area heating, coal body heat storage, and coal combustion.The study found that as the heat flow intensity increases, the residence time of the coal sample at the highest temperature becomes shorter, and the heating rate increases; under the same thermal radiation condition, as the particle size of the coal sample decreases, the coal sample heating rate gradually increases, and The heat period becomes shorter, the surface of coal samples becomes more dry and cracked, and coal samples with small particle diameters have a stronger ability to absorb thermal radiation; the reduction of the relative distance between the radiant heat source and the coal sample will result in more intense oxidation and combustion. The time for the weight loss is significantly shortened, the overall weight loss rate increases and the duration at the peak becomes shorter.The coal sample with a particle size of 0.975mm at the two relative distances will not ignite spontaneously when the heat flow intensity is less than 5.68kW/m2. According to the test results of thermal radiation characteristics, the coal combustion results under thermal radiation conditions are divided into ignition zone and non-ignitable zone, and the critical conditions for thermal radiation to ignite coal are preliminarily determined. This study has a significant on the coupling of gas and coal spontaneous combustion. This research has important theoretical and practical significance for coal mine disaster prevention.

参考文献:

[1] 国家发展改革委, 国家能源局. 关于做好2020年能源安全保障工作的指导意见[EB/OL]. 国家发改委, 2020-06-12.

[2] 王德明.煤矿热动力灾害及特性[J]. 煤炭学报, 2018, 43( 1):137-142.

[3] 夏一帆, 杨瑶, 王高峰等. 甲烷/空气预混射流火焰的大涡模拟[J]. 燃烧科学与技术, 2017, 23(4):305-312.

[4] De Leo Maurizio, Saveliev Alexei, Kennedy Lawrence A et al. OH and CH luminescence in opposed flow methane oxy-flames[J]. Combustion and Flame, 2007, 149(4):435-447.

[5] 张婷, 郭庆华, 龚岩等. CH4/O2同轴射流扩散火焰辐射发光特性[J]. 燃烧科学与技术, 2012, 18(4):353-358.

[6] 吴辉霞, 刘玉英, 薛然然等. 湍流射流火焰热辐射影响的数值研究[J]. 工程热物理学报, 2010, 31(11):1961-1964.

[7] Lawal M S, Fairweather M, Ingham D B, et al. Numerical study of Emission Characteristics of a Jet Flame in Cross-Flow[J]. Combustion science and Technology, 2010, 182(10):1491-1510.

[8] Wang J W, Fang J, Lin S B, et al. Tilt angle of turbulent jet diffusion flame in crossflow and a global correlation with momentum flux ratio[J]. Proceedings of the Combustion Institute, 2016, 36(2):2979-2986.

[9] 周魁斌, 蒋军成, 李国宝. 管道压力对天然气射流火热辐射灾害的影响[J]. 安全与环境学报, 2016, 16(5):163-167.

[10] Yang M, He Y, Li H, et al. Combustion of Laminar Non-Premixed Acetylene Jet at Two Different Altitudes[J]. Combustion Science and Technology, 2012, 184(12):1950-1969.

[11] 杨立中, 周晓冬, 廖光煊等. 碳氢燃料泄漏火灾火焰热辐射强度估算[J]. 中国安全科学学报, 1999, 1:38-41.

[12] Tao C, Yan S, Zong R. Experimental determination of flame length of buoyancy-controlled turbulent jet diffusion flames from inclined nozzles[J]. Applied Thermal Engineering, 2016, 93(3):884-887.

[13] 常绪华, 王德明, 贾海林. 基于热重实验的煤自燃临界氧体积分数分析[J]. 中国矿业大学学报[J], 2012, 41(4):526-530.

[14] 邓军, 徐精彩, 李莉等. 煤的粒度与耗氧速度关系实验研究[J]. 西安交通大学学报, 1999, 23(12):106-107.

[15] 文虎, 徐精彩, 李莉等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003, (4):370-374.

[16] 郭兴明, 徐精彩, 惠世恩. 煤自燃过程中极限参数的研究[J]. 西安交通大学学报, 2001, 7:682-686.

[17] 王建利. 氧气浓度对煤氧化特性及自燃极限参数影响的实验研究[J]. 陕西煤炭, 2019, 38(1):9-13. NSFC 2019

[18] Jones, J. C. Indirect evidence of relatively high thermal conductivities in powdered activated carbons [J]. Fuel, 1998, 77(14):1679–1681.

[19] Jones, J. C. and Puignou, A. On the thermal ignition of wood waste [J]. Trans IChem E, Part B, Proc safe Env Prot, 1998, 76(B3):205 – 210.

[20] J.C. Jones, s.C. Newman. Non-Arrhenius behaviour in the oxidation of two carbonaceous substrates [J]. Journal of Loss Prevention in the Process Industries, 2003, 16:223–225.

[21] D.R. Morrison and R.A. Ogle. Further application of the semenov model to evaluate the possibility of spontaneous combustion in tumble dryers [J]. Journal of Fire sciences, 2008, 26:173-190.

[22] 朱红青, 王海燕, 胡瑞丽等. 煤自燃低温氧化临界温度指标及其关联性分析[J]. 煤炭科学技术, 2013, 41(8):61-64.

[23] 肖旸, 王振平, 马砺等. 煤自燃指标气体与特征温度的对应关系研究[J]. 煤炭科学技术, 2008(6):47-51.

[24] 郑兰芳, 邓军. 不同温度阶段煤自燃的实验研究[J], 武警学院学报, 2010, 26(4), 16-18.

[25] 仲晓星, 王德明, 尹晓丹. 基于程序升温的煤自燃临界温度测试方法[J]. 煤炭学报, 2010, 35(s1):128-131.

[26] 舒新前. 煤炭自燃的热分析研究[J]. 中国煤田地质, 1994, 6(2):25-29.

[27] 戴广龙. 煤低温氧化过程气体产物变化规律研究[J]. 煤矿安全, 2007, 38(1):1-4.

[28] 戴广龙. 煤低温氧化及自燃特性的综合实验研究[D]. 徐州:中国矿业大学, 2005.

[29] Krishnaswamy, s. et al.. Low-temperature oxidation of coal. 1. A single-particle reaction-diffusion model [J]. Fuel, 1996, 75:333-343.

[30] Krishnaswamy, s. et al.. Low-temperature oxidation of coal. 2. An experimental and modeling investigation using a fixed-bed isothermal flow reactor [J]. Fuel, 1996, 75:344-352.

[31] Krishnaswamy, S. et al.. Low-temperature oxidation of coal. 3. Modelling spontaneous combustion of coal stockpiles [J]. Fuel, 1996, 75:353-362.

[32] Li Y, X Shi, Zhang Y, et al. Numerical investigation on the gas and temperature evolutions during the spontaneous combustion of coal in a large-scale furnace[J]. Fuel, 2020.

[33] 中国国家标准. 煤的着火温度测定方法. GB/T 18511-2017, 2017.

[34] Zhang B, Fu P, Liu Y, et al. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion [J]. Applied Thermal Engineering 2017, 113:1303-1312.

[35] 喻秋梅, 庞亚军, 陈宏国. 煤燃烧试验中着火点确定方法的探讨[J]. 华北电力技术, 2001, 7:9-10.

[36] Chen Y, Mori s, Pan WP. studying the mechanisms of ignition of coal particles by TG-DTA[J]. Thermochim Acta, 1996, 275:149-58.

[37] Wang C, Wang F, Yang Q, Liang R. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion[J]. Biomass and Bioenergy, 2009, 1:50-56.

[38] Zhang Y T, Liu Y R, Shi X Q, et al. Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature. Fuel, 2018, 233:68-76.

[39] Simms, D.L, Ignition of cellulosic materials by radiation, Combustion and Flame, 1960. 4: p. 293-300.

[40] Babrauskas, V, Charring rate of wood as a tool for fire investigations, Fire Safety Journal, 2005. 40(6): p. 528-554.

[41] Rich, D, Lautenberger, C, Fernandez-Pello, C. Mass flux of combustible solids at piloted ignition, Proceedings of the Combustion Institute, 2007. 31(2): p. 2653-2660.

[42] Martin, S.B, Diffusion-controlled ignition of cellulosic materials by intense radiant energy, 10th Symposium (International) on Combustion, Combustion Institute, Pittsburgh, PA, 1965, p:877.

[43] Babrauskas, V, Ignition of Wood: A Review of the State of the Art. Journal of Fire Protection Engineering, 2002. 12(3): 163-189.

[44] Cheng X.D, Stott A. Oxidation rate of coals as measure from one-dimensional spontaneous heating[J]. Combustion and Flame, 1997, 109:578-586.

[45] Basil Beamish, John Phillips, Mick Brown, et al. Application of bulk coal self-heating tests to longwall operat ions[C]. 2003 Coal Operators’ Conference, 2003(2):246-253.

[46] Zhang D, Yang X, Deng J, et al. Research on coal spontaneous combustion period based on pure oxygen adiabatic oxidation experiment[J]. Fuel, 2020, 288:119651.

[47] 岳超平, 煤层自然发火潜伏期的实验研究[J]. 矿业安全与环保, 2006(6):18-19, 21, 96.

[48] 许涛, 王德明, 雷丹等. 基于 CO 浓度的煤低温氧化动力学试验研究[J]. 煤炭科学技术, 2012, 40(3):53-55.

[49] Green U, Aizenshtat Z, Hower J C, et al. Modes of formation of carbon oxides(COx(X=1, 2))from coals during atmospheric storage:Part 2:effect of coal rank on the kinetics[J]. Energy and Fuels, 2011, 25:5625-5631.

[50] 徐精彩, 薛韩玲, 文虎等.煤氧复合热效应的影响因素分析[J]. 中国安全科学学报, 2001, 2:34-39.

[51] 文虎, 徐精彩, 李莉等. 煤自燃的热量积聚过程及影响因素分析[J]. 煤炭学报, 2003, 28(4):370-374.

[52] 文虎, 陆彦博, 刘文勇. 利用热重法研究不同氧浓度对煤自燃特性的影响[J]. 矿业安全与环保, 2021, 48(01).

[53] Jones J C, Newman s C. Non-Arrhenius behaviour in the oxidation of two carbonaceous substrates[J]. Loss Prevent Process Ind, 2003, 16:223-225.

[54] Qin M. Research on the law and characteristics of gas products during coal heating and oxidation[J]. IOP Conference Series Earth and Environmental Science, 2021, 651(3):032006.

[55] Yong S, Wang S, Lu W, et al. Coal spontaneous combustion characteristics based on constant temperature difference guidance method[J]. Process Safety and Environmental Protection, 2019, 131:223-234.

[56] Experimental study on thermal effect and gas release laws of coal-polyurethane cooperative spontaneous combustion[J]. Scientific Reports, 2021, 11(1):1994.

[57] 张玉贵, 唐修义, 何萍. 煤的分子结构与煤的自燃倾向性[J]. 煤矿安全, 1992, 5:1-4. NsFC 2019

[58] 位爱竹, 李增华, 杨永良. 破碎、氧化和光照对煤中自由基的影响分析[J]. 湖南科技大学学报(自然科学版), 2006, 4:19-22.

[59] 张永利, 马凯, 马玉林. 红外作用下煤对 CO2吸附/解吸能量变化规律[J]. 非金属矿, 2018, 41(5):83-85.

[60] 葛立超, 张彦威, 王智化等. 微波处理对我国典型褐煤气化特性的影响[J]. 浙江大学学报(工学版), 2014, 48(4):653-659.

[61] 何学秋, 宋大钊, 柳先锋, 等. 不同变质程度煤岩微表面电性特征[J]. 煤炭学报, 2018, 43(09):5-13.

[62] Ge L, Zhang Y, Wang Z et al. Effects of microwave irradiation treatment on physicochemical characteristics of Chinese low-rank coals[J]. Energy Conversion and Management, 2013, 71:84-91.

[63] 李宗翔. 高瓦斯易自燃采空区瓦斯与自燃耦合研究[D]. 葫芦岛: 辽宁工程技术大学, 2007.

[64] 侯浩然. 微波辐射下煤体的热效应及热力学响应特征[D]. 徐州: 中国矿业大学, 2020.

[65] 孔彪. 煤岩燃烧及受热过程的电磁辐射效应研究[D]. 徐州: 中国矿业大学, 2018.

[66] 李贺. 微波辐射下煤体热力响应及其流-固耦合机制研究[D]. 徐州: 中国矿业大学, 2018.

[67] 李贺, 林柏泉, 洪溢都, 等. 微波辐射下煤体孔裂隙结构演化特性[J]. 中国矿业大学学报, 2017(06):1194-1201.

[68] 马立强, 张垚, 孙海, 等. 煤岩破裂过程中应力对红外辐射的控制效应试验[J]. 煤炭学报, 2017, 42(001):140-147.

[69] 马尚权, 付京. 电磁辐射作用下煤中自由基影响瓦斯突出的研究[J]. 华北科技学院学报, 2014(1):1-4.

[70] Rong L, song B, Yin W et al. Drying behaviors of low-rank coal under negative pressure:Kinetics and model[J]. Drying Technology, 2016, 35(2):173-181.

[71] Zhu J F, Liu J Z, Wu J H et al. Thin-layer drying characteristics and modeling of Ximeng lignite under microwave irradiation[J]. Fuel Processing Technology, 2015, 130:62-70.

[72] 李青蔚. 煤贫氧氧化热动力过程基础研究[D]. 西安: 西安科技大学, 2018.

[73] 王亚飞. 热解气体流动特性对炭化可燃物热解着火特性影响规律研究[D]. 合肥: 中国科学技术大学, 2011.

中图分类号:

 TD752.2    

开放日期:

 2021-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式