- 无标题文档
查看论文信息

论文中文题名:

 基于非线性动力学的谣言传播及控制策略研究    

姓名:

 卢思    

学号:

 19208208044    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085212    

学科名称:

 工学 - 工程 - 软件工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 软件工程    

研究方向:

 非线性动力学理论和应用    

第一导师姓名:

 于振华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-07    

论文外文题名:

 Rumor propagation and control strategy based on nonlinear dynamics    

论文中文关键词:

 谣言传播 ; 传播动力学 ; 参数估计 ; 控制策略 ; 最优控制    

论文外文关键词:

 Rumor propagation ; Propagation dynamics ; Parameter estimation ; Control strategy ; Optimal control      

论文中文摘要:

随着互联网技术的发展和在线社交媒体的出现,谣言的传播方式变得更复杂,传播速度更迅速,影响范围更广,造成的社会危害更严重。我们亟需了解谣言传播规律,抑制谣言传播,从而降低谣言传播带来的损失。因此,研究谣言传播模型、揭示谣言传播机理,并在此基础上提出有效的控制策略,具有重要的现实意义。目前,针对社交网络谣言传播建模和控制的研究还存在着一些不足;在建模和分析方面,没有考虑只讨论谣言话题的人群对谣言传播的影响,并且没有使用真实数据集验证模型的有效性。在控制谣言传播方面,大多使用单一的控制策略,没有考虑控制策略的成本问题。针对上述问题,本文致力于社交网络谣言传播建模和控制研究,主要研究内容和创新点如下:

(1) 社交网络谣言传播建模和分析。本文提出一种考虑讨论者的谣言传播模型,将总人口划分为四类:未知者、讨论者、传播者和免疫者。通过计算模型的平衡点和基本再生数,分析平衡点的局部和全局渐进稳定性、跨临界分岔现象,揭示谣言传播机理。利用数值仿真验证上述理论分析的正确性。通过与现有模型对比,仿真结果表明讨论者对谣言传播有重要影响。在真实数据集的基础上,使用最小二乘拟合方法估计模型的参数,并根据拟合得到的参数值预测谣言传播趋势,从而对模型进行验证。仿真结果表明,该模型的拟合优度R2值为0.9544,说明该模型能够准确模拟真实社交网络中的谣言传播。 

(2) 谣言传播控制策略研究。在所建模型的基础上,提出一种结合保护策略和阻断策略的谣言混合控制策略,并进行动力学行为分析。利用实际数据集,预测谣言传播者和真相传播者在真实社交网络上的传播趋势。与无控制策略、单一保护策略、单一阻断策略比较,数值仿真结果表明混合控制策略的有效性。为了能最大限度地控制谣言传播,并且使其控制成本最小化,提出混合控制策略的最优控制方案。使用庞特里亚金极小值原理,证明最优控制的存在性,并得到最优控制系统。实验结果表明最优控制的成本相比于混合控制策略、单一保护策略、单一阻断策略是最低的,并能最小化谣言传播者密度。

论文外文摘要:

With the development of Internet technology and the emergence of online social media, the ways of rumor propagation become more complex, the propagation speed is more rapid, and the range of influence become more wider, which cause more serious social harm. We are urgently required to understand the rule of rumor propagation, restrain the spread of rumor, thereby reducing the loss caused by rumor propagation. Therefore, it is of great practical significance to study rumor propagation model, reveal rumor propagation mechanisms, and propose effective control strategies to restrain rumor propagation. Until now, there are still some deficiencies in researching on the modeling and controlling of rumor propagation in social networks. In the aspects of modeling and analysis of rumor propagation, current studies are presented without considering the influence of the people who just discuss rumor topics and without using real datasets to verify the validity of the proposed model; while as for the aspects of controlling rumor propagation, most researches use a single control strategy but the cost of the control strategy is not taken into account. To address the above issues, this thesis aims to conduct research on modeling and controlling of rumor propagation. The specific research contents and innovations of this thesis are as follows.

(1) Modeling and analysis of rumor propagation in social networks. This thesis proposes a rumor propagation model that considers the influence of discussants, which divides the entire population into four categories: ignorances, discussants, spreaders and removers. By calculating equilibria and the basic regeneration number of the model, and analyzing the local and global asymptotic stability of equilibria and the transcritical bifurcation phenomenon, the rumor propagation mechanism is revealed. The correctness of the above theoretical analysis is verified by carrying out numerical simulation experiments. By comparing with the existing models, the results show that discussants have an important influence on the spread of rumor. Based on a real dataset, the least square fitting method is used to estimate all the parameters of the model, and the parameter values obtained by the fitting method can be used to predict the rumor propagation trend, thus the model can be verified. The simulation results show that the value of the goodness-of-fit R2 of the model is 0.9544, which indicates that the model can accurately simulate the rumor propagation in real social networks.

(2) Research on rumor propagation control strategy. On a basis of the proposed model, a rumor hybrid control strategy that combines protection and blocking strategies is proposed, and the dynamic behaviors of the proposed strategy are analyzed. A real dataset is used to predict the propagation trend of rumor spreaders and truth spreaders in real social networks. The effectiveness of the hybrid control strategy is illustrated by comparing with the following cases namely without control strategy, a single protection strategy, and a single blocking strategy. In order to achieve best control of the rumor propagation with lowest cost, an optimal control scheme of the hybrid control strategy is proposed. Using the Pontryagin’s minimum principle, the existence of the optimal control is proved and the optimal control system is obtained. The experimental results illustrate that the cost of the optimal control is the lowest by comparing with the cost of the hybrid control strategy, the single protection strategy, and the single blocking strategy, and minimize the density of rumor spreaders.

参考文献:

[1]罗军舟, 吴文甲, 杨明. 移动互联网: 终端、网络与服务[J]. 计算机学报, 2011, 34(11): 2029-2051.

[2] 中国互联网络信息中心. 第49次中国互联网络发展状况统计报告[EB/OL]. http://www.cnnic.net.cn/gywm/xwzx/rdxw/20172017_7086/202202/t20220225_71724.htm. 2022-02-25.

[3] Sahafizadeh E, Ladani B T. The impact of group propagation on rumor spreading in mobile social networks[J]. Physica A: Statistical Mechanics and its Applications, 2018, 506: 412-423.

[4] Bordia P, Rosnow R L. Rumor rest stops on the information highway transmission patterns in a computer-mediated rumor chain[J]. Human Communication Research, 2010, 25(2): 163-179.

[5] 陈燕方, 李志宇, 梁循, 齐金山. 在线社会网络谣言检测综述[J]. 计算机学报, 2018, 41(7): 1648-1677.

[6] 泮诚. 网络谣言传播的建模与分析[D]. 重庆: 重庆大学, 2019.

[7] 崔景安, 吕金隆, 郭松柏, 陈田木. 新发传染病动力学模型—应用于2019新冠肺炎传播分析[J]. 应用数学学报, 2020, 43(2): 147-155.

[8] Tang W, Liu Y J, Chen Y L, Yang Y X, Niu X X. SLBRS: network virus propagation model based on safety entropy[J]. Applied Soft Computing, 2020, 97: 106784.

[9] 鲜佳君. 复杂网络上的信息传播及其干预策略研究[D]. 成都: 电子科技大学, 2020.

[10]Yu Z H, Ouyang J, Li S S, Peng X. Formal modeling and control of cyber–physical manufacturing systems[J]. Advances in Mechanical Engineering, 2017, 9(10): 1-12.

[11]Bhih A E, Ghazzali R, Rhila S B, Rachik M, Laarroussi A E A. A discrete mathematical modeling and optimal control of the rumor propagation in online social network[J]. Discrete Dynamics in Nature and Society, 2020, 2020: 4386476.

[12]Daley D J, Kendall D G. Stochastic rumours[J]. Ima Journal of Applied Mathematics, 1965, 1: 42-55.

[13]Maki D P, Thompson M. Mathematical models and applications: with emphasis on social, life, and management sciences[M]. Englewood Cliff New Jersey: Prentice–Hall, 1973.

[14]Zhu L H, Huang X Y. SIS model of rumor spreading in social network with time delay and nonlinear functions[J]. Communications in Theoretical Physic, 2020, 72(2020): 015002.

[15]Sun H, Sheng Y H, Cui Q. An uncertain SIR rumor spreading model[J]. Advances in Difference Equations, 2021, 2021(1): 1-22.

[16]Escalante R, Odehnal M. A deterministic mathematical model for the spread of two rumors[J]. Afrika Matematika, 2020, 31: 315-331.

[17]Wang J, Zhao L, Huang R. 2SI2R rumor spreading model in homogeneous networks[J]. Physica A: Statistical Mechanics and its Applications, 2014, 413: 153-161.

[18]陈安, 王子君, 陈樱花. 基于SEIR模型视角的重大公共卫生事件中伪科学网络谣言的传播治理: 以新冠肺炎疫情为例[J]. 科技导报, 2020, 38(4): 55-65.

[19]Zan Y L. DSIR double-rumors spreading model in complex networks[J]. Chaos Solitons and Fractals, 2018, 110: 191-202.

[20]Zhang Y, Zhang J. Dynamic behavior of an I2S2R rumor propagation model on weighted contract networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 536: 120981.

[21]Wang Z, Liang J, Nie H, Zhao H. A 3SI3R model for the propagation of two rumors with mutual promotion[J]. Advances in Difference Equations, 2020, 2020(1): 1-19.

[22]Zanette D H. Criticality behavior of propagation on small-world networks[J]. Physical Review E, 2001, 64: 050901.

[23]Zanette D H. Dynamics of rumor propagation on small-world networks[J]. Physical Review E, 2002, 65: 041908.

[24]Ai S, Hong S, Zheng X, Wang Y, Liu X. CSRT rumor spreading model based on complex network[J]. International Journal of Intelligent Systems, 2021, 2021: 1-11.

[25]Yang A, Huang X, Cai X, Zhu X, Lu L. ILSR rumor spreading model with degree in complex network[J]. Physica A: Statistical Mechanics and its Applications, 2019, 531: 121807.

[26]Liu X, Li T, Tian M. Rumor spreading of a SEIR model in complex social networks with hesitating mechanism[J]. Advances in Difference Equations, 2018, 391: 1-24.

[27]Xia L L, Jiang G P, Song B, Song Y R. Rumor spreading model considering hesitating mechanism in complex social networks[J]. Physica A: Statistical Mechanics and its Applications, 2015, 437: 295-303.

[28]Yao H, Gao X. SE2IR invest market rumor spreading model considering hesitating mechanism[J]. Journal of Systems Science and Information, 2019, 7(1): 54-69.

[29]Chen X L, Wang N. Rumor spreading model considering rumor credibility, correlation and crowd classification based on personality[J]. Scientific Reports, 2020, 10: 5887.

[30]Yu S Z, Yu Z Y, Jiang H J, Yang S. The dynamics and control of 2I2SR rumor spreading models in multilingual online social networks[J]. Information Sciences, 2021, 581: 18-41.

[31]Jiang M, Gao Q, Zhuang J. Reciprocal spreading and debunking processes of online misinformation: A new rumor spreading-debunking model with a case study[J]. Physica A: Statistical Mechanics and its Applications, 2021, 565: 125572.

[32]Jia J W, Wu W J. A rumor transmission model with incubation in social networks[J]. Physica A: Statistical Mechanics and its Applications, 2017, 491: 453-462.

[33]Jia P, Wang C, Zhang G, Ma J. A rumor spreading model based on two propagation channels in social networks[J]. Physica A: Statistical Mechanics and its Applications, 2019, 524: 342-353.

[34]Zhu L, Liu W, Zhang Z. Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function[J]. Applied Mathematics and Computation, 2020, 370: 124925.

[35]Zhu L, Wang B. Stability analysis of a SAIR rumor spreading model with control strategies in online social networks[J]. Information Sciences, 2020, 526: 1-19.

[36]Zhu L H, Wang X W, Zhang Z D, Lei C X. Spatial dynamics and optimization method for a rumor propagation model in both homogeneous and heterogeneous environment[J]. Nonlinear Dynamics, 2021, 105(4): 3791-3817.

[37]Wang J L, Jiang H J, Hu C, Yu Z Y, Li J R. Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism[J]. Chaos, Solitons and Fractals, 2021, 153(2): 111464.

[38]朱霖河, 李玲. 基于辟谣机制的时滞谣言传播模型的动力学分析[J]. 物理学报, 2020, 69(2): 67-77.

[39]Wang J, Li M, Wang Y Q, Zhou Z C, Zhang L Q. The influence of oblivion-recall mechanism and loss-interest mechanism on the spread of rumors in complex networks[J]. International Journal of Modern Physics C, 2019, 30(9): 1-21.

[40]Li R, Li Y, Meng Z, Song Y, Jiang G. Rumor spreading model considering individual activity and refutation mechanism simultaneously[J]. IEEE Access, 2020, 8(99): 63065-63076.

[41]Peng H, Yang X. A novel node–level rumor propagation model with recommendation mechanism[C]//2019 IEEE 13th International Conference on Anti–counterfeiting, Security, and Identification(ASID). 2019: 61-64.

[42]王佳佳, 赵来军, 邱小燕. 教育策略和免疫策略对网络谣言传播的影响研究[J]. 情报杂志, 2018, 37(8): 97-106.

[43]黄海阳, 吴尤可. 新媒体环境下突发公共卫生事件的谣言管控研究[J]. 情报科学, 2020, 38(8): 95-102.

[44]Qiu L, Jia W, Niu W, Zhang M, Liu S. SIR–IM: SIR rumor spreading model with influence mechanism in social networks[J]. Soft Computing, 2020, 2: 1-10.

[45]Huo L, Chen S. Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network[J]. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125063.

[46]Liu Y, Zeng C, Luo Y. Steady–state analysis of SECIR rumor spreading model in complex networks[J]. Applied Mathematics, 2019, 10: 75-86.

[47]张志花, 夏志杰, 葛涛, 薛传业. 基于唤醒机制的微博谣言传播模型[J]. 现代情报, 2015, 35(3): 28-33.

[48]潘灶烽, 汪小帆, 李翔. 可变聚类系数无标度网络上的谣言传播仿真研究[J]. 系统仿真学报, 2006, 18(8): 2346-2348.

[49]Li W D, Guo T Y, Wang Y M, Chen B. DR-SCIR public opinion propagation model with direct immunity and social reinforcement effect[J]. Symmetry, 2020, 12(4): 1-18.

[50]Shang R, Zhang W, Jiao L, Zhang X, Stolkin R. Dynamic immunization node model for complex networks based on community structure and threshold[J]. IEEE Transactions on Cybernetics, 2020, 99: 1-14.

[51] Lin Y G, Cai Z P, Wang X M, Hao F. Incentive mechanisms for crowdblocking rumors in mobile social networks[J]. IEEE Transactions on Vehicular Technology, 2019, 68(9): 9220-9232.

[52]Manouchehri M A, Helfroush M S, Danyali H. A theoretically guaranteed approach to efficiently block the influence of misinformation in social networks[J]. IEEE Transactions on Computational Social Systems, 2021, 8(3): 716-727.

[53]瞿倩倩, 韩华, 吕亚楠, 贾承丰, 马媛媛. 基于社交网络结构特征的S2IR谣言传播模型[J]. 复杂系统与复杂性科学, 2019, 16(3): 48-59.

[54]Zhu L, Zhou M, Zhang Z. Dynamical analysis and control strategies of rumor spreading models in both homogeneous and heterogeneous networks[J]. Journal of Nonlinear Science, 2020, 2020: 1-32.

[55]马颖萍. 社团层面上的谣言局域目标免疫策略研究[D]. 西安: 西安理工大学, 2017.

[56]Pan C, Yang L X, Yang X F, Wu Y B, Tang Y Y. An effective rumor-containing strategy[J]. Physica A: Statistical Mechanics and its Applications, 2018, 500: 80-91.

[57]Yang L, Li Z W, Giua A. Containment of rumor spread in complex social networks[J]. Information Sciences, 2020, 506: 113-130.

[58]Liu Y J, Zeng C M, Luo Y Q. Dynamics of a new rumor propagation model with the spread of truth[J]. Applied Mathematics, 2018, 9: 536-549.

[59]Yang L X, Li P, Yang X, Wu Y, Tang Y Y. Analysis of the effectiveness of the truth-spreading strategy for inhibiting rumors[J/OL]. https://arxiv.org/abs/1705.06604v1. 2017.

[60]Xiong F, Li Z Y. Effective methods of restraining diffusion in terms of epidemic dynamics[J]. Scientific Reports, 2017, 7(1): 6013.

[61]万贻平, 张东戈, 任清辉. 考虑谣言清除过程的网络谣言传播与抑制[J]. 物理学报, 2015, 64(24): 240501.

[62]Chen S, Jiang H, Li L, Li J. Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks[J]. Chaos Solitons and Fractals, 2020, 140: 110206.

[63]Jain A, Dhar J, Gupta V K. Optimal control of rumor spreading model on homogeneous social network with consideration of influence delay of thinkers[J]. Differential Equations and Dynamical Systems, 2019, 1: 1-22.

[64]Ding L, Hu P, Guan Z H, Li T. An efficient hybrid control strategy for restraining rumor spreading[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 51(11): 6779-6791.

[65]Cheng Y Y, Huo L A, Zhao L J. Dynamical behaviors and control measures of rumor-spreading model in consideration of the infected media and time delay[J]. Information Sciences, 2021, 564(3): 237-253.

[66]Li T, Guo Y. Nonlinear dynamical analysis and optimal control strategies for a new rumor spreading model with comprehensive interventions[J]. Qualitative Theory of Dynamical Systems, 2021, 20(84): 1-24.

[67]赵娟. 基于最优控制方法的两种传播行为研究[D]. 重庆: 重庆大学, 2019.

[68]Driessche P V D, Watmough J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J]. Mathematical Biosciences, 2002, 180(1-2): 29-48.

[69]Wolf A, Swift J B, Swinney H L, Vastano J A. Determining Lyapunov exponents from a time series[J]. Physica D: Nonlinear Phenomena, 1985, 16(3): 285-317.

[70]DeJesus E X, Kaufman C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations[J]. Physical Review A, 1987, 35(12): 5288-5290.

[71]Castillo-Chavez C, Song B J. Dynamical models of tuberculosis and their applications[J]. Mathematical Biosciences and Engineering Mbe, 2004, 1(2): 361-404.

[72]Fleming W H, Rishel R W. Deterministic and stochastic optimal control[M]. New York: Springer Science and Business Media, 2012.

[73]Bodaghi A. Newly emerged rumors in twitter[DB/OL]. https://zenodo.org/record/2563 864#.YjWQj49Bx1c. 2019-2-13.

[74]Shampine L F, Kierzenka J. Solving boundary value problems for ordinary dierential equations in Matlab with bvp4c[J/OL]. ftp://ftp.mathworks.com/pub/doc/papers/bvp. 2000.

中图分类号:

 TP391.9    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式