论文中文题名: | 富油煤焦油产率的地球物理参数响应及机理 |
姓名: | |
学号: | 21209226068 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 富油煤地质与开发 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-19 |
论文答辩日期: | 2024-06-02 |
论文外文题名: | Response of geophysical parameters of tar yield in tar-rich coal and its mechanism |
论文中文关键词: | |
论文外文关键词: | Tar-rich coal ; tar yield ; geophysics ; logging ; molecular structure. |
论文中文摘要: |
富油煤作为一种煤基油气资源,广泛分布于我国西北部,对确保国内油气供给安全、提高煤炭综合利用效能具有巨大潜力。由于早期的勘探资料中富油煤的唯一指标焦油产率数据极为有限,无法满足目前对富油煤精细评价的需求。地球物理参数在评价煤的物理化学特性方面展现出优势,但对煤焦油产率的响应研究仍显不足,且响应机理尚不明确。本文以鄂尔多斯盆地延安组、太原组以及三塘湖盆地八道湾组煤为主要研究对象,基于室内实验开展煤焦油产率的地球物理性质响应研究,并结合红外光谱、X-射线衍射等方法揭示其内在响应机理。 研究发现:(1)具有高焦油产率的富油煤表现为低密度、高电阻率、低纵横波速度以及低自然伽马的特点;富油煤的地球物理参数分布区间为:真密度小于1.40 g/cm3,电阻率值大于14000 Ω/m,纵波速度小于1900 m/s,自然伽马值小于40 API。(2)基于体积模型法和多元线性回归法分别对焦油产率进行预测,其中多元线性回归法的地球物理四参数(DEN、RT、Vp、GR)预测模型效果最好,但煤体的各向异性对上述模型预测焦油产率具有影响。(3)孔隙水对煤焦油产率的地球物理参数响应敏感性具有显著干扰,根据密度测井原理计算出煤骨架密度进而建立与焦油产率关系可以提高判识精度。纵横波速、电阻率虽在一定程度上仍能对饱和水状态煤焦油产率有所响应,但预测精度较低、适用性差。核磁共振T1-T2谱能够排除孔隙水干扰,对不同焦油产率煤具有良好的信号强度响应差异。(4)上述富油煤的地球物理性质是有机质与无机矿物的共同表现,有机组分是影响煤焦油产率的主要控制因素,灰分对于焦油产率的负向影响较小,真密度与之相反;含钙镁的矿物对真密度的正向影响最为显著,也对焦油产率产生了最大的负向影响;脂肪族官能团(特别是桥键)越多,会导致芳香层间距变宽,进而使得大分子结构的层排列较为疏松,煤的含油性越高,干燥无灰基真密度越低。(5)采用多元线性回归法和人工神经网络法对煤焦油产率进行预测,最佳拟合系数分别可达0.884和0.8986。 |
论文外文摘要: |
As a kind of coal-based oil and gas resources, tar-rich coal is widely distributed in the northwestern part of China, which has great potential to ensure the security of domestic oil and gas supply and improve the comprehensive utilization efficiency of coal. Since the tar yield data, the only indicator of tar-rich coal in the early exploration data, are extremely limited, they cannot meet the current demand for fine evaluation of tar-rich coal. Geophysical parameters show advantages in evaluating the physicochemical properties of coal, but the response study of coal tar yield is still insufficient, and the response mechanism is not clear. In this paper, we take the coals of Yan'an Formation and Taiyuan Formation in the Ordos Basin and Badawan Formation in the Santanghu Basin as the main research objects, and carry out the geophysical property response study of coal tar yield based on indoor experiments, and reveal the intrinsic response mechanism by combining infrared spectroscopy, X-ray diffraction and other methods. It is found that: (1) the tar-rich coal with high tar yield is characterized by low density, high resistivity, low longitudinal and transverse wave velocity, and low natural gamma; the geophysical parameters of the tar-rich coal are distributed as follows: the true density is less than 1.40 g/cm3, the resistivity value is more than 14,000 Ω/m, the longitudinal wave velocity is less than 1,900 m/s, and the natural gamma value is less than 40 API. (2) The prediction of tar yield was performed by the volumetric modeling method and the multiple linear regression method were used to predict the tar yield respectively, in which the geophysical four-parameter (DEN, RT, Vp, GR) prediction model of the multiple linear regression method was the most effective, but the anisotropy of the coal body had an effect on the prediction of tar yield by the above model.(3) Pore water significantly interferes with the sensitivity of geophysical parameter response to coal tar yield, and the relationship between coal skeleton density and tar yield can be improved by calculating coal skeleton density according to the principle of density logging. Although the longitudinal and transverse wave velocity and resistivity can still respond to the saturated water state coal tar yield to a certain extent, the prediction accuracy is low and the applicability is poor. The NMR T1-T2 spectra can exclude the interference of pore water, and have good signal intensity response differences for coals with different tar yield. (4) The geophysical properties of the above tar-rich coals are a combination of organic matter and inorganic minerals; the organic fraction is the main controlling factor affecting the coal tar yield; the ash fraction has a smaller negative effect on the tar yield, and the true density is opposite to it; minerals containing calcium and magnesium have the most significant positive effect on the true density, and also have the largest negative effect on the tar yield; the more aliphatic functional groups (especially the bridge bonds) will lead to the the wider spacing of aromatic layers, which in turn makes the layer arrangement of macromolecular structure more loose; the higher the oil content of coal, the lower the true density of dry ash-free base. (5) The multiple linear regression method and artificial neural network method were used to predict the coal tar yield, and the best fitting coefficients were up to 0.884 and 0.8986, respectively. |
参考文献: |
[1]田倩茹.我国能源对外依存度现状分析及对策研究[J].行政事业资产与财务,2020(12):33-34. [2]樊大磊,王宗礼,李剑等.2023年国内外油气资源形势分析及展望[J].中国矿业,2024,33(01):30-37. [3]王双明.对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭,2020,46(2):11−16. [4]马丽,王双明,段中会,等.陕西省富油煤资源潜力及开发建议[J].煤田地质与勘探,2022,50(2):1−8. [5]谢克昌.“十四五”期间现代煤化工发展的几点思考 [J]. 煤炭经济研究, 2020, 40(5): 1. [6]朱妍.中国工程院院士王双明: “煤炭兜底”与“绿色低碳”并行不悖[N].中国能源报,2021-07-16(01). [7]矿产资源工业要求手册编委会.矿产资源工业要求手册(2014修订版)[M].北京:地质出版社,2014. [8]杨珺茹,刘之的,雷琦,等.韩城矿区煤岩显微组分测井预测[J].科学技术与工程,2020,20( 23) : 9293-9301 [9]屈乐,李新,章海宁,等.煤岩储层煤阶类型的测井识别方法研究[J].云南化工,2020.9. [11]王双明,师庆民,王生全,等.富油煤的油气资源属性与绿色低碳开发[J].煤炭学报,2021,46(05):1365-1377. [12]汪寅人,刘品双,陈文敏,等.我国若干褐煤及烟煤的化学组成与低温焦油产率的关系[J].燃料学报,1958,3(1):35-41. [13]张军,袁建伟,徐益谦,等.矿物质对煤粉热解的影响[J].燃烧科学与技术,1998,4(1):66-71. [14]谢青,李宁,姚征,等.黄陵矿区富油煤焦油产率特征及主控地质因素分析[J].中国煤炭,2020,46(11):83-90. [15]王锐,夏玉成,马丽,等.榆神矿区富油煤赋存特征及其沉积环境研究[J].煤炭科学技术,2020,48(12):192-197. [16]张宁,许云,乔军伟,等.陕北侏罗纪富油煤有机地球化学特征[J/OL].煤田地质与勘探. [17]师庆民,王双明,等.神府南部延安组富油煤多源判识规律[J].煤炭学报,2022,47(05):2057-2066. [18]杨甫,段中会,马丽,等.陕西省富油煤分布及受控地质因素[J/OL].煤炭科学技术:1-14[2022-03-07]. [19]许婷,李宁,姚征,等.陕北榆神矿区富油煤分布规律及控制因素[J/OL].煤炭科学技术:1-9[2022-03-07]. [20]姚征,罗乾周,李宁,等.陕北石炭-二叠纪富油煤赋存特征及影响因素[J].煤田地质与勘探,2021,49(03):50-61+68. [26]赵毅.煤层气储层测井评价技术研究:[博士学位论文].北京:中国石油大学,2011. [27]邵先杰,董新秀,汤达祯,等.韩城矿区煤岩类型测井解释技术及产能预测方法.测井技术, 2013, 37(6): 671-675. [29]杨东根,范宜仁,邓少贵,等.利用测井资料评价煤层煤质及含气量的方法研究-以和顺地区为例[J]. 勘探地球物理进展, 2010, 33(4): 262-265. [30]陈永波,任更,李刚,等.基于概率统计模型的煤岩特征测井评价分析.长江大学学报(自然科 学版),2013,10(14):36-40. [31]邵先杰,孙玉波,孙景民,等.煤岩参数测井解释方法-以韩城矿区为例.石油勘探与开发,2013,40(5):559-565. [33]张恒发,文政,等.海拉尔盆地呼和湖凹陷煤层气测井评价[J].大庆石油地质与开发,2013,32(06):151-154. [34]杨克兵, 左银卿,甘健,等.测井资料在煤层气储层评价中的应用研究[J].中国煤层气, 2011 (2): 16-19. [39]毛志强,赵毅,孙伟,等.利用地球物理测井资料识别我国的煤阶类型. 煤炭学报,2011,36(5):766-771 [40]屈乐,李新,章海宁,等.煤岩储层煤阶类型的测井识别方法研究[J].云南化工,2020,47(09):101-104+107. [41]Howard P., Log Analysis of Coalbed Methane Wells in San Juan Basin, Schlumberger GFE paper,1985. [43]马平华,邵先杰,霍梦颖,等.煤储层地质建模思路与方法-以鄂尔多斯盆地东南缘韩城矿区为例[J].石油与天然气地质, 2018, 039(003):601-610. [44]邵先杰,孙玉波,孙景民,等.煤岩参数测井解释方法-以韩城矿区为例.石油勘探与开发,2013,40(5):559-565. [45]许慧杰,王延斌,左进波,等.大宁-吉县区块宏观煤岩类型的测井曲线响应特征研究.2014 全国煤层气学术研讨会论文集, 2014: 136-142. [47]崔超.宏观煤岩类型的测井识别与量化评价[D].中国地质大学(北京),2021.DOI:10.27493/d.cnki.gzdzy.2021.001597. [48]李冰洋.韩城地区宏观煤岩类型的测井识别与产能控制[D].中国地质大学(北京),2017.DOI:10.27493/d.cnki.gzdzy.2017.000235. [49]魏宏宇.二连盆地不同宏观煤岩类型褐煤储层物性特征及测井识别[D].中国地质大学(北京),2021.DOI:10.27493/d.cnki.gzdzy.2021.000531. [52]闫和平,段中会,王金锋.黄陵矿区富油煤焦油产率与补偿密度关系模型预测方法研究[J].中国煤炭地质,2022,34(10):25-30. [53]赵军龙,闫和平,王金锋,王诗聪.基于测井信息的煤焦油产率预测方法研究[J/OL].地球物理学进展:1-10[2023-03-04]. [55]马丽,王双明,段中会等.陕西省富油煤资源潜力及开发建议[J].煤田地质与勘探,2022,50(02):1-8. [56]惠一凡,赵习民,冯烁等.新疆三塘湖盆地富油煤赋存特征及主控因素[J].煤炭技术,2023,42(08):117-123.DOI:10.13301/j.cnki.ct.2023.08.025. [68]谢松彬,姚艳斌,陈基瑜,等.煤储层微小孔孔隙结构的低场核磁共振研究[J].煤炭学报,2015, 40(s1):170-176. [74]朱林奇,张冲,石文睿,等.结合压汞实验与核磁共振测井预测束缚水饱和度方法研究[J].科学技术与工程,2016,16(15):22-29. [75]申振华.煤及其含气性地球物理响应研究[D].河南理工大学,2011. [76]周枫.沁水盆地煤层气储层岩石物理及物理模拟研究[D].南京大学,2014. [79]师庆民,耿旭虎,王双明,等.基于煤体真密度和自然伽马响应规律的富油煤判识[J/OL].煤田地质与勘探,1-11[2024-03-22]. [80]李增学,魏久传,余继峰,等. 煤地质学[M]. 北京:地质出版社.2009:61-75. [82]FINKELMAN R B. Trace and Minor Elements in Coal[J]. Organic Geochemistry,1993,28:593-607. [86]王华,杜美利,张国涛.石马洼煤显微组分结构特征的红外光谱分析[J].煤炭转化,2015,38(03):5-11.DOI:10.19726/j.cnki.ebcc.2015.03.002. [87]李飞.煤炭显微组分与密度相关性的试验研究[D].太原理工大学,2014. [90]李振涛. 煤储层孔裂隙演化及对煤层气微观流动的影响[D]. 北京: 中国地质大学, 2018. [91]刘通. 煤纳米孔隙及其吸附解吸演化规律的小角X射线散射研究[D]. 北京: 中国矿业大学, 2021. [92]周贺,潘结南,李猛,等.不同变质变形煤微晶结构的XRD试验研究[J]. 河南理工大学学报(自然科学版),2019,38(1):26-35. [94]贺聪,苏奥,张明震等.鄂尔多斯盆地延长组烃源岩有机碳含量测井预测方法优选及应用[J].天然气地球科学,2016,27(04):754-764. |
中图分类号: | P631.81 |
开放日期: | 2024-06-19 |