- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 李卿    

学号:

 19205216095    

保密级别:

     

论文语种:

 chi    

学科代码:

 085234    

学科名称:

  - -     

学生类型:

     

学位级别:

     

学位年度:

 2022    

培养单位:

 西    

院系:

 机械工程学院    

专业:

 车辆工程    

研究方向:

     

第一导师姓名:

 赵栓峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on vehicle dynamic weighing system based on piezoelectric effect    

论文中文关键词:

 动态称重 ; 有限元分析 ; 神经网络 ; 误差分析 ; 压电效应    

论文外文关键词:

 weigh-in-motion ; finite element analysis ; neural network ; error analysis ; fiezoelectric effect.    

论文中文摘要:
<p>使</p> <p>1</p> <p>2</p> <p>3GRUGRU</p> <p>4线</p> <p>5</p>
论文外文摘要:
<p>With the gradual improvement of China&#39;s highway transportation facilities, the highway freight volume increased year by year, the situation of over-limit and overloading of motor vehicles has been repeatedly prohibited and gradually intensified, causing huge losses to the national economy. At present, vehicle weight measurement methods are mainly divided into static weighing and dynamic weighing. Static weighing has high weighing precision, but it takes a long time to weigh, covers an area of large area, and is extremely inefficient. While dynamic weighing can automatically detect vehicle load information during vehicle running, although it improves weighing efficiency to a certain extent, the accuracy of dynamic weighing still needs to be improved due to the numerous factors affecting weighing accuracy in the process of dynamic weighing and the immature weighing algorithm. In this context, based on the characteristics of piezoelectric quartz, such as high sensitivity, low temperature influence and small volume, a set of vehicle dynamic weighing system with high measurement accuracy, good stability and high reliability is designed. The weighing precision of dynamic weighing system is improved from hardware structure and weighing algorithm. In this way, the vehicle can accurately obtain the vehicle mass under the driving state and effectively detect the load state of the vehicle. The main work and research results of this paper are as follows:</p> <p>(1) Overall scheme study of vehicle dynamic weighing system. Aiming at the practical application of the current dynamic weighing system, the design principle of the vehicle dynamic weighing system is studied, and its composition and basic working principle are analyzed. The overall scheme of vehicle dynamic weighing system is designed and its feasibility is discussed.</p> <p>(2) Research on dynamic weighing sensor. Aiming at the characteristics of all kinds of weighing sensor, weighing the costs and the precision requirement, on the basis of quartz crystal as the core design based on the piezoelectric effect of the dynamic weighing sensors, sensor design are verified through the finite element analysis of the rationality and reliability of the structure, the calibration experiment is given to demonstrate the sensor of high accuracy, good stability and high reliability performance.</p> <p>(3) Research on neural network algorithm of vehicle dynamic weighing system. Based on the deep GRU neural network, a vehicle dynamic weighing neural network is established, a special weighing data set is established, and the sensor output signal is analyzed and filtered. The network model is trained and the algorithm is verified with the test data set. The results show that the vehicle weight can be accurately predicted based on the deep GRU neural network algorithm.</p> <p>(4) Research on the perfect function of vehicle dynamic weighing system. The dynamic weighing of the vehicle is realized by both hardware and software. The hardware includes power transmission line and charge amplification circuit, signal acquisition circuit, switching matrix circuit, etc. The software design is to cooperate with the hardware to realize the function of the whole system. This system further enhances the intelligent level of the dynamic weighing system through the cooperation of hardware and software.</p> <p>(5) Road test verification of vehicle dynamic weighing system. To further verify the reliability of the piezoelectric quartz-based vehicle dynamic weighing system proposed in this paper. Through the field test of the dynamic weighing system installed on the road, the results show that the dynamic vehicle weighing system based on the piezoelectric effect proposed in this paper is reasonable and effective, and meets the needs of various aspects of vehicle dynamic weighing.</p>
参考文献:

[1] 2020年交通运输行业发展统计公报[J]. 交通财会,2021(06):92-97.

[2] 于海洋. 浅谈黑龙江省收费公路的管理模式[J]. 黑龙江交通科技,2011,34(08):238.

[3] 韩鹰,李宁. 高速公路联网收费问题思考[J]. 中国交通信息化,2011(2):101-102,106.

[4] 赵恩霞. 车辆超限、超载与公路运输安全性研究[J]. 中国管理信息化,2012,15(16):99.

[5] 赵培杰. 基于压电石英传感器的高速动态称重系统设计[ D]. 太原:中北大学,2018.

[6] 时可飞. 嵌入式动态称重仪表设计[D]. 西安:长安大学,2010.

[7] Yan Yu, XueFeng Zhao, Yan Shi, et al. Design of a real-time overload monitoring system for bridges and roads based on structural response[J]. Measurement,2013,46(1):345-352.

[8] Jacob B . WAVE: Weigh-in-motion of Axles and Vehicles for Europe[J]. Ka Mate Ka Ora, 2002.(1):48-49

[9] 王荣旭. 基于压电传感器的车辆动态称重系统开发[D]. 济南:山东大学,2021.

[10] 贺曙新. 车辆动态称重技术的历史、现状与展望[J]. 中外公路,2004,24(6):104-108.

[11] 凌杰,龙水根. 优化算法在汽车动态称重系统中的应用[J]. 西安公路交通大学学报,2001,21(3):77-79.

[12] 张咏松,王刚,刘炜,等. 优化算法在汽车动态称重信号处理中的改进和简化[J]. 衡器,2007,36(3):15-17.

[13] 武奇生,王丹,陈圆媛,等. 基于ETC的车辆动态称重系统设计[J]. 公路交通科技(应用技术版),2009, (10):187-189,194.

[14] 孙婧. 信念引领“自由”——北京万集科技有限责任公司自由流产品成功应用于武汉路桥收费[J]. 中国交通信息化,2011(10):134-136.

[15] 刘小锋,冯志敏,胡海刚. 压电材料动态称重传感器的融合设计方法[J]. 仪器仪表学报,2019,40(4):115-122.

[16] 荆根强,刘璐,冷正威,等. 关于我国交通运输业汽车动态称重技术的探讨[J]. 公路交通科技:应用技术版,2013,9(8):3.

[17] 李建波. 基于μCOS-Ⅲ的整车式动态称重仪表的研究与设计[D]. 太原:太原理工大学,2015.

[18] 李海龙. 基于BP算法的整车式动态称重仪表的研究与设计[D]. 太原:太原理工大学,2016.

[19] 白冰,刘伟,李东岳. 几种动态汽车衡的比较与分析[J]. 轻工标准与质量,2016(2):2.

[20] 钟秋. 连续整车式动态称重系统的应用与实践[C]// 2013:2.

[21] 刘露. 动态公路车辆智能自动衡器的应用研究[J]. 公路交通科技(应用技术版),2016,12(10):224-226.

[22] Qi Zhang, YingJun Li, GuiCong Wang, et al. Research on Dynamics Measurement of Piezoelectric Sensor Based on PVDF Films[C]. //Frontiers of manufacturing and design science IV: Selected, peer reviewed papers from the 4th International Conference on Frontiers of Manufacturing and Design Science (ICFMD 2013), September 10-12, 2013, Hong Kong, China.:Trans Tech Publications, 2013:1467-1470.

[23] 洪秀敏. 公路超限运输的六大危害[J]. 中国公路,2002,000(015):76-77.

[24] 韩芝星,李丽宏,蔡晓龙,等. 基于弯板传感器的动态称重公路预检系统研究[J]. 传感器与微系统,2015,34(8):4.

[25] 何海浪. 压电式车辆动态称重传感器的设计与研究[D]. 杭州:杭州电子科技大学,2015.

[26] 巫业山. 弯板式称重传感器在计重收费系统中的应用[J]. 衡器,2008,37(1):36-38.

[27] 王丽红. 弯板称在计重收费系统中的应用[J]. 交通世界(运输.车辆),2011(2):106-107.

[28] Krzysztof Sekula, Andrzej Swiercz. Weigh-in-Motion System Testing[C]. //Structural Health Monitoring II.:Trans Tech Publications Ltd, 2011:428-436.

[29] 张栋.电容称重传感器温度特性分析与补偿的研究[D]. 天津:天津大学,2012.

[30] Cheng, Lu, Zhang, HongJian, Li, Qing. Design of a Capacitive Flexible Weighing Sensor for Vehicle WIM System[J]. Sensors,2007,7(8):1530. DOI:10.3390/s7081530.

[31] 杨青锋. 几种常见称重传感器技术特性及应用的介绍与分析[J]. 衡器, 2015,44(5):5.

[32] 邱万英. 非理想边缘电容器电容的分析[J]. 华东交通大学学报,2008,25(3):86-89.

[33] 邵小桃,成超,张静文. 平板电容器边缘电场特性探究[J]. 电气电子教学学报,2011,33(4):3.

[34] 温晓东. 基于干涉原理的光纤传感器设计与特性研究[D]. 北京:北京交通大学,2016.

[35] 沃江海. 高精度干涉型光纤传感器的理论与实验研究[D]. 武汉:华中科技大学,2014.

[36] 孙秀雅. 基于压电薄膜轴传感器的动态称重系统的研发[D]. 合肥:合肥工业大学,2014.

[37] 赵晓燕. 基于压电陶瓷的结构健康监测与损伤诊断[D]. 大连:大连理工大学,2008.

[38] 田野. 基于埋入式压电陶瓷传感器的车辆动态称重研究[D]. 大连:大连理工大学,2016.

[39] 程路. 车辆动态称重技术研究[D]. 杭州:浙江大学,2008.

[40] 程路,张宏建,曹向辉. 车辆动态称重技术[J]. 仪器仪表学报,2006,27(8):943-948.

[41] Stephane R. Teral. Fiber optic weigh in motion: looking back and ahead[C]. //Industrial and Commercial Applications of Smart Structures Technologies. 1998:129-137.

[42] Jung Woo Sohn, Juncheol Jeon, Seung-Bok Choi. An Investigation on Dynamic Signals of MFC and PVDF Sensors: Experimental Work[J]. Advances in Mechanical Engineering,2013,2013(Pt.6):420345-1-420345-9.

[43] 褚祥诚,徐亚楠,袁松梅,等. 基于PVDF的新型高速公路压电动态称重传感器[J]. 振动、测试与诊断,2013,33(3):351-356.

[44] 韦俊. 基于多传感器公路车辆动态称重系统设计与研究[D]. 南宁:广西大学,2016.

[45] 徐志玲,沈裴裴,厉志飞. 车辆动态称重的速度补偿研究[J]. 计量学报,2015,36(06):599-602.

[46] 侯汉祎. 高速公路收费站服务水平和车辆计重算法研究[D]. 西安:长安大学,2017.

[47] 钱伟长. 弹性力学[M]. 北京:科学出版社, 1980.

[48] 张南南. 变形与热处理组合工艺对6061铝合金组织和性能的影响[D]. 江苏:江苏大学,2017.

[49] 杨伟艺. 用于动态称重系统的传感器和通信安全策略研究[D]. 太原:中北大学,2020.

[50] 王培德,郑跃滨,杨雷,等. 高应变载荷下压电传感器性能研究[J]. 压电与声光,2016,38(4):588-593.

[51] 金雷. 晶片表面微观形貌对压电式力传感器性能影响规律研究[D]. 辽宁:大连理工大学,2018.

[52] 程路,张宏建,曹向辉.车辆动态称重技术[J]. 仪器仪表学报,2006(08):943-948.

[53] 商长富. 汽车动态称重系统数据处理的算法研究[D]. 长春:吉林大学,2007.

[54] 武奇生,王丹,陈圆媛,等. 基于ETC的车辆动态称重系统轴载数据处理算法研究[J]. 公路交通科技(应用技术版),2009, (10):190-194.

[55] 王玲. 车辆动态称重系统数据采集与处理的研究[D]. 沈阳:东北大学,2008.

[56] 茹秋生,庄德渊,宁宗奇. 用神经网络算法降低车辆动态称重误差[J]. 衡器,2012,41(04):41-44.

[57] 杨玉. 动态称重及其数据处理[J]. 长沙理工大学学报(自然科学版),2001,3(3):15-18.

[58] 许嘉,蔡萍,周志峰,等. 参数估计算法在汽车动态称重中的应用[J]. 自动化技术与应用,2005,24(8):69-71.

[59] 毛建东. 动态称重系统的建模及其参数估计[J]. 传感器与微系统,2006,25(6):72-74.

[60] 周志峰,蔡萍,陈日兴,等. 基于非线性拟合的汽车动态称重数据处理新方法[J]. 上海交通大学学报,2006,40(5):709-712.

[61] 于哲峰,杨智春. EMD技术在动态称重数据处理中的应用[J]. 机械科学与技术,2004,23(4):444-446.

[62] 王中立,李丽宏. 基于石英传感器的动态称重数据处理算法研究[J]. 传感技术学报,2017,30(2):236-241.

[63] 焦李成. 神经网络系统理论[M]. 西安:西安电子科技大学出版社,1990.

[64] Kyunghyun Cho, Bart van Merrirrnboer, Caglar Gulcehre, et al. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]. //Conference on empirical methods in natural language processing, vol. 3: Conference on empirical methods in natural language processing (EMNLP 2014), 25-29 October 2014, Doha, Qatar.:Association for Computational Linguistics, 2014:1724-1734.

[65] 王颖,金志军. 常用数字滤波算法[J]. 中国计量,2012(3):2.

中图分类号:

 U495    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式