论文中文题名: | 基于改进YOLOv4的车前多目标检测与跟踪研究 |
姓名: | |
学号: | 19307205021 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085208 |
学科名称: | 工学 - 工程 - 电子与通信工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 计算机视觉 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-08 |
论文外文题名: | Research on multi-target detection and tracking in front of vehicles based on improved YOLOv4 |
论文中文关键词: | |
论文外文关键词: | Multi-target detection ; YOLOv4 ; DeepSORT ; Attention mechanism ; Unscented Kalman filter |
论文中文摘要: |
自动驾驶是智能交通领域研究的热点问题,也是未来交通行业的发展趋势,车前多目标检测与跟踪是自动驾驶技术的基础。交通场景中目标种类多,存在目标遮挡,影响检测与跟踪的速度和精度。因此,开展车前多目标检测与跟踪的研究,提高算法的检测精度与速度具有重要的意义。 针对YOLOv4参数量大导致车前多目标检测速度降低的问题,提出一种改进的YOLOv4目标检测算法。基于Focus操作重构输入特征层,集中宽、高信息到通道上,提高每个点的感受野;采用轻量级MobilenetV3网络替换原始YOLOv4的主干网络,采用深度可分离卷积替换特征金字塔部分的标准卷积,利用深度可分离卷积和逆残差结构简化网络模型;引入CBAM(Convolutional Block Attention Module)注意力机制,对主干网络提取到的三个特征层分别施加注意力,调整空间特征和通道特征,提高模型的检测精度和对小目标的检测效果;结合焦点损失函数和YOLOv4的损失函数,改善样本数量不均衡问题。基于Pytorch深度学习框架和公共数据集Udacity、UA-DETRAC,验证并分析改进车前多目标检测算法性能。相较于YOLOv4算法,改进YOLOv4的mAP、FPS分别提高12.85%、17 FPS,模型大小减少199 M。实验结果表明,改进算法占用内存更小、速度更快,能够准确对车前多类目标检测。 将改进的轻量型YOLOv4目标检测模型与DeepSORT目标跟踪算法相结合,采用改进YOLOv4算法对车前多目标进行检测;将卡尔曼滤波算法替换为无迹卡尔曼滤波,基于无迹卡尔曼滤波预测目标的运动状态;采用基于优先级的级联匹配算法关联当前状态与预测状态,提高目标匹配关联的准确性;针对匹配失败的目标和轨迹,采用IOU匹配再次关联。相较于原DeepSORT算法,改进算法的MOTA、MOTP、FPS分别提高4.7%、5.2%、12 FPS。实验结果表明,改进算法能够准确对车前多目标检测及跟踪,更好地适用于车前多目标检测与跟踪场景。 |
论文外文摘要: |
Automatic driving is not only a hot research topic in the field of intelligent transportation, but also the development trend of the transportation industry in the future. Multi-target detection and tracking in front of vehicles is the basis of autonomous driving technology. The speed and accuracy of detection are affected by the wide variety of targets and occlusion between targets. Therefore, it is of great significance to carry out research on multi-target detection and tracking in front of the vehicle and improve the detection accuracy and speed of the algorithm. Aiming at the problem of low speed of multi-target detection in front of vehicle caused by large number of YOLOv4 parameters, an improved YOLOv4 target detection algorithm is proposed. The input feature layer is reconstructed based on the Focus operation, the information of width channel and height channel is concentrated to improve the receptive field of each point. The lightweight mobilenetv3 network is used to replace the backbone of the YOLOv4 and the standard convolution of the feature pyramid is replaced by the depth separable convolution. And the depth separable convolution and inverse residual structure are used to simplify the model. CBAM attention mechanism is introduced to pay attention to the three feature layers extracted from the backbone network, and adjust the features in space and channel to improve the detection accuracy of the model and the detection effect of small targets. The focal loss function is introduced to improve the loss function of YOLOv4, thereby improving the problem of unbalanced number of samples. Based on the Pytorch and public datasets Udacity and UA-DETRAC, the performance of the improved multi-target detection and tracking algorithm in front of the vehicle is verified and analyzed. Compared with YOLOv4 algorithm, mAP and FPS of improved YOLOv4 are increased by 12.85% and 17 FPS, and the model size is reduced by 199M. The experimental results show that the improved algorithm occupies less memory can detect multiple targets in front of the vehicle accurately and fastly. The improved lightweight YOLOv4 target detection model is combined with DeepSORT target tracking algorithm, the improved YOLOv4 algorithm is used to detect multiple targets in front of the vehicle. Kalman Filtering Algorithm is replaced by Unscented Kalman Filtering to predict target motion state. Based on cascade matching algorithm, the current state and predicted state are associated to improve the accuracy of target matching correlation. For the target and trajectory that fails to match, the IOU matching is used again to correlate. Compared with DeepSORT algorithm, MOTA, MOTP and FPS are increased by 4.7%, 5.2% and 12 FPS. The experimental results show that the improved algorithm can detect and track multiple targets in front of the vehicle accurately, and can be better applied to the detection and tracking scenarios of multiple targets in front of the vehicle. |
参考文献: |
[1] 吕品,许嘉,李陶深,徐文彪.面向自动驾驶的边缘计算技术研究综述[J].通信学报,2021,42(03):190-208. [2] 徐向阳,胡文浩,董红磊.自动驾驶汽车测试场景构建关键技术综述[J].汽车工程,2021,43(04):610-619. [3] 钱志鸿,田春生,郭银景,王雪.智能网联交通系统的关键技术与发展[J].电子与信息学报,2020,42(01):2-19. [4] 伍锡如,薛其威.基于激光雷达的无人驾驶系统三维车辆检测[J].光学精密工程,2022,30(04):489-497. [5] 郑少武,李巍华,胡坚耀.基于激光点云与图像信息融合的交通环境车辆检测[J].仪器仪表学报,2019,40(12):143-151. [6] 刘旖菲,胡学敏,陈国文,刘士豪,陈龙.视觉感知的端到端自动驾驶运动规划综述[J].中国图象图形学报,2021,26(01):49-66. [7] 张新钰,高洪波,赵建辉.基于深度学习的自动驾驶技术综述[J].清华大学学报(自然科学版),2018,058(004):438-444. [8] 董文轩,梁宏涛,刘国柱,胡强,于旭.深度卷积应用于目标检测算法综述[J].计算机科学与探索,2022,16(05):1025-1042. [17] 曹诗雨, 刘跃虎, 李辛昭. 基于Fast R-CNN的车辆目标检测[J]. 中国图象图形学报, 2017, 22(5):7-19. [21] 黄健,张钢. 深度卷积神经网络的目标检测算法综述[J]. 计算机工程与应用, 2020, 56(17):12-23. [22] 魏湧明, 全吉成, 侯宇青阳. 基于YOLO v2的无人机航拍图像定位研究[J]. 激光与光电子学进展, 2017, 54(11):10-19. [27] 谢俊章,彭辉, 唐健峰.改进YOLOv4的密集遥感目标检测[J].计算机工程与应用,2021,57(22):247-256. [33] 龚红,杨发顺,丁召.基于模糊背景加权的Mean Shift目标跟踪算法[J].电子科技大学学报, 2019, 48(3):402-408. [34] 刘洪彬,常发亮.权重系数自适应光流法运动目标检测[J].光学精密工程,2016, 24(2):9-21. [35] 杨鹏生,吴晓军,张玉梅.改进扩展卡尔曼滤波算法的目标跟踪算法[J].计算机工程与应用,2016, 52(5):5-23. [36] 王法胜,鲁明羽,赵清杰,等.粒子滤波算法[J].计算机学报, 2014,37(8):16-31. [37] 王霞,王光磊,李艳,等.改进的基于特征融合MOSSE冠脉目标追踪算法[J].电子测量与仪器学报, 2021, 35(9):7-22. [42] 马珺,王昱皓.结合自适应更新策略和再检测技术的跟踪算法[J].计算机工程与应用, 2021, 57(9):8-17. [51] 王玲,王家沛,王鹏,等.融合注意力机制的孪生网络目标跟踪算法研究[J].计算机工程与应用, 2021, 57(8):6-20. [52] 李勇,杨德东,韩亚君,等.融合扰动感知模型的孪生神经网络目标跟踪[J].光学学报, 2020, 40(4):120-131. [58] 王立辉, 杨贤昭, 刘惠康,等.基于GhostNet与注意力机制的行人检测跟踪算法[J].数据采集与处理, 2022, 37(1):14-27. [69] 金立生,华强,郭柏苍,谢宪毅,闫福刚,武波涛.基于优化DeepSort的前方车辆多目标跟踪[J].浙江大学学报(工学版),2021,55(06):1056-1064. [70] 鲍水达,张安,毕文豪.快速强跟踪UKF算法及其在机动目标跟踪中的应用[J].系统工程与电子技术,2018,40(06):1189-1196. [71] 徐涛,马克,刘才华.基于深度学习的行人多目标跟踪方法[J].吉林大学学报(工学版),2021,51(01):27-38. |
中图分类号: | TP391 |
开放日期: | 2023-06-22 |