论文中文题名: | 厚煤层综采条件下覆岩与地表移动变形规律研究 |
姓名: | |
学号: | 21209226101 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山地质灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-18 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Research on the law of overlying strata and surface movement and deformation under the condition of fully mechanized mining in thick coal seam |
论文中文关键词: | 厚煤层 ; 相似材料模拟 ; FLAC3D数值模拟 ; InSAR监测 ; 移动变形 |
论文外文关键词: | Thick coal seam ; Similar material simulation ; FLAC3D numerical simulation ; InSAR moinitoring technology ; Movement and deformation |
论文中文摘要: |
厚煤层综放开采因一次采出煤层厚度大,地表移动和覆岩破坏情况较为剧烈,采动过程中易产生大量地表裂缝、煤壁片帮等问题,严重影响了煤层的安全生产。因此,研究厚煤层综采条件下覆岩运移及地表沉陷规律对实现工作面安全高效生产具有理论价值和现实意义。本文以实现煤炭安全开采和保护水资源为目标,常村煤矿S3-13工作面为研究背景,从相似材料模拟试验和数值模拟试验入手,分析了工作面推进过程中覆岩垮落及地表移动变形规律、采空区底板应力分布和“三带”发育特征,并基于SBAS-InSAR和D-InSAR技术监测煤层开采期间地表沉降情况,最终将试验结果与工作面实测数据进行对比分析。主要研究成果如下: (1)基于相似材料模拟试验,对厚煤层开采覆岩运移及地表沉陷进行了研究,得到:3#煤层开采过程中共经历了42次周期来压,周期来压步距为16~32m,平均周期来压步距为22.38m,开采过程中顶板垮落结构常以“砌体梁”结构出现,覆岩下沉量自下而上呈减小趋势。当煤层开采至940m时,达到充分采动,地表最大下沉量为4.13m,下沉系数为0.65,下沉曲线呈“U”型;未达到充分采动前,地表下沉范围主要集中在采空区中部及附近,达到充分采动后,地表下沉范围在采空区右侧更为显著;开采结束后,地表移动变形仍会持续14天后才会基本稳定,下沉曲线呈“盘状”,地表最大下沉量保持不变; (2)厚煤层开采过程中,纵向裂隙在工作面两侧贯通性较好,离层裂隙在工作面上方以“产生—闭合—向上扩展”的过程反复出现;底板应力变化呈现出“稳定波动—升高—降低”的变化趋势,通过应力测点时达到峰值,平均应力集中系数为1.110,超前支撑压力影响范围为56~80m,并随着煤层的开采整体呈减小趋势,表明来压较为剧烈;煤层开采结束后,冒落带发育高度为23.4m,冒采比为3.66,与经验公式基本一致,导水裂隙带发育高度为156m,裂采比为24.38,与实测值基本一致; (3)基于FLAC3D数值模拟软件,根据实际开采条件建立了厚煤层开采地质模型模拟开采过程,得到:覆岩下沉量与埋深呈正比关系,覆岩移动变形破坏主要集中在卸压区,卸压区位于工作面上方且呈“马鞍形”分布,应力集中区位于工作面两侧,塑性区主要以剪切和拉伸破坏为主。停采时,导水裂隙带发育高度为157.4m,覆岩下沉量达到最大值,地表最大沉降量为4.23m,位于采空区中部附近,下沉曲线呈“U”型,与相似材料模拟试验及实测结果吻合度较高; (4)分别采用SBAS-InSAR和D-InSAR监测技术,对S3-13工作面开采过程中地表移动变形进行监测,分析其规律,得到:连续性D-InSAR技术能监测到地表是由北向南发生形变位移的,与工作面推进方向一致,能够判定沉陷盆地中心位置,可为准确划定采煤沉陷影响区边界提供可靠依据。同时通过与相似材料模拟试验、数值模拟结果及实测数据对比分析,发现在形变量较小的区域,四种方法得到的下沉量基本一致;在形变量较大的区域,两种InSAR监测手段能力明显不足,得到的地表沉降量值与实测值误差较大,但连续性D-InSAR监测结果能很好地反映出采煤沉陷区范围的变化。 |
论文外文摘要: |
Due to the large thickness of the coal seam in the thick coal seam, the surface movement and overburden failure are more severe. A large number of surface cracks and coal wall spalling are easy to occur during the mining process, which seriously affects the safe production of the coal seam. Therefore, it is of theoretical value and practical significance to study the law of overburden rock migration and surface subsidence under the condition of fully mechanized mining in thick coal seam to realize the safe and efficient production of working face. In order to realize the safe mining of coal and protect water resources, this paper takes the S3-13 working face of Changcun Coal Mine as the research background. Starting from the similar material simulation test and numerical simulation test, this paper analyzes the law of overburden caving and surface movement and deformation, the stress distribution of goaf floor and the development characteristics of ' three zones ' in the process of working face advancing, and monitors the surface subsidence during coal seam mining based on SBAS-InSAR and D-InSAR technology. Finally, the test results are compared with the measured data of the working face. The main research results are as follows : (1) Based on the simulation test of similar materials, a study was conducted on the migration of overlying strata and surface subsidence during the mining of thick coal seams. The results showed that during the mining process of the 3# coal seam, there were 42 cycles of periodic pressure, with a periodic pressure step ranging from 16 to 32 meters, and an average periodic pressure step of 22.38 meters. During the mining process, the roof caving structure often appears as a ' masonry beam ' structure, and the overlying strata subsidence decreases from bottom to top. When the coal seam is mined to 940 m, full mining is achieved, the maximum surface subsidence is 4.13 m, the subsidence coefficient is 0.65, and the subsidence curve is ' bowl-shaped ' ; before fully mining, the surface subsidence range is mainly concentrated in the middle and vicinity of the goaf. After fully mining, the surface subsidence range is more significant on the right side of the goaf. After the end of mining, the surface movement and deformation will continue for 14 days before it will be basically stable, the subsidence curve is ' disk ', and the maximum surface subsidence remains unchanged; (2) In the process of thick coal seam mining, the longitudinal fracture has good connectivity on both sides of the working face, and the separation fracture appears repeatedly in the process of ' generation-closure-upward expansion ' above the working face. The stress change of the floor shows a trend of 'stable fluctuation-rise-decrease ', reaching the peak when passing the stress measuring point. The average stress concentration factor is 1.110, and the influence range of the advance support pressure is 56-80 m. With the overall mining of the coal seam, it shows a decreasing trend, indicating that the pressure is more intense. After the end of coal seam mining, the development height of caving zone is 23.4 m, the ratio of caving to mining is 3.66, which is basically consistent with the empirical equation. The conductor height is 156 m, and the ratio of cracking to mining is 24.38, which is basically consistent with the measured value; (3) Based on FLAC3D numerical simulation software, according to the actual mining conditions, the geological model of thick coal seam mining is established to simulate the mining process. It is concluded that the subsidence of overburden rock is proportional to the buried depth, and the movement and deformation failure of overburden rock are mainly concentrated in the pressure relief area. The pressure relief area is located above the working face and is distributed in a ' saddle shape '. The stress concentration area is located on both sides of the working face, and the plastic zone is mainly dominated by shear and tensile failure. When the mining is stopped, the development height of the water-conducting fracture zone is 157.4 m, the subsidence of the overlying rock reaches the maximum value, and the maximum surface subsidence is 4.23 m, which is located near the middle of the goaf. The subsidence curve is ' U ' type, which is in good agreement with the similar material simulation test and the measured results; (4) The SBAS-InSAR and D-InSAR monitoring techniques were used to monitor the surface movement and deformation during the mining process of the S3-13 working face, and the law was analyzed. The continuous D-InSAR technology can monitor the surface from north to south. The deformation displacement is consistent with the direction of the working face, and can determine the center position of the subsidence basin, which can provide a reliable basis for accurately delineating the boundary of the coal mining subsidence affected area. At the same time, by comparing with similar material simulation test, numerical simulation results and measured data, it is found that the subsidence obtained by the four methods is basically the same in the area with small deformation. In the area with large deformation, the ability of the two InSAR monitoring methods is obviously insufficient, and the error between the obtained surface subsidence value and the measured value is large, but the continuous D-InSAR monitoring results can well reflect the change of the coal mining subsidence area. |
参考文献: |
[1] 丁上于, 张超星, 李宏, 等. 世界主要经济体能源领域面向未来的战略布局及启示 [J]. 世界科技研究与发展, 2024, 46(01): 8-20. [2] 王富忠. 技术进步视角下我国能源强度研究 [J]. 技术经济与管理研究, 2023, (11): 18-22. [3] 姜志刚, 关书方, 王明强, 等. 大倾角综放面煤岩分界线不对称分布特征及放煤工艺优化 [J]. 煤炭技术, 2023, 42(12): 104-108. [4] 范志杰, 赵忠明, 袁瑞甫, 等. 新登煤矿综放开采导水裂隙带发育高度研究 [J]. 煤炭技术, 2022, 41(01): 152-154. [5] 田华, 杨嘉懿, 韩强强, 等. 煤炭开采对地下水的影响预测 [J]. 煤炭技术, 2021, 40(12): 110-114. [6] 王双明, 魏江波, 宋世杰, 等. 黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究 [J]. 煤炭科学技术, 2022, 50(05): 1-9. [7] 郭文兵, 白二虎, 赵高博. 高强度开采覆岩地表破坏及防控技术现状与进展 [J]. 煤炭学报, 2020, 45(02): 509-523. [8] 郭文兵, 赵高博, 马志宝, 等. 高耸构筑物采动损害与保护技术研究现状与展望 [J]. 煤炭科学技术, 2023, 51(01): 403-415. [9] 钱鸣高, 许家林. 煤炭开采与岩层运动 [J]. 煤炭学报, 2019, 44(04): 973-984. [10] 李夕兵, 黄麟淇, 周健, 等. 硬岩矿山开采技术回顾与展望 [J]. 中国有色金属学报, 2019, 29(09): 1828-1847. [11] 刘泽春译校. 长壁开采岩层控制及下沉防治技术现状[C]//美国采矿工程师学会第一届国际会议论文集, 太原:山西科学教育出版社, 1986. [12] 克拉茨, 马伟民. 采动损害及其防护 [M]. 北京: 煤炭工业出版社, 1984. [16] 何廷峻. 应用Wilson铰接岩块理论进行巷旁支护设计 [J]. 岩石力学与工程学报, 1998, (02): 63-67. [17] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制 [M]. 徐州:中国矿业大学出版社, 2010. [18] 钱鸣高,缪协兴,何富连. 采场“砌体梁”结构的关键块分析 [J]. 煤炭学报, 1994, (06): 557-563. [19] 钱鸣高,张顶立,黎良杰,康立勋,许家林. 砌体梁的“S-R”稳定及其应用 [J]. 矿山压力与顶板管理, 1994, (03): 6-11+80. [20] 宋振骐, 郝建, 石永奎, 等. “实用矿山压力控制理论”的内涵及发展综述 [J]. 山东科技大学学报(自然科学版), 2019, 38(01): 1-15. [21] 宋振骐, 刘义学, 陈孟伯, 等. 岩梁裂断前后的支承压力显现及其应用的探讨 [J]. 山东矿业学院学报, 1984, (01): 27-39. [22] 许家林, 钱鸣高. 覆岩采动裂隙分布特征的研究 [J]. 矿山压力与顶板管理, 1997, (Z1): 213-215+232+234. [23] 茅献彪, 缪协兴, 钱鸣高. 采动覆岩中关键层的破断规律研究 [J]. 中国矿业大学学报, 1998, (01): 41-44. [24] 孙亚楠, 张培森, 颜伟, 等. 伴生台阶断层近距离煤层开采覆岩运移及应力变化规律试验研究 [J]. 煤矿安全, 2020, 51(07): 48-54+60. [26] 黄克军, 黄庆享, 王苏健, 等. 浅埋煤层群采场周期来压顶板结构及支架载荷 [J]. 煤炭学报, 2018, 43(10): 2687-2693. [27] 张艳丽, 伍永平, 罗生虎, 等. 覆岩宏观支撑结构演化过程与特征 [J]. 中国矿业大学学报, 2020, 49(02): 280-288. [28] 刘全明, 于雷. 浅埋深综放采场覆岩结构对矿压显现规律的影响 [J]. 煤炭科学技术, 2017, 45(03): 20-25. [30] 刘志高, 张守宝, 皇甫龙. 腾达煤矿倾斜煤层覆岩运移规律及“上三带”高度的确定 [J]. 采矿与岩层控制工程学报, 2022, 4(03): 70-79. [31] 来兴平, 张旭东, 单鹏飞, 等. 厚松散层下三软煤层开采覆岩导水裂隙发育规律 [J]. 岩石力学与工程学报, 2021, 40(09): 1739-1750. [32] 许满贵, 魏攀, 李树刚, 等. “三软”煤层综采工作面覆岩运移和裂隙演化规律实验研究 [J]. 煤炭学报, 2017, 42(S1): 122-127. [33] 王双明, 魏江波, 宋世杰, 等. 黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议 [J]. 煤田地质与勘探, 2022, 50(12): 1-11. [38] 侯恩科, 刘博, 龙天文, 等. 深埋缓倾斜双煤层开采导水断裂带发育规律研究 [J]. 煤矿安全, 2022, 53(03): 50-57. [39] 康志鹏, 赵靖, 段昌瑞. 分层开采厚硬顶板覆岩结构破坏及移动规律研究 [J]. 煤炭工程, 2022, 54(08): 78-83. [40] 张培河, 张齐, 孙学阳, 等. 煤炭开采覆岩移动导水裂隙带发育高度相似材料模拟实验研究 [J]. 中国煤炭地质, 2019, 31(10): 49-52+72. [41] 甘智慧. 煤层群开采覆岩与地表移动变形规律研究 [D], 西安: 西安科技大学, 2022. [42] 孙学阳, 张齐, 李成, 等. 陕北某矿双煤层开采对覆岩影响的模拟对比 [J]. 煤田地质与勘探, 2020, 48(04): 183-189. [43] 刘小康, 吕超. 厚松散层薄基岩大采高综采工作面覆岩移动规律 [J]. 煤炭技术, 2019, 38(07): 45-47. [44] 马海峰, 程志恒, 刘伟. 近距离煤层群叠加开采采动应力与覆岩位移场演化特征 [J]. 中国安全生产科学技术, 2017, 13(05): 28-33. [45] 雷武林, 陈岩峰, 赵凤, 等. 基于光纤光栅传感技术的覆岩变形演化规律试验研究 [J]. 煤, 2022, 31(05): 16-19. [50] 李小庆. 淮北矿区开采地表沉陷规律研究 [D], 合肥: 安徽建筑大学, 2015. [51] 高均海, 白国良. 大强矿深部开采地表沉陷规律及机理研究 [J]. 煤矿开采, 2016, 21(02): 26-28+52. [52] 李洋. 羊场湾煤矿130201工作面地表沉陷规律研究 [J]. 煤炭技术, 2022, 41(12): 97-100. [53] 刘东海, 邓念东, 姚婷, 等. 基于开采沉陷实测数据的Weibull时间函数模型参数研究 [J]. 煤炭科学技术, 2021, 49(09): 152-158. [54] 张海君, 吴奕枢, 王飞, 等. 准格尔煤田龙王沟煤矿特厚煤层综放开采地表沉陷规律 [J]. 西安科技大学学报, 2022, 42(05): 874-883. [55] 邓念东, 姚婷, 尚慧, 等. 铁路专线下综放开采地表沉陷规律 [J]. 煤田地质与勘探, 2019, 47(06): 121-125+134. [56] 闫伟涛, 张朝辉, 陈震, 等. 山区地下深部临近采煤工作面地表沉陷规律研究 [J]. 河南理工大学学报(自然科学版), 2022, 41(04): 44-50. [57] 甘智慧, 尚慧, 杜荣军, 等. 基于FLAC3D和DEM数据的缓倾斜煤层开采沉陷分析 [J]. 煤田地质与勘探, 2021, 49(03): 158-166. [58] 高平, 靳志龙, 巩泽文. 神东矿区综采工作面地表移动变形规律研究 [J]. 中国煤炭, 2022, 48(S1): 307-315. [63] 李达, 邓喀中, 高晓雄, 等. 基于SBAS-InSAR的矿区地表沉降监测与分析 [J]. 武汉大学学报(信息科学版), 2018, 43(10): 1531-1537. [64] 何倩, 范洪冬, 邓喀中, 等. 基于时序DInSAR的矿区地表沉降监测 [J]. 煤炭技术, 2017, 36(09): 179-180. [65] 任文静, 贾洪果, 闫斌. SBAS-InSAR方法支持下的矿区地表沉降监测及参数反演 [J]. 测绘通报, 2021, (03): 113-117+155. [66] 邓军, 鹿璐. 基于融合分布式目标的SBAS方法矿区地表沉降监测 [J]. 煤炭科学技术, 2020, 48(10): 205-211. [67] 康日斐, 吴泉源, 王菲, 等. 基于D-InSAR技术的龙口矿区地表沉降遥感监测研究 [J]. 土壤通报, 2016, 47(05): 1049-1055. [71] 刘东海. 常村煤矿采区动态沉陷预测模型研究. [D]. 西安: 西安科技大学, 2021. [72] 尚慧, 甘智慧, 杜荣军, 等. 可调节尺寸的相似材料模拟试验装置及其组合装置 [P]. 中国专利: CN202022794802.8, 2022-03-04. |
中图分类号: | TD325 |
开放日期: | 2024-06-18 |