- 无标题文档
查看论文信息

题名:

 GH3535合金在氯化物熔盐中的高温腐蚀退化与防护研究    

作者:

 王超超    

学号:

 22211225059    

保密级别:

 秘密    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 金属腐蚀与防护    

导师姓名:

 张菊梅    

导师单位:

 西安科技大学    

提交日期:

 2025-06-18    

答辩日期:

 2025-05-28    

外文题名:

 Study of High Temperature Corrosion Degradation and Protection of GH3535 Alloy in Chloride Molten Salts    

关键词:

 GH3535合金 ; 晶界工程 ; 防护涂层 ; 熔盐腐蚀 ; 耐蚀性能 ; 力学性能    

外文关键词:

 GH3535 alloy ; Grain boundary engineering ; Protective coating ; Molten salt corrosion ; Corrosion resistance ; Mechanical properties    

摘要:

         基于熔盐电解法的乏燃料干法后处理技术是实现我国核燃料闭式循环的关键步骤。在熔盐电解过程中,以碱金属的混合氯盐为溶剂,在500-600℃高温条件下,经电解提取、精炼、蒸馏等一系列工艺,从乏燃料中高效分离回收铀、钚及其他有价值的核素。然而,这一过程也带来了严峻的挑战:相关设备长期暴露于高温氯化物熔盐环境,服役材料面临着严重的高温腐蚀问题。因此,为了进一步提升服役材料在熔盐腐蚀环境中的服役性能,亟待探索一种经济有效的高温防护方案,早日实现核燃料闭式循环。
         晶界工程(Grain Boundary Engineering,GBE)是一种先进的材料改性技术,通过调控材料内部的晶界结构,优化材料的综合性能。本试验以核用GH3535合金为研究材料,采用晶界工程优化该合金的组织结构,对比研究固溶态与晶界工程态的GH3535合金在氯化物熔盐环境中的腐蚀性能和高温力学性能,旨在提供一种简单易行的材料改性方案,提升合金材料在氯化物熔盐环境下的服役性能。研究结果显示,在550℃氩气保护的45LiCl-55KCl wt.%熔盐环境中,经过300 h的腐蚀试验后,固溶态(Non-GBE)试样表面形成了由非连续富Cr外氧化层、去合金化Ni3Fe层和内氧化NiCr2O4层构成的三层结构,腐蚀程度较为严重。相比之下,晶界工程态(GBE-2)试样的腐蚀程度极为轻微,表面未出现明显的腐蚀退化现象。在熔盐腐蚀后,Non-GBE试样的高温延伸率显著降低,脆性腐蚀产物层以及优先被腐蚀的随机晶界加剧了裂纹的萌生与扩展。而GBE试样的高温力学性能并未出现退化现象,其高密度孪晶界与时效析出的晶内碳化物共同保障了合金在变形过程中的稳定动态应变时效(DSA)性能,在耐蚀性和高温力学性能方面表现突出。对比之下,发现熔盐蒸气腐蚀和熔盐液态腐蚀原理一致,但腐蚀程度更为严重。

         尽管晶界工程对GH3535合金的性能有所提升,但在熔盐蒸气环境下,合金的腐蚀问题依然严峻。因此,高效的高温防护措施成为当务之急。本文设计单一/多元氮化物涂层和基于SiO2-B2O3-Na2O-CaO氧化物相的搪瓷涂层作为乏燃料熔盐电解结构材料的防护材料。在550℃下的LiCl-KCl气氛中,对氮化物涂层涂覆搪瓷涂层的GH3535合金进行了腐蚀行为研究。结果表明,氮化物涂层在熔盐腐蚀下完全失效。搪瓷涂层为非晶态,与合金基体紧密结合。腐蚀动力学分析表明,搪瓷涂层的质量损失远低于GH3535合金,表明搪瓷涂层在氯化物盐中具有较高的化学稳定性和较低的孔隙率,可以有效地阻断Cl-向搪瓷涂层/合金界面的扩散。经过300 h腐蚀试验后,搪瓷涂层表面虽有腐蚀产物生成,但在长时间的实验中未出现开裂或剥落行为,熔盐也未渗入涂层内部。

外文摘要:

     The dry reprocessing technology of spent fuel based on molten salt electrolysis is the key step to realize the closed cycle of nuclear fuel in China. the process of molten salt electrolysis, the mixed chloride of alkali metal is used as solvent, and a series of processes such as extraction, refining and distillation are out at high temperature of 500-600℃ to efficiently separate and recover uranium, plutonium and other valuable nuclear species from spent fuel. However, this also brings serious challenges: the relevant equipment is exposed to the high-temperature chloride molten salt environment for a long time, and the service materials are facing serious high-temperature problems. Therefore, in order to further improve the service performance of service materials in molten salt corrosion environment, it is urgent to explore an economical and effective high-temperature protection scheme achieve the closed cycle of nuclear fuel as soon as possible.

     Grain Boundary Engineering (GBE) is an advanced material modification technology that optimizes the comprehensive performance of materials by regulating the grain structure within the material. In this study, nuclear-grade GH3535 alloy was used as the research material. The microstructure of the alloy was optimized using grain boundary, and the corrosion performance and high-temperature mechanical properties of the GH3535 alloy in a chloride molten salt environment were compared between the solid-solution state and grain boundary engineering state. The aim was to provide a simple and feasible material modification scheme to improve the service performance of alloy materials in a chloride molten salt environment. The showed that after 300 h of corrosion test in an argon-protected 45LiCl-55KCl wt.% molten salt environment at 50℃, the surface of the solid-solution (Non-GBE) sample formed a three-layer structure consisting of a discontinuous rich-Cr outer oxide layer, dealloyed Ni3Fe layer, and an inner oxidized NiCr2O4 layer, with a relatively serious degree of corrosion. In contrast, the corrosion degree of grain boundary engineering (GBE-2) sample was extremely slight, and no significant corrosion degradation phenomenon was observed on the surface. After molten salt corrosion, the high-temperatureation of the Non-GBE sample decreased significantly, and the brittle corrosion product layer and the preferentially corroded random grain boundaries aggravated the initiation and expansion of. In contrast, the high-temperature mechanical properties of the GBE sample did not show any degradation phenomenon, and its high-density twin boundaries and aging precipitated intragranularides together ensured the stable dynamic strain aging (DSA) performance of the alloy during deformation, showing excellent performance in corrosion resistance and high-temperature mechanical properties. In comparison, it found that the principle of molten salt vapor corrosion and molten salt liquid corrosion is consistent, but the degree of corrosion is more serious.

     Although grain boundary engineering has improved the properties of GH3535 alloy, the corrosion problem of the alloy still needs to be addressed the molten salt vapor environment. Therefore, efficient high-temperature protection measures have become an urgent task. In view of the shortcomings of traditional ceramic coatings, this paper designs singlemultiple nitride coatings and enamel coatings based on SiO2-B2O3-Na2O-CaO oxide phases as protective materials for the structure materials spent fuel molten salt electrolysis. The corrosion behavior of GH3535 alloy with nitride coating coated with enamel coating was investigated in a LiCl-KCl at 550℃. The results show that the nitride coating fails completely under molten salt corrosion. The enamel coating is amorphous and closely bonded to the substrate. Corrosion kinetics analysis shows that the mass loss of the enamel coating is far less than that of GH3535 alloy, indicating that the en coating has high chemical stability and low porosity in chloride salts and can effectively block the diffusion of Cl- to the enamel coating/alloy interface. After 300 h of corrosion test, although corrosion products are generated on the surface of the enamel coating, no cracking or peeling behavior is observed during the long-term experiment, and theten salt does not penetrate into the interior of the coating.

参考文献:

[1]王海洋, 荣健. 碳达峰、碳中和目标下中国核能发展路径分析[J]. 中国电力, 2021, 54(6): 86-94.

[2]戴宝华, 王德亮, 曹勇等. 2023 年中国能源行业回顾及2024年展望[J]. 当代石油石化, 2024, 31(1): 1-7.

[3]杨卫, 刘建, 李成嵩. 碳减排约束和氢能的城市能源污染控制研究[J]. 环境科学与管理, 2025, 50(1): 22-27.

[4]J.F. Aheame. Prospects for nuclear energy[J]. Energy Economics, 2011, 33(4): 572-580.

[5]B.W. Brook, A. Alonso, D.A. Meneley, et al. Why nuclear energy is sustainable and has to be part of the energy mix[J]. Sustainable Materials and Technologies, 2014, (1-2): 8-16.

[6]杜样琬. 能源革命:为了可持续发展的未来[J]. 中国人口·资源与环境, 2014, 24(7): 1-4.

[7]孟雨晨, 李光升. 2023年全球核电装机容量保持平稳[J]. 国外核新闻, 2024, (1): 17-19.

[8]周丽, 姚子麟, 步伟东. 碳中和目标下的中国核能发展建议[J]. 科技导报, 2021, 39(19): 43-47.

[9]黄强, 郭怿, 江建华等. “双碳”目标下中国清洁电力发展路径[J]. 上海交通大学学报, 2021, 55(12): 1499-1509.

[10]王成, 宋继叶, 张晓等. “两碳目标”下铀资源的保障能力及应对策略[J]. 铀矿地质, 2021, 37(5): 765-779.

[11]韦悦周, 吴艳, 李辉波. 最新核燃料循环[M]. 上海: 上海交通大学出版社, 2016, 122.

[12]顾忠茂. 我国先进核燃料循环技术发展战略的一些思考[J]. 核化学与放射化学, 2006, (1): 1-10.

[13]顾忠茂, 柴之芳. 关于我国核燃料后处理/再循环的一些思考[J]. 化学进展, 2011, 23(7): 1263-1271.

[14]林如山, 何辉, 唐洪彬等. 我国乏燃料干法后处理技术研究现状与发展[J]. 原子能科学技术, 2020, 54(S1): 115-125.

[15]杜雨昕, 林如山, 林师峰等. Ni基高温合金在LiCl-KCl熔盐中的腐蚀行为研究[J]. 材料研究与应用, 2024, 18(5): 826-833.

[16]钟振亚, 林如山, 陈志华等. 国外乏燃料干法后处理设施进展[J]. 核科学与工程, 2024, 44(1): 206-223.

[17]张思雨, 余中狄, 潘晓龙等. 乏燃料电解精炼用备选合金的熔盐腐蚀性能研究[J]. 世界有色金属, 2022, (22): 182-185.

[18]甄炳, 孔维俊, 高钰壁等. 中温形变热处理对新型镍基高温合金组织和力学行为的影响[J]. 稀有金属材料与工程, 2024, 53(2): 563-571.

[19]贾成涛. 镍基耐蚀合金特性及其应用研究分析[J]. 中国新技术新产品, 2017, (1): 52-53.

[20]李锦丽, 王敏. 316L和347不锈钢在Solar Salt中的腐蚀行为研究[J]. 热力发电, 2023, 52 (10): 39-45.

[21]安浩然, 王睿, 康燕等. 含氮马氏体不锈钢的腐蚀行为研究进展[J]. 钢铁研究学报, 2023, 35(6): 635-650.

[22]孙凤, 尹晓丽. 工艺参数对铁基合金性能的影响[J]. 热加工工艺, 2020, 49(19): 98-101.

[23]H. Luo, H.Z. Su, C.F. Dong, et al. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution[J]. Applied Surface Science, 2017, 400(1): 38-48.

[24]J.L. Zhao, D.K. Xu, M.B. Shahzad, et al. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel[J]. Applied Surface Science, 2016, 386(0): 371-380.

[25]M. Papaellas, L. Cheng, M. Kogia, et al. Inspection and structural health monitoring techniques for concentrated solar power plants[J]. Renewable Energy: An International Journal, 2016, 85: 1178-1191.

[26]H. Ai, M. Shen, H. Sun, et al. Effects of O2-additive on corrosion behavior of Fe-Cr-Ni alloy in molten fluoride salts[J]. Corrosion Science, 2019, 150: 175-182.

[27]刘颖. 三种不锈钢在700℃熔融LiCl中的腐蚀行为研究[J]. 化工设计通讯, 2019, 45(7): 146-147.

[28]何玉武, 李宇春, 张宏亮等. T91耐热钢在KCl·NaCl熔盐体系中的腐蚀电化学行为[J]. 材料保护, 2016, 49(5): 18-22.

[29]刘辉, 邱玮, 冷滨等. 304和316H不锈钢在LiF-NaF-KF熔盐中的腐蚀行为研究[J].中国腐蚀与防护学报, 2019, 39(5): 51-58.

[30]谢建昌. 不同加热温度对625镍基合金晶间腐蚀性能的影响[J]. 材料保护, 2020, 53(6): 47-49.

[31]C. Dong, Z.D. Liu, X.T. Wang, et al. Formation behavior of long needle-like M23C6 carbides in a nickel-based alloy without γ phase during long time aging[J]. Journal of Alloys and Compounds, 2020, 821(0): 153259.

[32]L. Gao, X.H. Qu, Y.D. Wu, et al. Evolution of carbides in K439B nickel-based cast superalloy during long-term aging at 800℃[J]. Materials Reports, 2024, 38(15): 12-16.

[33]L.C. Olson, J.K. Ambrosek, K. Sridharan. Materials corrosion in molten LiF-NaF-KF salt[J]. Journal of Fluorine Chemistry, 2008, 130(1): 67-73.

[34]杜鑫, 杜乾, 苏钲雄等. 裂变产物碲致高镍合金GH3535晶间腐蚀研究[J]. 中国腐蚀与防护学报, 2024, 44(5): 2123-2166.

[35]N.S. Patel, V. Pavlík, M. Boča. High-temperature corrosion behavior of superalloys in molten salts-A Review[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(1): 83-97.

[36]崔海亭, 袁修干, 邢玉明. 高温相变蓄热容器的优化设计及参数分析[J]. 太阳能学报, 2003, 24(4): 513-517.

[37]廖敏, 魏小兰, 丁静等. LNK碳酸熔盐热物性能研究[J]. 太阳能学报, 2010, 31(7): 863-867.

[38]廖敏, 丁静, 魏小兰等. 高温碳酸熔盐的制备及传热蓄热性质[J]. 无机盐工业, 2008, 40(10): 15-17.

[39]彭强, 魏小兰, 丁静等. 多元混合熔融盐的制备及其性能研究[J]. 太阳能学报, 2009, 30(12): 1621-1626.

[40]郑绵平, 张永生, 刘喜方等. 中国盐湖科学技术研究的若干进展与展望[J]. 地质学报, 2016, 90(9): 2123-2166.

[41]A.R. Shankar, S. Mathiya, K. Thyagarajan, et al. Corrosion and microstructure correlation in molten LiCl-KCl medium[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41(7): 1815-1825.

[42]A.R. Shankar, A. Kanagasundar, U.K. Mudai. Corrosion of Nickel-containing alloys in molten LiCl-KCl medium[J]. Corrosion, 2013, 69(1): 48-57.

[43]季畅, 姜文超, 杨薛明. 纳米ZnO/三元氯化物熔盐热物性及腐蚀特性实验研究[J]. 太阳能学报, 2023, 44(11): 81-85.

[44]许周烽, 孔水龙, 董朝晖等. Incoloy-800H合金表面镀镍层在氯化物熔盐中的腐蚀行为[J]. 腐蚀与防护, 2020, 41(11): 38-42.

[45]H. Sun, P. Zhang, J.Q. Wang. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion Science: 2018, 143(0): 187-199.

[46]S. Bell, T. Steinberg, G. Will. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power[J]. Renewable and Sustainable Energy Reviews, 2019, 114(0): 109328.

[47]K. Vignarooban, P. Pugazhendhi, C. Tucker, et al. Corrosion resistance of Hastelloys in molten metal-chloride heat-transfer fluids for concentrating solar power applications[J]. Solar Energy, 2014, 103(0): 62-69.

[48]M. Zhu, H. Ma, M. Wang, et al. Effects of cations on corrosion of Inconel 625 in molten chloride salts[J]. High Temperature Materials and Processes, 2016, 35(4): 337-345.

[49]J.W. Ambrosek. Molten chloride salts for heat transfer in nuclear systems[D]. University of Wisconsin-Madison, Madison, 2011.

[50]S.Y. Chen, X. Zhang, T. Li, et al. Corrosion behavior of surface modified alloy Inconel 625 in chloride molten salts[J]. China Surface Engineering, 2024, 37(1): 87-99.

[51]S.S. Raiman, S. Lee. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts[J]. Journal of Nuclear Materials, 2018, 511(0): 523-535.

[52]L.D. Chi, H. Sun, X.T. Zhou. Effects of alloying elements (Mo and W) on corrosion behavior of Ni-based alloys in NaCl-KCl-MgCl2 molten salt[J]. Corrosion Science. 2024, 237(0): 112313.

[53]C.C. Wang, J.M. Zhang, Z.D. Yu, et al. Effect of grain boundary engineering on corrosion behavior and mechanical properties of GH3535 alloy in LiCl-KCl molten salt[J]. Journal of Nuclear Materials, 2025, 604: 155513.

[54]K.W. Chen, H. Li, C.H. Lim, et al. Fine grains within narrow temperature range by tuning strain-induced boundary migration dominated recrystallization for selective laser melted Inconel 718[J]. Scripta Materialia, 2022, 219(0): 114882.

[55]杨瑞成, 王晖, 郑丽平等. 高性能镍基耐蚀合金的特性与研究动向[J]. 材料导报, 2001, 15(11): 21-23.

[56]郭宁, 秦紫瑞. 新型高硅铸造镍钼合金的组织及腐蚀行为的研究[J]. 铸造, 1998, (6): 26-29.

[57]程远, 赵新, 岳全召等. Mo和W对镍基单晶高温合金组织和关键性能的影响研究进展[J]. 稀有金属材料与工程, 2023, 52(7): 2599-2611.

[58]J. Hui, W.G. Liu, B. Wang. Quasi-gradient variation of microstructures and properties of Cu-Sn alloy along the thickness direction under cold spinning[J]. Journal of Alloys and Compounds, 2020, 831(0): 154701.

[59]王素珍, 陈伟平, 张梦超等. 晶界工程调控Inconel 718合金晶界处δ相的析出[J]. 精密成形工程, 2024, 16(10): 131-138.

[60]陈利阳, 刘乐乐, 赵彦营等. 均匀化处理对HMn58-2铜合金铸态组织与性能的影响[J]. 材料开发与应用, 2022, 37(5): 16-21.

[61]李建平, 姜洪锋, 毛大恒等. 轧制变形量对铸轧铅合金板带性能的影响[J]. 材料工程, 2012, (4): 17-21.

[62]S. Tokita, H. Kokawa, Y.S. Sato, et al. In situ EBSD observation of grain boundary character distribution evolution during thermomechanical process used for grain boundary engineering of 304 austenitic stainless steel[J]. Materials Characterization, 2017, 131(0): 31- 38.

[63]聂书红, 梁政强. 晶界工程对Incoloy 800H合金在850℃ FLiNaK熔盐中腐蚀行为的影响[J]. 腐蚀与防护, 2018, 39(1): 29-34.

[64]L. Tan, K. Sridharan, T.R. Allen, et al. Microstructure tailoring for property improvements by grain boundary engineering[J]. Journal of Nuclear Materials, 2008, 374(1-2): 270-280.

[65]李剑荣, 虞吉林. 随机晶界分布和连通性对晶间破坏行为的影响[J]. 固体力学学报, 2005, 26(2): 230-234.

[66]M. Kamaya. Influence of grain boundaries on short crack growth behaviour of IGSCC[J]. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27(6): 513-521.

[67]李慧, 夏爽, 周邦新. 690合金中晶界网络分布的控制及其对晶间腐蚀性的影响[J]. 中国材料进展, 2011, 30(5): 11-14.

[68]N. Abu-warda, J. Bedmar, S. Garcia-Rodriguez, et al. Impact of molten salts composition on the corrosion behavior of NiMoCr and CoNiCrAl coatings on L-PBF 316L stainless steel for CSP plants[J]. Surface and Coatings Technology, 2024, 482(0): 130744.

[69]M. Hamza, S. Louafi, O. Amel, et al. Hot corrosion behavior of Mg2SiO4 ceramicexposed to molten Na2SO4 at 900℃ to 1100℃[J]. Journal of Metals Materials and Minerals, 2024, 34(1).

[70]Y. Xie, E. Medvedovski, L. Joyce, et al. Assessing boronized and aluminized thermal diffusion coatings in molten chloride salt and molten sodium environments[J]. Surface and Coatings Technology, 2024, 487(0): 130973.

[71]J. Gomez-Vidal, R. Tirawat. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies[J]. Solar Energy Materials and Solar Cells, 2016, 157(5): 234-244.

[72]B.D. Souza, A. Leong, Q.F. Yang, et al. Corrosion behavior of boronized nickel-based alloys in the molten chloride salt[J]. Corrosion Science, 2021, 182(0): 109285.

[73]H.M. Zhu, B.C. Li, M.H. Chen, et al. AlN coatings on Hastelloy-N alloy offering superior corrosion resistance in LiF-KF-NaF molten salt[J]. The Chinese Journal of Nonferrous Metals, 2018, 231(7): 80-86.

[74]D.Y. Zheng, Y.M. Xiong, S.L. Zhu, et al. Oxidation and hot corrosion behavior of Ti2AlNb-based alloy with and without enamel coating at 800℃[J]. Transactions Nonferrous Metals Society of China, 2006, 16(3): 2050-2054.

[75]H.L. Zhang, L.X. Yang, X. Zhang, et al. Effect of enamel coating on the hot corrosion of 304 stainless steel beneath KCl-ZnCl2 deposits at 450℃[J]. Journal of Materials Research and Technology, 2023, 23: 245-257.

[76]P.H. Mayrhofer, F. Kunc, J. Musil, et al. A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings[J]. Thin Solid Films, 2002, 415(1-2): 151-159.

[77]L. Chen, J. Paulitsch, Y. Du, et al. Thermal stability and oxidation resistance of Ti-Al-N coatings[J]. Surface & Coatings Technology, 2012, 206(11-12): 2954-2960.

[78]S. Paldey, S.C. Deevi. Properties of single layer and gradient (Ti,Al)N coatings[J]. Materials Science &Engineering A, 2003, 361(1): 1-8.

[79]J.S. Kim, G.J. Kim, M.C. Kang, et al. Cutting performance of TiAlSiN coated tool by a hybrid-coating system for high-hardened materials[J]. Surface and Coatings Technology, 2005, 193(1): 249-254.

[80]蒋伟忠. 搪瓷与玻璃[M]. 北京: 中国轻工业出版社, 2015: 1-4.

[81]顾伟强, 李景学, 钱蕙春等. 一次搪耐酸搪瓷界面过渡层结构研究[J]. 玻璃与搪瓷,2011, 39(2): 7-10.

[82]H.L. Zhang, L.X. Yang, X. Zhang, et al. Effect of enamel coating on the hot corrosion of 304 stainless steel beneath KCl-ZnCl2 deposits at 450℃[J]. Journal of Materials Research and Technology, 2023, 23: 245-257.

[83]Z. Andrea, M. Giangiacomo, G. Daniele. Low-velocity impact behavior of vitreous-enameled steel plates[J]. International Journal of Impact Engineering, 2010, 37(6): 673.

[84]D.Q. Wang. Effect of crystallization on the property of hard enamel coating on steel substrate[J]. Applied Surface Science, 2009, 255(8): 4640-4645.

[85]M.T. Kim, S.Y. Chang, J.B. Won. Effect of hot isostatic pressing on the microstructure and mechanical properties of vitreous enamel coating on low carbon steel[J]. Surface Coatings Technology, 2006, 201(6): 3281-3288.

[86]袁磊, 谢新, 陈明辉等. 20钢及其搪瓷涂层在400℃下的氧化和NaCl腐蚀行为研究[J]. 中国腐蚀与防护学报, 2023, 43(4): 890-895.

[87]伦沛棋, 陈肯, 李康等. 马氏体不锈钢表面氧化铝颗粒增强搪瓷涂层的制备及抗高温氧化性能[J]. 电镀与涂饰, 2023, 42(20): 27-35.

[88]王家青, 汪朝晖, 胡迎锋. 静电喷涂技术及其应用讨论[J]. 机械工程师, 2006, (1): 136-138.

[89]黄世福, 刘宣义, 刘帅岐等. 两种热喷涂涂层在高温高氯熔盐中对基体材料保护性的对比[J]. 电镀与涂饰, 2025, 44(1): 9-15.

[90]李航, 李新梅, 杨现臣等. 海洋工业大气环境下输电线路塔材腐蚀行为及力学性能研究[J]. 表面技术, 2025, 54(2): 87-95.

[91]丁雨田, 孙富豪, 许佳玉等. 基于晶界工程调控增材制造Inconel 718 合金的腐蚀性能[J]. 稀有金属, 2024, 48(5): 640-650.

[92]K. Deepaka, S. Mandalb, C.N. Athreyaa, et al. Implication of grain boundary engineering on high temperature hot corrosion of alloy 617[J]. Corrosion Science, 2016, 106(0): 293-297.

[93]U. Krupp, W.M. Kane, X. Liu, et al. The effect of grain-boundary-engineering-type processing on oxygen-induced cracking of IN718[J]. Materialia Science and Engineering A, 2003, 349(1): 213-217.

[94]L.P. Kubin, A. Mortensen. Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues[J]. Scripta Materi alia, 2003, 48(2): 119-125.

[95]V. Randle. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials[J]. Acta Materialia, 1999, 47(15): 4187-4196.

[96]胡红磊, 赵明久, 戎利建. 抗氢合金J75中低ΣCSL晶界的形成与演化[J]. 稀有金属材料与工程, 2020, 49(1): 131-137.

[97]V. Randle. Twinning-related grain boundary engineering[J]. Acta Materialia, 2004, 52(14): 4067-4081.

[98]夏爽, 周邦新, 陈文觉. 690合金的晶界特征分布及其对晶间腐蚀的影响[J]. 电子显微学报, 2008, 27(6): 461-461.

[99]Q. Liu, Z.R. Wang, W.H. Liu, et al. Ni-Mo-Cr alloy corrosion in molten NaCl-KCl-MgCl2 salt and vapour[J]. Corrosion Science, 2021, 180(0): 109183.

[100]Y.P. Wu, B. Leng, X.T. Zhou. Corrosion behaviors of Ni-WC cemented carbide in high temperature molten fluoride salt and vapor[J]. Corrosion Science, 2022, 561(0): 153541.

[101]A. Machet, A. Galtayries, P. Marcus, et al. XPS study of oxides formed on nickel-base alloys in high-temperature and high-pressure water[J]. Surface and Interface Analysis, 2002, 34(1): 197-200.

[102]X.Y. Tang, S.Z. Wang, D.H. Xu, et al. Corrosion behavior of Ni-Based alloys in supercritical water containing high concentrations of salt and oxygen[J]. Industrial and Engineering Chemistry Research, 2013, 52(51): 18241-18250.

[103]陈思雨, 张弦, 李腾等. 多元氯化物熔盐中表面改性Inconel 625的腐蚀行为[J]. 中国表面工程, 2024, 37(1): 87-99.

[104]J. Sure, A.R. Shankar, S. Ramya, et al. Corrosion behaviour of carbon materials exposed to molten lithium chloride-potassium chloride salt[J]. Carbon, 2014, 67(0): 643-655.

[105]A.R. Shankar, K. Thyagarajan, U.K. Mudali. Corrosion behavior of candidate materials in molten LiCl-KCl salt under argon atmosphere[J]. Corrosion, 2013, 69(7): 655-665.

[106]马宏芳, 朱明, 赵云苗等. 两种合金在氯化物熔盐中腐蚀行为研究[J]. 材料导报, 2014, 28(14): 109-113.

[107]刘安琪, 赵飞, 谭元标等. 形变热处理对镍基高温合金组织和性能的影响研究进展[J].热加工工艺, 2023, 1-5.

[108]H.Y. Bi, H. Kokawa, Z.J. Wang, et al. Suppression of chromium depletion by grain boundary structural change during twin-induced grain boundary engineering of 304 stainless steel[J]. Scripta Materialia, 2003, 49(3): 219-223.

[109]陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础[M]. 北京: 冶金工业出版社, 1999, 32-56.

[110]李雪, 喻政, 解志文等. 耐热钢及搪瓷涂层在600℃高温CO2气氛中的腐蚀行为[J]. 金属学报, 2024.

[111]孙志平, 唐昌伟, 何光宇等. 热腐蚀和盐雾腐蚀影响氮化物涂层冲蚀行为的机制[J]. 稀有金属材料与工程, 2021, 50(5): 1727-1734.

[112]杨啸东, 李雪, 喻政等. 搪瓷涂层在600℃熔融MgCl2-NaCl-KCl中热腐蚀行为研究[J]. 中国腐蚀与防护学报, 2025, 45(1): 155-163.

[113]洪昊, 李文生, 汤上等. 搪瓷涂层的耐腐蚀及改良方法研究进展[J]. 表面技术, 2023, 52(11): 155-170.

中图分类号:

 TG174.4    

开放日期:

 2027-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式