- 无标题文档
查看论文信息

论文中文题名:

 掘进面风流监测及智能调控实验平台研制    

姓名:

 赵少龙    

学号:

 19205201084    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 煤矿机电装备智能化    

第一导师姓名:

 龚晓燕    

第一导师单位:

 西安科技大学    

第二导师姓名:

 岳巧珍    

论文提交日期:

 2022-06-24    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Development of an experimental platform for airflow monitoring and intelligent control in the heading face    

论文中文关键词:

 掘进面 ; 风速 ; 瓦斯及粉尘浓度 ; 风流监测 ; 智能调控 ; 相似与模化 ; PLC控制    

论文外文关键词:

 Heading face ; Air speed ; gas and dust concentration ; Airflow monitoring ; Intelligent control ; Similarity and modeling theory ; PLC control    

论文中文摘要:

针对目前掘进工作面风筒出风口风流状态不能实时动态变化,导致掘进巷道内风流分布不合理,死角区粉尘、瓦斯积聚严重难以稀释排出的问题。本文从模型实验的角度出发,研制出了掘进面风流监测及智能调控实验平台,有效解决了掘进面风流调控下风速、瓦斯及粉尘浓度实测数据获取困难的问题,并为掘进面风流监测及智能调控系统在井下实际应用提供了理论依据及技术支持。本文通过对掘进面风流监测及调控功能需求分析,完成了实验平台的总体方案设计、软硬件系统设计与开发。最后完成了实验平台的研制搭建及测试验证。具体研究内容如下:

(1)实验平台总体方案设计。通过对掘进工作面局部通风系统的组成及风流分布特征进行分析,并结合数值模拟实验研究分析风速、瓦斯及粉尘浓度的隐患区域,建立风流监测及智能调控实验平台实现的总体方案;并利用加权数据融合算法及免疫遗传算法对风流监测预警及智能调控实现方法进行建立。基于相似模化理论对实验平台进行流场相似与模化设计,并利用SolidWorks软件建立实验平台三维模型。

(2)实验平台硬件系统设计。分析数据采集系统结构,确定风速、瓦斯及粉尘浓度隐患区域,对实验平台风速、瓦斯、粉尘传感器及摄像机监测位置进行布置,并对数据采集系统硬件接线进行设计。利用以太网通讯技术,建立井上井下数据传输结构,以确保数据传输的实时性与准确性。根据建立的风流调控装置控制方案,对步进电机控制系统、PLC控制器I/O地址分配、PLC控制系统硬件接线及步进电机驱动系统硬件接线等进行详细设计。

(3)实验平台软件系统设计与开发。利用编程软件STEP 7-Micro/win 32对S7-200 smart PLC的监控程序进行编写;利用组态王软件对上位机系统的实时监测、装置控制、预警显示、视频监控等指令面板进行设计与开发;最后利用SQL Server软件建立上位机系统数据库,实现对数据的存储与管理。

(4)实验平台研制及测试验证。基于对实验平台的软硬件系统设计及建立的实验平台三维模型,研制搭建风流监测及智能调控实验平台。利用搭建的风流监测及智能调控实验平台以陕西省某煤矿S1202掘进面为研究对象,对搭建的实验平台进行各功能模块测试验证。最后利用研制的风流调控装置进行井下安装测试,验证实验平台的流场相似性与风流调控的准确性及有效性。

论文外文摘要:

At present, the current state of airflow of the outlet in the heading face cannot be changed dynamically in real time, which leads to the unreasonable distribution of airflow in the driving roadway, and the serious accumulation of dust and gas in the dead corner is difficult to dilute and discharge. From the perspective of model experiment, this paper develops an experimental platform for airflow monitoring and intelligent control, which effectively solves the difficulty of obtaining the measured data of air speed, gas and dust concentration under airflow control, and provides theoretical basis and technical support for practical application of airflow monitoring and intelligent control system of the heading face.  In this paper, the overall scheme design, software and hardware systems design and development of the experimental platform are completed by analyzing the requirements of airflow monitoring and control function of the heading face. And the development, testing and verification of the experimental platform are finally completed. The specific research contents are as follows :

Design the overall scheme of the experimental platform. By analyzing the composition of local ventilation system and airflow distribution characteristics of the heading face, combined with numerical simulation experiments to analyze the hidden danger area of air speed, gas and dust concentration, the overall scheme of airflow monitoring and intelligent control experimental platform is established; and the weighted data fusion algorithm and immune genetic algorithm are used to establish the realization method of airflow early warning and intelligent control. Based on the similarity modeling theory, the flow field similarity and modeling design of the experimental platform are carried out, and the three-dimensional model of the experimental platform is established by using SolidWorks software.

(2) Design the hardware system of the experimental platform. Analyze the structure of the data acquisition system, determine the hidden danger area of air speed, gas and dust concentration, arrange the position of camera monitoring points and the sensor of air speed, gas and dust on the experimental platform, and design the hardware wiring of the data acquisition system. Using Ethernet communication technology, the data transmission structure is established to ensure the real-time and accuracy of data transmission. According to the established airflow control device control scheme, the stepper motor control system, PLC controller I/O address allocation, PLC control system hardware wiring and hardware wiring of stepper motor drive system are designed in detail.

(3) Design and development of experimental platform software system. The monitoring program of S7-200 smart PLC is writed with the programming software STEP 7-Micro / win 32; the Kingview software is used to design and develop the real-time monitoring, device control, early warning display, video monitoring and other instruction panels of the upper computer system; finally, use SQL Server software to establish the upper computer system database to realize the storage and management of data.

(4) Experimental platform development, testing and verification. Based on the design of software and hardware systems and the established three-dimensional model of the experimental platform, the experimental platform for airflow monitoring and intelligent control is developed and constructed. Taking the S1202 heading face of the coal mine in Shaanxi Province as the research object, the built experimental platform is used to test and verify each functional module. Finally, the developed airflow control device is tested and installed underground to verify the flow field similarity of the experimental platform and the accuracy and effectiveness of airflow control.

参考文献:

[1]武强, 涂坤, 曾一凡, 等. 打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报, 2019, 44(06): 1625-1636.

[2]王国法, 王虹, 任怀伟, 等. 智慧煤矿2025情景目标和发展路径[J]. 煤炭学报, 2018, 43(02): 295-305.

[3]韩健. 煤矿综掘智能化开采技术研究[J]. 技术与市场, 2021, 28(02): 124-125.

[4]高矿斌. 综采工作面智能化技术的应用现状[J]. 化工管理, 2022, (04): 61-63.

[5]刘送永, 张德义. 巷道掘进机智能化技术研究现状及展望[J]. 工矿自动化, 2019, 45(10): 23-28.

[6]丁百川. 2020年全国煤矿事故特点及原因分析[EB/OL]. http://www.ccoalnews.com/ 202101/26/c139670.html, 2021-01-26/2021-09-15.

[7]迟春晓, 房旭刚, 唐新建. 综放工作面上隅角瓦斯超限的研究与处理[J]. 内蒙古煤炭经济, 2007(06): 96-98.

[8]耿凡, 周福宝, 罗刚. 煤矿综掘工作面粉尘防治研究现状及方法进展[J]. 矿业安全与环保, 2014, 41(05): 85-89.

[9]王国法, 杜毅博. 智慧煤矿与智能化开采技术的发展方向[J]. 煤炭科学技术, 2019, 47(01): 1-10.

[10]杨仁树. 我国煤矿岩巷安全高效掘进技术现状与展望[J]. 煤炭科学技术, 2013, 41(09): 18-23.

[11]谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(05): 1187-1197.

[12]牛超, 施龙青, 肖乐乐, 等. 2001-2013年煤矿生产事故分类研究. 煤矿安全, 2015, 46 (3): 208-211.

[13]王海桥, 施式亮, 刘荣华, 等. 独头巷道附壁射流通风流场数值模拟研究[J]. 煤炭学报, 2004, (04): 425-428.

[14]国家安全生产监督管理总局. 煤矿安全规程[M]. 北京: 煤炭工业出版社, 2016: 78-113.

[15]龚晓燕, 秦少妮, 张永强, 等. 基于改变风筒出风口参数的综掘工作面风流场优化研究[J]. 煤矿安全, 2017, 48(12): 168-171+175.

[16]龚晓燕, 莫金明, 薛馨禹, 等. 分形特征对掘进通风粉尘分布和沉降规律影响分析[J]. 煤炭技术, 2017, 36(09): 112-114.

[17]龚晓燕, 李根, 焦婉莹, 等. 掘进巷道壁面粗糙度对受限贴附紊动射流的影响[J]. 矿业安全与环保, 2017, 44(01): 28-31.

[18]龚晓燕, 莫金明, 惠双琳, 等. 煤矿掘进巷道风筒附壁距离对风流场的影响[J]. 煤矿安全, 2017, 48(04): 203-206.

[19]龚晓燕, 侯翼杰, 赵宽, 等. 综掘工作面风筒出风口风流智能调控装置研究[J]. 煤炭科学技术, 2018, 46(12): 8-14.

[20]Gong X Y, Jia C C, Sun K, et al. Distribution Law and Prediction Model of Dust Concentration under Airflow Adjustment in Fully Mechanized Heading Face [J]. Mathematical Problems in Engineering, 2019, 1155-1172.

[21]Gong X Y, Zhang X Y, Xia Z X, et al. Adjustment for the Optimum Distribution of Dust and Gas in Fully Mechanized Heading Face[J]. Applied Ecology and Environmental Research, 2018, 4985-5003.

[22]张永强. 综掘面风筒出风口机械手动式调控装置研制[D]. 西安: 西安科技大学, 2018.

[23]Cheng W, Yu H, Zhou G, et al. The diffusion and pollution mechanisms of airborne dusts in fully-mechanized excavation face at mesoscopic scale based on CFD-DEM[J]. Process Safety and Environmental Protection, 2016, 104: 240-253.

[24]Li P, Zhang X, Lu X. Three-dimensional Eulerian modeling of gas–liquid–solid flow with gas hydrate dissociation in a vertical pipe[J]. Chemical Engineering ence, 2018,196: 145-165.

[25]李雨成, 李智, 高伦. 基于风流及粉尘分布规律的机掘工作面风筒布置[J]. 煤炭学报, 2014, 39(S1): 130-135.

[26]王维建, 刘荣华, 王鹏飞, 等.不同吹吸风口位置综掘面粉尘扩散规律数值模拟研究[J]. 矿业工程研究, 2011, 26(04): 24-28.

[27]Kurnia J C, Xu P, Sasmito A P. A novel concept of enhanced gas recovery strategy from ventilation air methane in underground coal mines – A computational investigation[J]. Journal of Natural Gas Science & Engineering, 2016, 35: 661-672.

[28]沈宏俊, 王春霞, 赵雄雄,等. 掘进巷道瓦斯分布与风筒位置关系的模拟研究[J]. 六盘水师范学院学报, 2015, 27(05): 85-88.

[29]聂文, 程卫民, 陈连军, 等. 旋流风幕扰动硬岩综掘面风-尘流场数值模拟[J]. 中国安全科学学报, 2014, 24(03): 120-125.

[30]聂文, 程卫民, 周刚. 综掘工作面压风气幕形成机理与阻尘效果分析[J]. 煤炭学报, 2015, 40(03): 609-615.

[31]程卫民, 聂文, 姚玉静, 等. 综掘工作面旋流气幕抽吸控尘流场的数值模拟[J]. 煤炭学报, 2011, 36(08): 1342-1348.

[32]Zhou L, Goodman G, Martikainen A. Computational fluid dynamics (CFD) investigation of impacts of an obstruction on airflow in underground mines[J]. Society for Mining, Metallurgy, and Exploration, 2013, 332: 505-513.

[33]蒋仲安, 王露露, 张中意. 掘进巷道中长压短抽条件下附壁风筒的实验研究[J]. 现代矿业, 2015, 31(3): 129-133.

[34]王凯, 郭红光, 王飞,等. 综掘工作面不同直径风筒下粉尘运移规律研究[J]. 煤矿开采, 2015, 20(05): 80-83+69.

[35]周福宝, 魏连江, 夏同强, 等.矿井智能通风原理、关键技术及其初步实现[J]. 煤炭学报, 2020, 45(06): 2225-2235.

[36]Lalatendu Muduli, Prasanta K. Jana, Devi Prasad Mishra. A novel wireless sensor network deployment scheme for environmental monitoring in longwall coal mines[J]. Process Safety and Environmental Protection, 2017, 109: 564-576.

[37]Lalatendu Muduli, Devi Prasad Mishra, Prasanta K. Jana. Application of wireless sensor network for environmental monitoring in underground coal mines: A systematic review[J]. Journal of Network and Computer Applications, 2018, 106: 48-67.

[38]Peng Chen, Yonghong Xie, Pei Jin, et al. A wireless sensor data-based coal mine gas monitoring algorithm with least squares support vector machines optimized by swarm intelligence techniques[J]. International Journal of Distributed Sensor Networks, 2018, 14(5): 1-21.

[39]Zhang Yu, Yang Wei, Han Dongsheng, et al. An integrated environment monitoring system for underground coal mines-wireless sensor network subsystem with multi-parameter monitoring[J]. Sensors (Basel, Switzerland), 2014, 14(7): 13149-13170.

[40]李俭霞, 彭伦天, 卢建波.煤矿主要通风机自适应监控系统的研制[J]. 矿业安全与环保, 2012, 39(S1): 116-118.

[41]杨帅, 撒占友, 王相君, 等.基于环境监测的矿井通风三维仿真辅助决策系统设计[J]. 中国安全生产科学技术, 2020, 16(01): 80-84.

[42]李腾飞. 矿井风网智能调风风门监控系统[D]. 淮南: 安徽理工大学, 2021.

[43]杨卓亚. 矿井通风系统重大隐患监测识别与安全评价方法研究[D]. 西安: 西安科技大学, 2021.

[44]崔博文. 智能变频技术在矿井通风系统中的应用[J]. 内蒙古煤炭经济, 2016(08): 3-4.

[45]李文华, 李春雷, 于宁. 基于模糊控制的局部通风机智能控制系统[J]. 科技导报, 2015, 33(01): 52-56.

[46]郭晓萌. 井下局部通风机运行状态监测系统研究[J]. 自动化应用, 2020(10): 131-132+137.

[47]魏振华. 远程智能通风除尘系统在掘进巷道中应用[J]. 山东煤炭科技, 2019(08): 92-93+96.

[48]代雪锋. 煤矿掘进工作面通风布置对粉尘分布规律的影响[J]. 矿业装备, 2020(06): 50-51.

[49]黄坚, 徐巍, 姚宗旭, 等. 金属矿山智能通风理论与技术[J]. 有色设备, 2021, 35(05): 89-93.

[50]李菲. 多传感器数据融合技术在温室控制系统中的应用研究[J]. 科技视界, 2019(30): 34-36.

[51]王文庆, 龚娜, 张涛, 等. 基于二级融合的矿井环境智能监测研究[J]. 传感器与微系统, 2013, 32(02): 57-59+62.

[52]韩郑. 掘进面风场优化的增量式智能调控规则研究[D]. 西安: 西安科技大学, 2021.

[53]刘宏升, 孙文策. 工程流体力学(第五版)[M]. 大连: 大连理工出版社, 2015: 128-140.

[54]乔力伟. 风幕通风方式下施工隧道粉尘浓度场相似模化实验与数值模拟[D]. 成都:西南交通大学, 2019.

[55]龚晓燕, 赵少龙, 刘壮壮, 等. 掘进面风流监测及适应性智能调控系统研制[J/OL]. 安全与环境学报: 1-11. DOI: 10.13637/j. issn. 1009-6094. 2021. 1677.

[56]王丽霞. 煤矿工业以太环网的建设与应用研究[J]. 数字通信世界, 2021(12): 44-46.

[57]彭赟, 刘志雄, 刘晓莉, 等. TCP/IP网络体系结构分层研究[J]. 中国电力教育, 2014(15): 38-39+64.

[58]杨临. PLC在机房环境监控系统中的应用[J]. 自动化与仪器仪表, 2010(06): 66-67.

[59]Yu Haiming, Cheng Weimin, Xie Yao, et al. Spray dedusting scheme under hybrid ventilation at a mechanized excavation face[J]. Environmental science and pollution research international, 2020, 27(8): 7851-7871.

中图分类号:

 TD724    

开放日期:

 2024-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式