- 无标题文档
查看论文信息

论文中文题名:

 GNSS实时轨道、钟差产品综合及其应用    

姓名:

 诸茂林    

学号:

 21210226078    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 GNSS数据处理    

第一导师姓名:

 陈宪冬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-01    

论文外文题名:

 GNSS real-time orbit and clock product combinatoin and its application    

论文中文关键词:

 IGS实时服务 ; 实时轨道综合 ; 实时钟差综合 ; 抗差估计 ; 粗差探测    

论文外文关键词:

 IGS real-time service ; Combination of real-time orbit products ; Combination of real-time clock products ; Robust estimation ; Gross error detection    

论文中文摘要:

实时轨道和钟差的精度与质量是实时精密定位服务可靠性的核心保障。尽管IGS提供了多种实时卫星轨道和钟差产品,但其在连续性和稳定性方面仍面临挑战,需要进一步优化以提升服务质量。因此,有必要深入分析各家IGS实时产品,研究多GNSS系统实时轨道钟差产品的综合方法,为实时高精度GNSS定位服务提供可靠的基础支持。本文的主要研究内容如下:

(1)本文对当前五大分析中心发布的实时产品质量进行了评估。结果显示,CAS发布的GPS产品具有最高的可用性,而GFZ和WHU对于GAL的卫星可用性最高;在BDS卫星方面,CAS、GFZ、WHU三家相较于CNES表现更好。在三维轨道精度方面,CNES的GPS卫星表现最佳,各方向精度均在3cm以内。在卫星钟差精度方面,实验结果表明:WHU的GPS表现最优,GMV的GAL卫星在三维轨道和卫星钟差精度上均为最佳,WHU的BDS-2卫星在三维轨道精度上表现最佳,而CNES的BDS-2卫星在钟差精度上最优,WHU的BDS-3轨道和钟差产品精度表现最好。

(2)针对不同IGS分析中心提供的实时轨道产品存在参考基准不一致问题,采用Helmert七参数模型估计产品间的相似变换参数,以削弱不同轨道产品参考基准不统一和系统偏差的影响。针对实时轨道产品接收过程中可能出现的数据中断问题,利用拉格朗日插值法修复残缺数据,并通过实验确定了GPS、GAL和BDS-3最低插值阶数。基于上述轨道预处理流程,采用等权、先验权和基于均方差因子的定权策略进行综合轨道估计,实验结果表明:综合后的实时轨道精度相对于单个分析中心轨道精度最低提升了8.8%,相较于IGS综合产品提升了14.3%以上。然后比较了不同综合策略的效果,其中均方差因子定权策略表现最好。

(3)对于实时钟差中的异常值,本文采用基于中位数的小波变换探测法进行处理,有效去除了异常值。针对IGS实时钟差综合中的跳变问题,采用实时预测和跳变补偿方法进行处理,以消除由参考基准缺失或参考钟切换引起的跳变。基于这些实时钟差预处理方法,本文采用抗差定权和多角帽法进行综合钟差,实验结果表明:综合后的GPS、GAL实时卫星钟差STD相对于单个分析中心钟差STD至少降低了8.6%,相较于IGS综合产品降低了21.6%以上;综合后的BDS-3IGSO/MEO实时卫星钟差STD相较于单个分析中心钟差和综合钟差产品STD明显降低。接着对比了两种策略的综合效果,实验表明多角帽法略优于抗差定权。

(4)最后,本文研发了一个基于MFC的多系统GNSS实时轨道/钟差产品综合软件,并进行数据完整率验证,最后基于实时综合产品进行了静态定位实验和实时时间传递实验,实验结果表明:该软件生成的综合产品在数据完整率上展现出显著优势,且综合产品达到了厘米级的定位精度和亚纳米级的时间传递精度,证明了软件的实用性和综合产品的有效性。

论文外文摘要:

The accuracy and quality of real-time orbit and clock bias are crucial for the reliability of real-time precise positioning services. Although the International GNSS Service (IGS) provides various real-time satellite orbit and clock bias products, challenges remain in their continuity and stability, necessitating further optimization to enhance service quality. Therefore, it is essential to thoroughly analyze various IGS real-time products and study the integrated methods of multi-GNSS system real-time orbit and clock bias products to provide a reliable foundation for real-time high-precision GNSS positioning services. The main research contents of this paper are as follows:

(1)This paper evaluates the quality of real-time products released by the five major analysis centers. The results indicate that the GPS products from CAS have the highest availability, while GFZ and WHU have the highest satellite availability for GAL. For BDS satellites, CAS, GFZ, and WHU perform better compared to CNES. Regarding the three-dimensional orbit accuracy, CNES's GPS satellites perform the best, with accuracies within 3 cm in all directions. In terms of satellite clock bias accuracy, the experimental results show that WHU's GPS performs the best, GMV's GAL satellites have the best three-dimensional orbit and satellite clock bias accuracy, WHU's BDS-2 satellites have the best three-dimensional orbit accuracy, while CNES's BDS-2 satellites have the best clock bias accuracy, and WHU's BDS-3 orbit and clock bias products perform the best.

(2)To address the issue of inconsistent reference frames among real-time orbit products provided by different IGS analysis centers, the Helmert seven-parameter model is used to estimate the similarity transformation parameters between products, mitigating the impact of inconsistent reference frames and system biases. To address potential data interruptions during the reception of real-time orbit products, the Lagrange interpolation method is used to repair missing data, and experiments determine the minimum interpolation order for GPS, GAL, and BDS-3. Based on the above orbit preprocessing workflow, combined orbit estimation is conducted using equal weighting, a priori weighting, and variance factor-based weighting strategies. The experimental results show that the accuracy of the combined real-time orbit improved by at least 8.8% compared to the orbit accuracy of individual analysis centers, and by more than 14.3% compared to the IGS combined products. A comparison of different combination strategies indicates that the variance factor-based weighting strategy performs the best.

(3) For outliers in real-time clock bias, this paper employs a wavelet transform detection method based on the median to effectively remove outliers. To address clock jumps in the IGS real-time clock combination, real-time prediction and jump compensation methods are used to eliminate jumps caused by reference frame shifts or reference clock switches. Based on these real-time clock preprocessing methods, robust weighting and the Helmert variance component estimation method are used for combined clock bias. The experimental results show that the combined GPS and GAL real-time satellite clock bias standard deviations (STDs) are reduced by at least 8.6% compared to the clock bias STDs of individual analysis centers, and by more than 21.6% compared to the IGS combined products. The combined BDS-3 IGSO/MEO real-time satellite clock bias STDs are significantly reduced compared to the clock bias STDs of individual analysis centers and combined clock bias products. A comparison of the two combination strategies shows that the Helmert variance component estimation method is slightly better than robust weighting.

(4)Finally, this paper developed a multi-system GNSS real-time orbit/clock bias product combination software based on MFC and validated data integrity. Static positioning experiments and real-time time transfer experiments were conducted based on the combined real-time products. The experimental results show that the combined products generated by the software exhibit significant advantages in data integrity and achieve centimeter-level positioning accuracy and sub-nanosecond-level time transfer accuracy, demonstrating the practicality of the software and the effectiveness of the combined products.

参考文献:

[1] Ning J, Yao Y, Zhang X. Overview of the development of global navigation satellite system[J]. Journal of Geography and Cartography, 2022, 5(2): 90.

[2] Yang Yuanxi, Gao Weiguang, Guo Shuren, Mao Yue, Yang Yufei. Introduction to BeiDou-3 navigation satellite system[J]. Navigation, 2019, 66(1): 7-18.

[3] 蔡洪亮, 孟轶男, 耿长江, 等. 北斗三号全球导航卫星系统服务性能评估: 定位导航授时、星基增强、精密单点定位、短报文通信与国际搜救[J]. 测绘学报, 2021, 50(4): 427-435.

[4] 许豪, 张勤, 王利, 等. 无人机抛投式GNSS滑坡监测设备智能化部署选址方法[J]. 测绘学报, 2024, 1-19.

[5] 沈楠. 基于GNSS与加速度计融合的建筑物形变监测关键技术研究[J]. 测绘学报, 2023, 52(8): 1414.

[6] 胡祥祥. GNSS/InSAR融合监测滑坡多因子时空演变规律的研究[D]. 南京: 南京信息工程大学, 2023.

[7] 曹丽丽. 基于5G/GNSS组合的车辆导航完好性监测方法研究[D]. 北京: 北京邮电大学, 2023.

[8] 郭戈, 刘佳庚, 孙晓峥. 融合5G/GNSS的车辆高精度鲁棒安全定位: 进展与展望[J]. 控制与决策, 2023, 38(2): 289-303.

[9] 张帅. 基于GNSS的农田信息采集机器人点跟踪控制系统研究[D]. 武汉: 华中农业大学, 2022.

[10] 刘磊. 地/天基GNSS电离层反演技术及在空间天气监测的应用研究[D]. 武汉: 武汉大学, 2020.

[11] Ge Y, Dai P, Qin W. 2019. Performance of Multi-GNSS Precise Point Positioning Time and Frequency Transfer with Clock Modeling[J]. Remote Sensing, 11(3): 347.

[12] 李星星. GNSS精密单点定位及非差模糊度快速确定方法研究[D]. 武汉: 武汉大学, 2013.

[13] 张小红, 郭斐, 李盼, 等. GNSS精密单点定位中的实时质量控制[J]. 武汉大学学报(信息科学版), 2012, 37(8): 940-944.

[14] 李盼. GNSS精密单点定位模糊度快速固定技术和方法研究[D]. 武汉: 武汉大学, 2016.

[15] 潘宗鹏. GNSS精密单点定位及其质量控制的理论和方法[D]. 郑州: 战略支援部队信息工程大学, 2018.

[16] 周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[D]. 上海: 华东师范大学, 2018.

[17] 万苏波. BDS/GPS组合精密单点定位关键技术研究[D]. 徐州: 中国矿业大学, 2019.

[18] 黄剑明, 庄典, 李敬伟, 等. BDS/GPS PPP固定解精度分析及其在地震中的应用[J]. 导航定位学报, 2023, 11(2): 106-116.

[19] 杨俊山, 项鑫, 熊晓峰, 等. 矿区地表形变PPP监测自适应滤波算法及其应用[J]. 测绘通报, 2022, (9): 129-133.

[20] Anand B, Senapati M, Barsaiyan V. LiDAR-INS/GNSS-Based Real-Time Ground Removal, Segmentation, and Georeferencing Framework for Smart Transport-ation[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-11.

[21] Wang H, Noguchi N. Navigation of a robot tractor using the centimeter level augmentation information via Quasi-Zenith Satellite System[J]. Engineering in Agriculture, Environment and Food, 2019, 12(4): 414-419.

[22] Eling C, Wieland M, Hess C, et al. Development and elevation of a UAV based mapping system for remote sensing and surveying applications[J]. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2015, XL-1/W4: 233-239.

[23] Hoechner A, Ge M, Babeyko A, et al. Instant tsunami early warning based on real-time GPS-Tohoku 2011 case study[J]. Nat. Hazards Earth Syst. Sci., 2013, 13(5): 1285-1292.

[24] Aughey R J, Falloon C. Real-time versus post-game GPS data in team sports[J]. Journal of Science and Medicine in Sport, 2010, 13(3): 348-349.

[25] Weber G, Mervart L, Dousa J. ReaFtime clock and orbit corrections for improved point positioning via NTRIP[C]//ION GNSS 2007. Fort Worth, TX, 2007.

[26] Gu S, Guo R, Gong X, et al. Real-time precise point positioning based on BDS-3 global short message communication[J]. GPS Solution, 2022, 26(4): 107-121.

[27] Ge Y, Qin W, Su K, et al. A new approach to real-time precise point-positioning timing with International GNSS Service real-time service products[J]. Measurement Science and Technology, 2019, 30(12): 125104.

[28] 孙铭涵, 庞治国, 吕娟, 等. 地基BDS/GNSS水汽监测在水利领域的研究进展与展望[J]. 全球定位系统, 2024, 49(1):19-33.

[29] Wenfei G, Mengmeng Z, Shengfeng G, et al. Linear quadratic Gaussian-based clock steering system for GNSS real-time precise point positioning timing receiver [J]. GPS Solutions, 2023, 28(1).

[30] Xuanbin W, Xingxing L, Zhiheng S, et al. Factor graph optimization-based multi-GNSS real-time kinematic system for robust and precise positioning in urban canyons[J]. GPS Solutions, 2023, 27 (4).

[31] Zhilu W, Cuixian L, Xinjuan H, et al. Real-time shipborne multi-GNSS atmospheric water vapor retrieval over the South China Sea[J]. GPS Solutions, 2023, 27 (4).

[32] Chen Z, Huang G, Xie W, et al. GNSS Real-Time Warning Technology for Expansive Soil Landslide—A Case in Ningming Demonstration Area[J]. Remote Sensing, 2023, 15(11).

[33] Wang L, Li Z, Ge M, et al. Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service[J]. GPS Solutions, 2019, 23(3): 1-12.

[34] Li B, Ge H, Bu Y, et al. Comprehensive assessment of real-time precise products from IGS analysis centers[J]. Satellite Navigation, 2022,3(1): 12.

[35] Yu C, Zhang Y, Chen J, et al. Performance Assessment of Multi-GNSS Real-Time Products from Various Analysis Centers[J]. Remote Sensing, 2023,15(1): 140.

[36] 苏春阳, 舒宝, 郑蕾, 等. GPS/BDS实时SSR产品质量评估及其PPP性能分析[J]. 武汉大学学报(信息科学版): 1-14.

[37] 王天润, 袁德宝, 李允钊, 等. 不同IGS分析中心BDS-3实时精密轨道和钟差产品精度评估与分析[J]. 大地测量与地球动力学: 1-10.

[38] Elsobeiey M, Al-Harbi S. Performance of real-time Precise Point Positioning using IGS real-time service[J]. GPS solutions, 2016, 20(3): 565-571.

[39] 华亮. 基于RTS的实时GNSS 精密单点定位技术及应用研究[D]. 青岛: 中国石油大学(华东), 2017.

[40] Hadas T, Bosy J. IGS RTS precise orbits and clocks verification and quality degradation over time[J]. GPS solutions, 2015, 19(1): 93-105.

[41] Kazmierski K, Sośnica K, Hadas T. Quality assessment of multi-GNSS orbits and clocks for real-time precise point positioning[J]. Gps Solutions, 2018, 22(1): 1-12.

[42] Abdelazeem M, Çelik R N, El-Rabbany A. An enhanced real-time regional ionospheric model using IGS real-time service (IGS-RTS) products[J]. The Journal of Navigation, 2016, 69(3): 521-530.

[43] El-Diasty M. Integrity Analysis of Real-time PPP Technique with IGS-RTS Service for Maritime Navigation[J]. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2017, 42.

[44] He K, Weng D, Ji S, et al. Ocean Real-Time Precise Point Positioning with the BeiDou Short-Message Service[J]. Remote Sensing, 2020, 12(24): 4167.

[45] Zhang Y, Nie Z, Wang Z, et al. Real-Time Coseismic Displacement Retrieval Based on Temporal Point Positioning with IGS RTS Correction Products[J]. Sensors, 2021, 21(2): 334.

[46] Beutler G, Kouba J, Springer T. Combining the Orbits of the IGS Analysis Centers[J]. Journal of Geodesy, 1995, 69:200-222.

[47] 冯来平, 贾小林, 吴显兵, 等. 一种基于抗差M估计和动力学平滑的卫星轨道综合方法[J]. 中国科学: 物理学 力学 天文学, 2010, 40(5): 603-607.

[48] Griffiths J, Ray J R. On the Precision and Accuracy of IGS Orbits[J]. Journal of Geodesy, 2009, 83: 227-287.

[49] Sakic P, Mansur G, Mnnel B. A Prototype for a Multi-GNSS Orbit Combination[C]. 2020 European Navigation Conference (ENC), 2020.

[50] Sośnica K, Zajdel R, Bury G, et al. Quality Assessment of Experimental IGS Multi-GNSS Combined Orbits[J]. GPS Solution, 2020, 24: 54.

[51] Mansur G, Sakic P, Brack A, et al. Combination of GNSS Orbits Using Least-squares Variance Component Estimation[I]. Journal of Geodesy, 2022, 96: 92.

[52] Zhou W, Cai H, Chen G, Jiao W, He Q, Yang Y. Multi-GNSS combined orbit and clock solutions at iGMAS[J]. Sensors. 2022, 22(2):457.

[53] Mansur G, Sakic P, Brack A, et al.Combination of GNSS orbits using least-squares variance component estimation[J]. Journal of Geodesy, 2022, 96(11): 92.

[54] 陈亮. 北斗/GNSS实时精密卫星轨道钟差产品组合理论与方法研究[D]. 武汉:武汉大学, 2021.

[55] Kouba J, Mireault Y, Lahaye F. IGS Orbit/Clock Combination and Evaluation[R]. International GPS Service for Geodynamics Annual Report, 1994.

[56] Springer T A, Zumberge J F, Kouba J. The IGS analysis products and the consistency of the combined solutions[C] // 1998 ZGS Analysis Center Workshop Proceedings, European Space Operations Centre, Darmstadt, Germany, (this volume). 1998.

[57] Kouba J, Springer T. New IGS station and satellite clock combination[J]. GPS Solutions, 2001, 4(4): 31-36.

[58] Chen K, Xu T, Yang Y. Robust combination of IGS analysis center GLONASS clocks[J]. GPS Solutions, 2017, 21(3): 1251-1263.

[59] 陈国.GNSS产品综合方法及在iGMAS中的应用[D]. 武汉: 武汉大学,2019.

[60] Chen G, Guo J, Wei N, et al. Multi-GNSS clock combination with consideration of inconsistent nonlinear variation and satellite-specific bias[J]. Earth, Planets and Space, 2022, 74(1): 142.

[61] Gustavo M, Andreas B, Pierre S, et al. Utilizing least squares variance component estimation to combine multi-GNSS clock offsets[J]. GPS Solutions, 2024, 28(2):

[62] 张良. GPS实时服务(RTS)产品关键技术及其应用研究[D]. 武汉: 武汉大学, 2018.

[63] Mervart L, Weber G. Real-time combination of GNSS orbit and clock correction streams using a Kalman filter approach[C] // Proceedings of the 24th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS 2011). 2011: 707-711.

[64] 周江文, 黄幼才, 杨元喜, 欧吉坤.抗差最先二乘法[M], 武汉: 华中理工大学出版社, 1997.

[65] Kouba J, Herous P. Precise Point Positioning Using IGS Orbit and Clock Products[J]. GPS Solutions, 2001, 5(2): 12-28.

[66] 张宝成. GNSS非差非组合精密单点定位的理论方法与应用研究[J]. 测绘学报, 2014, 43 (10): 1099.

[67] 周锋. 多系统GNSS非差非组合精密单点定位相关理论和方法研究[J]. 测绘学报, 2020, 49 (7): 938.

[68] 刘俊, 祝会忠, 路阳阳. GPS L1/L2/L5和BDS B1I/B3I/B2a/B1c频点非差非组合PPP性能分析[J]. 导航定位学报, 2023, 11 (3): 70-79.

[69] Abdel-salam M, Gao Y. Precise GPS Atmosphere Sensing Based on Un-differenced Observations[C] // Proceedings of ION GNSS. Long Beach: [s.n.], 2004: 933-940.

[70] 刘志强, 王解先. 广播星历SSR改正的实时精密单点定位及精度分析[J].测绘科学, 2014, 39(1): 15-19.

[71] Shi J, Ouyang C, Peng W, et al. A Simplified BDS Broadcast Ephemeris and State Space Representative (SSR) Matching Method for BDS-Only Real-Time Precise Point Positioning (PPP)[J]. IEEE Access, 2019, 7: 125205-125213.

[72] 赵爽. BDS/GPS实时精密单点定位方法研究[D]. 郑州: 信息工程大学, 2018.

[73] 陈康慷. IGS分析中心轨道/钟差产品综合及网解模式动态精密单点定位研究[D]. 西安: 长安大学, 2014.

[74] 杨元喜. 抗差估计理论及其应用[M], 北京: 八一出版社, 1993.

[75] 欧吉坤. 一种三步抗差方案的设计[J]. 测绘学报, 1996(3): 173-179.

[76] 臧建飞, 范士杰, 秦学彬, 等. IGS RTS产品数据中断修复方法研究[J]. 大地测量与地球动力学, 2016, 36(10): 884-888.

[77] 沈朋礼. GNSS实时精密单点定位质量控制方法研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心).

[78] 刘宸, 刘长建, 王赛, 等. 两种新的IGGⅢ的改进方案[J]. 测绘通报, 2016, (10): 54-57.

[79] 王浩存. GNSS精密卫星钟差估计及钟差综合研究[D]. 西安: 西安科技大学, 2022.

[80] 白杉杉, 董绍武, 赵书红, 等. 主动型氢原子钟性能监测及评估方法研究[J]. 天文学报, 2018, 59(6): 11.

[81] Pan S, Chen W, Jin X, et al. Real-time PPP based on the coupling estimation of clock bias and orbit error with broadcast ephemeris[J]. Sensors, 2015, 15(7): 17808-17826.

[82] Yao Y, He Y, Yi W, et al. Method for evaluating real-time GNSS satellite clock offset products[J]. GPS Solutions, 2017, 21(4):1417-1425.

[83] 王旭, 柴洪洲, 种洋, 等. 一种新的北斗卫星钟差预处理方法[J]. 武汉大学学报(信息科学版), 2022, 47(11): 1840-1846.

[84] 张师语, 刘章玉, 石仁翠. 基于改进阈值和分层阈值的小波变换图像去噪[J]. 现代计算机, 2020, (32): 52-58.

[85] Zhang L, Yang H, Gao Y, Yao Y, et al. Evaluation and analysis of real time precise orbits and clocks products from different IGS analysis centers[J]. Advances in Space Research, 2018, 61(12):2942-2954.

[86] 孟彩霞, 吴迪, 雷雨. 基于麻雀搜索算法优化的BP神经网络卫星钟差预报[J]. 大地测量与地球动力学, 2022, 42(2): 125-131.

[87] Zitouni F, Harous S, Maamri R. A novel quantum firefly algorithm for global optimization[J]. Arabian journal for science and engineering, 2021(46): 8741-8759.

[88] Huang G, Zhang Q, Xu G. Real-time clock offset prediction with an improved model[J]. GPS Solutions, 2014, 18(1): 95-104.

[89] 葛玉龙. 多频多系统精密单点定位时间传递方法研究[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2020.

中图分类号:

 P228    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式