- 无标题文档
查看论文信息

论文中文题名:

 植酸基多元协效阻燃体系对硅橡胶泡沫阻燃抑烟性能的影响    

姓名:

 赵恒    

学号:

 21220226077    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与技术    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Effect of phytic acid based multi synergistic flame retardant system on flame retardancy and smoke suppression of silicone rubber foam    

论文中文关键词:

 硅橡胶泡沫 ; 植酸金属盐 ; 金属有机框架 ; 阻燃 ; 抑烟    

论文外文关键词:

 Silicone rubber foam ; Phytic acid metal salts ; Metal organic framework ; Flame retardant ; Smoke suppression    

论文中文摘要:

硅橡胶泡沫(SiFs)是由硅橡胶发泡所制备的一种多孔弹性材料,广泛应用于轨道交通、蓄电储能、航空航天等领域。然而,未经阻燃处理的SiFs火安全性较低,难以满足工程中日益增长的使用需求。植酸(PA)是一种从植物种子中提取的有机磷类化合物,近年来作为磷系阻燃剂被引入多种高分子材料,展现出了优异的阻燃效果。为进一步提升SiFs材料的阻燃抑烟性能,本研究制备了一系列植酸基阻燃剂,对阻燃剂的官能团、元素组成、晶体结构及微观结构进行了表征,并将其应用于SiFs材料。通过极限氧指数测试、水平垂直燃烧测试、烟密度测试以及锥形量热测试对植酸基阻燃剂/SiFs阻燃体系的阻燃抑烟性能进行了系统的研究分析。最后,揭示了复合材料的阻燃抑烟机理。主要取得了以下成果:

(1)合成了集P、N、Zn、Al等多种阻燃元素于一体的植酸基多元协效阻燃剂PA-MA-Zn@NH2-MIL-53(Al)。首先,制备了三种植酸金属盐(PA-M),测试优选出了阻燃性能相对较好的植酸镍(PA-Ni)与抑烟性能较好的植酸锌(PA-Zn)。其次,利用磷酸基与氨基的配位反应,将三聚氰胺(MA)分别掺杂于PA-Ni和PA-Zn中,制备了磷-氮一体的协效阻燃剂PA-MA-Ni与PA-MA-Zn。其中,PA-MA-Zn中磷酸基与氨基的配位反应较PA-MA-Ni更加充分,且比PA-MA-Ni展现出了更强的阻燃抑烟性能。此外,通过溶剂热法制备了氨基金属有机框架NH2-MIL-53(Al)。最后,以PA作为桥接分子,将优选出的PA-MA-Zn枝接于NH2-MIL-53(Al)的表面,合成了PA-MA-Zn@NH2- MIL-53(Al)。

(2)研究了植酸基多元协效阻燃剂对SiFs材料阻燃、抑烟以及力学性能的影响。实验表明,当添加相同量的阻燃剂时,PA-MA-Zn@NH2-MIL-53(Al)的阻燃抑烟效果明显优于PA-Zn、PA-MA-Zn和NH2-MIL-53(Al)。添加5 wt%的PA-MA-Zn@NH2-MIL-53(Al)能够使SiFs的LOI提升至30.4%,阻燃等级提升到V-0级,SDR、MSD、PkHRR、THR、PkSPR、TSP和FGI分别降低至23.63、34.47%、107.46 kW/m2、74.99 MJ/m2、0.0108 m2/s、1.78 m2/m2和1.07,分别较纯SiFs降低了20.89%、30.56%、37.26%、40.23%、66.87%、83.862%和51.36%。

(3)揭示了PA-MA-Zn@NH2-MIL-53(Al)/SiFs复合材料的阻燃抑烟机理。其中,金属有机框架NH2-MIL-53(Al)中的有机成分为协效阻燃体系提供了碳源;PA起到了催化碳源脱水成炭的作用;Zn与Al形成的多孔金属氧化物能够稳固碳化层;MA可生成惰性气体稀释可燃物。在各组分协同作用下,SiFs的热稳定性显著提升,复合材料在燃烧过程中形成了致密的SiO2堆积层与碳化层,两层固态屏障能够有效阻隔氧气与热量侵入材料基体,降低了材料的燃烧速率,抑制了烟气的释放。

论文外文摘要:

Silicone rubber foam (SiFs) is a porous elastic material prepared by silicone rubber foaming, which is widely used in rail transit, power storage, aerospace and other fields. However, the fire safety of SiFs without flame retardant treatment is relatively low, making it difficult to meet the growing demand for use in engineering. Phytic acid (PA) is an organic phosphorus compound extracted from plant seeds. In recent years, it has been introduced as a phosphorus based flame retardant into various polymer materials, demonstrating excellent flame retardant effects. To further enhance the flame retardant and smoke suppressive properties of SiFs materials, a series of phytic acid based flame retardants were prepared in this study. The functional groups, elemental composition, crystal structure, and microstructure of the flame retardants were characterized and applied to SiFs materials. The flame retardant and smoke suppression performance of phytic acid based flame retardant/SiFs flame retardant system was systematically studied and analyzed through limit oxygen index testing, horizontal and vertical combustion testing, smoke density testing, and cone calorimetry testing. Finally, the flame retardant and smoke suppression mechanism of composite materials was revealed. The main achievements have been as follows:

(1) A phytic acid-based multi-component synergistic flame retardant PA-MA-Zn@NH2- MIL-53(Al) was synthesized, which integrates multiple flame retardant elements such as P, N, Zn, and Al. Firstly, three phytic acid metal salts (PA-M) were prepared, and the flame retardant performance of phytic acid nickel (PA-Ni) and the smoke suppression performance of phytic acid zinc (PA-Zn) were tested and optimized. Secondly, using the coordination reaction between phosphate groups and amino groups, melamine (MA) was doped into PA-Ni and PA-Zn, respectively, to prepare the phosphorus-nitrogen integrated synergistic flame retardants PA-MA-Ni and PA-MA-Zn. Among them, the coordination reaction between phosphate groups and amino groups in PA-MA-Zn was more thorough than that in PA-MA-Ni, and it exhibited stronger flame retardant and smoke suppression performance than PA-MA-Ni. In addition, the amino metal organic framework NH2-MIL-53(Al) was prepared by solvothermal method. Finally, using PA as a bridging molecule, the optimized PA-MA-Zn was grafted onto the surface of NH2-MIL-53(Al), resulting in the synthesis of PA-MA-Zn@NH2-MIL-53(Al).

(2) The effects of phytic acid-based multi-component synergistic flame retardants on the flame retardancy, smoke suppression, and mechanical properties of SiFs materials were investigated. The experiment showed that when the same amount of flame retardant was added, the flame retardant and smoke suppression effect of PA-MA-Zn@NH2-MIL-53(Al) was significantly better than that of PA-Zn, PA-MA-Zn, and NH2-MIL-53(Al). Adding 5 wt% of PA-MA-Zn@NH2-MIL-53(Al) could increase the LOI of SiFs to 30.4%, and the flame retardant rating to V-0, with SDR, MSD, PkHRR, THR, PkSPR, TSP, and FGI reduced to 23.63, 34.47%, 107.46 kW/m2, 74.99 MJ/m2, 0.0108 m2/s, 1.78 m2/m2, and 1.07, respectively, which were reduced by 20.89%, 30.56%, 37.26%, 40.23%, 66.87%, 83.862%, and 51.36% compared to pure SiFs.

(3) The flame retardant and smoke suppression mechanism of the PA-MA-Zn@NH2- MIL-53(Al)/SiFs composite material was revealed. Among them, the organic components in the metal organic framework NH2-MIL-53(Al) provide a carbon source for the synergistic flame retardant system; PA plays a role in catalyzing the dehydration of carbon sources into carbon; the porous metal oxide formed by Zn and Al can stabilize the carbonized layer; MA can generate inert gases to dilute combustible materials. Under the synergistic action of various components, the thermal stability of SiFs was significantly improved, and the composite material formed a dense SiO2 accumulation layer and carbonized layer during combustion, which effectively blocked oxygen and heat from entering the material matrix, reducing the combustion rate of the material and inhibiting the release of smoke.

参考文献:

[1] Zhai W, Jiang J, Park C B. A review on physical foaming of thermoplastic and vulcanized elastomers[J]. Polymer Reviews, 2021, 62(1): 95-141.

[2] Zhang C, Qu L, Wang Y, et al. Thermal insulation and stability of polysiloxane foams containing hydroxyl-terminated polydimethylsiloxanes[J]. Rsc Advances, 2018, 8(18): 9901-9909.

[3] 王晓晴, 文庆珍, 朱皓, 等. 可膨胀微球/硅橡胶泡沫隔热保温材料的制备及性能表征[J]. 功能材料, 2018, 49(02): 2152-2156+2162.

[4] 韦承莎, 王丽君, 王维欣, 等. 基于回归分析模型与随机过程模型的硅橡胶泡沫应力松弛预测对比[J]. 高分子通报, 2023, 36(01): 112-117.

[5] Luo W, Li Z, Luo H, et al. Preparation of Room Temperature Vulcanized Silicone Rubber Foam with Excellent Flame Retardancy[J]. Scanning, 2021, 9976005.

[6] 陈琪, 秦伟, 陈彰斌, 等. 高性能阻燃硅橡胶泡沫材料的制备及性能研究[J]. 广州化工, 2022, 50(23): 70-72.

[7] 胡鞍钢. 中国实现2030年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(03): 1-15.

[8] 赵颖, 秦悦. 生物基材料迎来政策利好[J]. 纺织科学研究, 2023(Z1): 19-20.

[9] 马东, 赵培华, 李娟. 生物基阻燃剂的设计、制备和应用研究进展[J]. 工程塑料应用, 2016, 44(10): 134-137.

[10] 荣智, 陈启杰, 赵雅兰, 等. 生物基绿色阻燃剂的研究进展[J]. 现代化工, 2020, 40(07): 50-54.

[11] Mokhena T C, Sadiku E R, Ray S S, et al. Flame retardancy efficacy of phytic acid: An overview[J]. Journal of Applied Polymer Science, 2022, 139(27): 1-36.

[12] 马砺, 杨昆, 蔡周全, 等. 含铂催化剂的硅胶泡沫阻燃性能实验研究[J]. 材料导报, 2018, 32(S2): 286-289.

[13] 邓军, 周廷斌, 康付如, 等. 纳米NiO对硅橡胶泡沫阻燃抑烟及热稳定性的影响[J]. 中国安全生产科学技术, 2023, 19(08): 5-11.

[14] 马砺, 刘志超, 肖旸, 等. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11): 1836-1841.

[15] 张嬿妮, 陈少康, 康付如, 等. 含氢氧化铝RTV-2硅橡胶泡沫的阻燃抑烟性能研究[J]. 中国安全生产科学技术, 2018, 14(05): 155-160.

[16] 许红, 冯孟松, 王栋, 等. 不同阻燃剂对硅橡胶发泡材料性能的影响[J]. 特种橡胶制品, 2022, 43(05): 34-37.

[17] 康付如, 邓军, 庞青涛, 等. 含微胶囊化氢氧化铝有机硅泡沫阻燃抑烟特性[J]. 高分子材料科学与工程, 2021, 37(08): 58-66.

[18] 丁勇. 聚磷酸铵及其与无机粒子复配体系阻燃硅橡胶的研究[D]. 华南理工大学, 2018.

[19] 罗明, 张发爱, 罗华兴. 三聚氰胺及氢氧化铝在阻燃硅橡胶中的应用[J]. 有机硅材料, 2015, 29(03): 185-189.

[20] 吕高鹏, 王宁, 刘渊, 等. 高分散型三聚氰胺氰尿酸盐阻燃硅橡胶的研究[J]. 橡胶工业, 2015, 62(04): 211-215.

[21] 闫钰. 含MCA微胶囊硅橡胶泡沫的阻燃性能研究[D]. 西安科技大学, 2021.

[22] Kang F-R, Deng J, Jiao D-S, et al. Microfluidic fabrication of polysiloxane/dimethyl methylphosphonate flame-retardant microcapsule and its application in silicone foams[J]. Polymers for Advanced Technologies, 2019, 30(5): 1269-1278.

[23] Chen X, Song W, Liu J, et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3): 1819-1826.

[24] Kang F-R, Wang C-P, Deng J, et al. Flame retardancy and smoke suppression of silicone foams with microcapsulated aluminum hypophosphite and zinc borate[J]. Polymers for Advanced Technologies, 2020, 31(4): 654-664.

[25] 庞青涛, 邓军, 邵水源, 等. 可膨胀石墨阻燃多孔硅胶的制备与表征[J]. 化工新型材料, 2020, 48(08): 185-189.

[26] Pang Q, Kang F, Deng J, et al. Flame retardancy effects between expandable graphite and halloysite nanotubes in silicone rubber foam[J]. Rsc Advances, 2021, 11(23): 13821-13831.

[27] 邓军, 闫钰, 康付如, 等. 含改性硅微粉硅橡胶阻燃抑烟研究[J]. 高分子通报, 2020(01): 64-71.

[28] Wang C-P, Qiao X-T, Kang F-R, et al. Flame retardancy and smoke suppression of silicone foams with modified Diatomite and Zinc Borate[J]. Combustion Science and Technology, 2022.

[29] 邢亚琳. 生物基阻燃剂的合成及其对聚氨酯的阻燃改性研究[D]. 内蒙古大学, 2018.

[30] 马东. 生物基阻燃剂的制备及其阻燃聚丙烯的研究[D]. 中北大学, 2017.

[31] 胡旭, 李娟, 李星. 生物基阻燃剂在聚乳酸中的应用研究进展[J]. 工程塑料应用, 2020, 48(03): 150-155+160.

[32] 程路瑶, 武伟红, 孟伟华, 等. 过渡金属植酸盐的制备及其在PVC中的阻燃应用[J]. 中国塑料, 2017, 31(10): 33-39.

[33] 李金都. 金属植酸盐对环氧树脂阻燃性能影响的研究[D]. 沈阳航空航天大学, 2020.

[34] 吴燕祥. 植酸/金属离子体系对真丝织物的阻燃整理[D]. 苏州大学, 2021.

[35] 刘新华, 刘海龙, 方寅春, 等. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.

[36] 杨佩鑫, 马晓谱, 吴汉光, 等. 植酸及植酸盐在聚合物共混阻燃改性中的应用研究进展[J]. 北京服装学院学报(自然科学版), 2020, 40(03): 88-95.

[37] Hou Y, Xu Z, Chu F, et al. A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites[J]. Composites Part B-Engineering, 2021, (221): 109014.

[38] Gong W, Fan M, Luo J, et al. Effect of nickel phytate on flame retardancy of intumescent flame retardant polylactic acid[J]. Polymers for Advanced Technologies, 2021, 32(4): 1548-1559.

[39] 吴宇晖. 植酸及其与锌盐或三聚氰胺复合处理杨木的性能[D]. 北京林业大学, 2020.

[40] 李朝晖, 徐爱玲. 植酸铵阻燃剂的合成及性能[J]. 印染助剂, 2022, 39(08): 21-25.

[41] Ma Y, Luo X, Liu L, et al. Eco-friendly, efficient and durable fireproof cotton fabric prepared by a feasible phytic acid grafting route[J]. Cellulose, 2021, 28(6): 3887-3899.

[42] 徐婕. 静电层层自组装法制备阻燃真丝[D]. 苏州大学, 2014.

[43] 方芳. 基于植酸自组装体的制备及其阻燃环氧树脂的研究[D]. 浙江大学, 2019.

[44] 熊正权. 层层自组装法制备生物基核壳型阻燃剂及其在聚乳酸中的应用[D]. 浙江大学, 2019.

[45] Shang S, Yuan B, Sun Y, et al. Facile preparation of layered melamine-phytate flame retardant via supramolecular self-assembly technology[J]. Journal of Colloid and Interface Science, 2019, 553: 364-371.

[46] Shang S, Ma X, Yuan B, et al. Modification of halloysite nanotubes with supramolecular self-assembly aggregates for reducing smoke release and fire hazard of polypropylene[J]. Composites Part B-Engineering, 2019, 177: 107371.

[47] Li W-X, Zhang H-J, Hu X-P, et al. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets[J]. Journal of Hazardous Materials, 2020, 398: 123001.

[48] 李艳秋. 金属离子改性生物基阻燃剂的制备及其对聚氨酯的阻燃抑烟性研究[D]. 内蒙古大学, 2022.

[49] Yan W J, Xu S, Ding C-J, et al. Novel bio-derived phytic acid and melamine interlayered/surface dual modified layered double hydroxide by one-pot method and its highly efficient flame retardant performance for polypropylene[J]. Applied Clay Science, 2022, 228.

[50] Wang K, Jiang Y, Lv C, et al. Noncovalent self-assembled supramolecular aggregate decorated nickel-aluminum layered double hydroxides nanosheets for reinforcing the flame retardancy of PLA[J]. Journal of Applied Polymer Science, 2023.

[51] Shi H, Zhao W, Zhao X, et al. Fabrication of Bismuth Oxychloride Nanosheets Decorated with Chitosan and Phytic Acid for Improvement of Flexible Poly(vinyl chloride) Flame Retardancy[J]. Fibers and Polymers, 2021, 22(10): 2656-2663.

[52] 程路瑶. 植酸盐及其包覆氢氧化镁在软质PVC中的阻燃应用[D]. 河北大学, 2018.

[53] 吴江兵, 熊玉竹, 李宜航, 等. 植酸锡包覆氢氧化镁对聚脲阻燃性能的影响[J]. 化工新型材料, 2021, 49(04): 166-170.

[54] 孟伟华. 2-甲基咪唑及植酸配体金属有机框架材料的设计、合成及阻燃应用[D]. 河北大学, 2020.

[55] Zhang H, Meng D, Wang W, et al. Fabrication of phytic acid embellished kaolinite and its effect on the flame retardancy and thermal stability of ethylene vinyl acetate composites[J]. Journal of Applied Polymer Science, 2021, 138(46).

[56] Sui Y, Qu L, Dai X, et al. A green self-assembled organic supermolecule as an effective flame retardant for epoxy resin[J]. Rsc Advances, 2020, 10(21): 12492-12503.

[57] 孙昊一. 可膨胀石墨的修饰构筑对ABS阻燃抑烟性能的影响[D]. 北京化工大学, 2022.

[58] 王欢. 植酸及金属类化合物复合阻燃剂的制备及其阻燃性能研究[D]. 西北师范大学, 2022.

[59] 王栋. 金属有机框架基阻燃剂在阻燃领域的研究进展[J]. 中国塑料, 2024, 38(02): 118-125.

[60] Pan Y-T, Zhang Z, Yang R. The rise of MOFs and their derivatives for flame retardant polymeric materials: A critical review[J]. Composites Part B-Engineering, 2020, 199.

[61] 邓军, 成晨阳, 康付如. 含钴基金属有机框架硅橡胶泡沫阻燃特性研究[J]. 中国安全生产科学技术, 2021, 17(12): 5-10.

[62] Zheng Y, Lu Y, Zhou K. A novel exploration of metal-organic frameworks in flame-retardant epoxy composites[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 905-914.

[63] Hou Y, Hu W, Gui Z, et al. A novel Co(Ⅱ)–based metal-organic framework with phosphorus-containing structure: Build for enhancing fire safety of epoxy[J]. Composites Science and Technology, 2017, 152: 231-242.

[64] Hou Y, Qiu S, Xu Z, et al. Which part of metal-organic frameworks affects polymers' heat release, smoke emission and CO production behaviors more significantly, metallic component or organic ligand?[J]. Composites Part B-Engineering, 2021, 223: 109014.

[65] Nabipour H, Wang X, Song L, et al. Metal-organic frameworks for flame retardant polymers application: A critical review[J]. Composites Part a-Applied Science and Manufacturing, 2020, 139.

[66] Zhang J, Li Z, Qi X L, et al. Recent Progress on Metal-Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials[J]. Nanomicro Lett, 2020, 12(1): 173.

[67] Lyu P, Hou Y, Hu J, et al. Composites Filled with Metal Organic Frameworks and Their Derivatives: Recent Developments in Flame Retardants[J]. Polymers, 2022, 14(23).

[68] Deng J, Zhao H, Zhang T-T, et al. Effect of Al-based metal-organic frameworks/halloysite nanotubes on the flame retardancy of silicone rubber foam[J]. Journal of Applied Polymer Science, 2023, 140(41).

[69] 侯雁北. 过渡金属—有机框架材料设计及其阻燃聚合物复合材料的性能研究[D]. 2019.

[70] Yue Z, Lin J, Yang D, et al. In situ growth of nano-MOFs on ammonium polyphosphate particles for boosting flame retardancy, smoke suppression and mechanical properties of epoxy[J]. Journal of Materials Science, 2022, 57(42): 20082-20094.

[71] 林健. 金属有机框架包覆聚磷酸铵阻燃体系的设计及其性能研究[D]. 2021.

[72] Yao T, Yang R, Sun C, et al. Pyrolysis Kinetics of Lignin-Based Flame Retardants Containing MOFs Structure for Epoxy Resins[J]. Molecules, 2023, 28(6).

[73] Chen C, Song W, Jiang M, et al. SiO2/MOFs-based synergistic flame retardants provide enhanced fire safety for epoxy resins[J]. Materials Today Communications, 2023, 35.

[74] Wang X G, Qi P, Zhang S J, et al. A novel flame-retardant modification strategy for UiO66-NH2 by encapsulating triethyl phosphate: preparation, characterization, and multifunctional application in poly (lactic acid)[J]. Materials Today Chemistry, 2023, 30.

[75] Liu X, Guo P, Zhang B, et al. A novel ternary inorganic-organic hybrid flame retardant containing biomass and MOFs for high-performance rigid polyurethane foam[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2023, 671.

[76] Yang B, Chen Z, Yu Y, et al. Construction of bimetallic metal-organic frameworks/ graphitic carbon nitride hybrids as flame retardant for unsaturated polyester resin[J]. Materials Today Chemistry, 2023, 30.

[77] 罗吉. 植酸金属盐的制备及其协效IFR阻燃PLA的研究[D]. 华东理工大学, 2020.

[78] 王冬. 植酸基阻燃剂的制备及其阻燃机理研究[D]. 江南大学, 2022.

[79] Nikhar S, Sikka R, Chakraborty M, et al. A comparison study on MIL-53 (Al) and NH2-MIL-53 (Al) MOF for optical sensing application at room temperature[J]. Bulletin of Materials Science, 2023, 46(4).

[80] Loiseau T, Serre C, Huguenard C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry, 2004, 10(6): 1373-82.

[81] 赵化楠. NH2-MIL-53(A)复合可见光光催化剂的制备及其性能研究[D]. 2022.

[82] Zhang J, Li Z, Zhang L, et al. Green Synthesis of Biomass Phytic Acid-Functionalized UiO-66-NH2 Hierarchical Hybrids toward Fire Safety of Epoxy Resin[J]. Acs Sustainable Chemistry & Engineering, 2020, 8(2): 994-1003.

中图分类号:

 TQ333.93    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式