- 无标题文档
查看论文信息

论文中文题名:

 草植排土场边坡根-土复合层水力特性演化机制研究    

姓名:

 王逸飞    

学号:

 22204228123    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 防灾减灾理论与技术    

第一导师姓名:

 段旭    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-16    

论文答辩日期:

 2025-06-05    

论文外文题名:

 Study on the evolution mechanism of hydraulic characteristics of root-soil composite layer of grass dump slope    

论文中文关键词:

 排土场边坡 ; 生态护坡 ; 根系形态 ; 根-土复合层 ; 水力特性 ; 水分迁移    

论文外文关键词:

 Drainage site slopes ; Ecological protection ; Root morphology ; Root-soil composite layer ; Hydraulic properties ; Water transport    

论文中文摘要:

      随着黄土高原生态恢复进行到达新的阶段,多年生草植根系的动态生长如何改变浅层土体的强度特征与水力参数,成为地质灾害防控与生态恢复交叉领域亟待深入探索的问题之一。本文在黄土高原典型露天矿开采后的植被恢复试验区,针对多年生豆科-直根型紫花苜蓿与禾本科-须根型植物高羊茅两种典型生态恢复草植,选取人工恢复植被1年、3年和5年的黄土边坡进行根系和根-土复合体的取样,在探明草植根系形态特征与抗拉强度随生长时间演化规律的基础上,研究草植根系生长过程中根-土复合体抗剪强度、饱和渗透与持水能力等关键水、力特性的时变规律,并结合染色示踪与核磁共振试验从根-土孔隙结构演化和优先流入渗的角度讨论草植根系生长对边坡浅层土体的影响。研究内容及主要结论如下:

   (1)随着植物生长年限的增加,根系的总长度、体积和表面积逐年显著增加。特别是紫花苜蓿,根系的扩展能力较强,根长和根体积的增幅明显大于高羊茅。紫花苜蓿根系的总长度从1年生增至5年生根系的生物量和表面积也随年限增加而显著提升。高羊茅的根系虽然增长较慢,但随着年限的延长,其根系在深层土壤中的占比和生物量逐步增加。

   (2)随着草植年限的增长,根系对土壤的固土效果逐渐增强,尤其是紫花苜蓿,根系能够显著提高土体的抗剪强度。对于根-土复合体的渗透性,研究表明紫花苜蓿和高羊茅根系在不同吸力条件下对非饱和渗透性有显著影响。紫花苜蓿根系在低吸力阶段通过根-土通道有效促进水流动,从而提高了土壤的非饱和渗透系数,而在高吸力阶段,根系的导流效应逐渐减弱。相比之下,高羊茅的根系在低吸力阶段对渗透性的改善较为显著,但在高吸力下其作用减弱。

   (3)不同年限的草植根系对土壤水分的优先流特征有显著影响,6个样地中的优先流发育情况为:5年生紫花苜蓿>3年生紫花苜蓿>5年生高羊茅>1年生紫花苜蓿>3年生高羊茅>1年生高羊茅。随着植被年限的增长,优先流特征逐渐增强,尤其是紫花苜蓿,水分沿其根系的渗透路径进入土壤的深层,形成较为明显的优先流现象。长期种植的草植根系通过其发达的根系网络,形成了更加有效的水分传导通道,显著提高了土壤的渗透能力,减缓了地表径流的产生,防止了水土流失。

   (4)植物根系的生长年限与土壤水分分布、边坡稳定性及水土保持效应之间存在显著关系。长期种植的草本植物能够有效改善边坡的渗流场,提升边坡的水土保持能力。紫花苜蓿和高羊茅在5年生阶段,特别是在深层土壤中,对水分的调蓄能力明显增强,有助于缓解强降雨时的水土流失问题。

论文外文摘要:

      As the ecological restoration of the Loess Plateau enters a new phase, the impact of the dynamic growth of perennial grass roots on the strength characteristics and hydraulic parameters of shallow soils is one of the issues that requires in-depth exploration at the intersection of geological disaster prevention and control and ecological restoration. This paper focuses on two typical grasses used in ecological restoration: perennial legume-taproot alfalfa and graminoid-furrowed tall fescue. Root systems and root-soil composites were sampled from loess slopes with 1, 3 and 5 years of vegetation restoration to explore the morphological characteristics of the grasses' root systems and the evolution of their tensile strength over time. The sampling was conducted in the experimental area of vegetation restoration after a typical open-pit mine on the Loess Plateau. The time-varying patterns of key hydraulic properties, such as shear strength, saturated infiltration and water-holding capacity, of the root-soil complex were investigated based on the evolution of the morphological characteristics and tensile strength of the root system with growth time. The effects of grass plant root growth on shallow slope soils were also discussed in the context of the evolution of root-soil pore structure and preferential inflow of infiltration by combining staining tracer and nuclear magnetic resonance experiments. The research content and main conclusions are as follows:

   (1)The total length, volume and surface area of the root system increased significantly with each additional year of plant growth. Alfalfa, in particular, had a greater ability to expand its root system; the increase in root length and volume was significantly greater than that observed in tall fescue. The total length of the alfalfa root system increased from one year old to five years old, and the biomass and surface area of the root system also increased significantly over time. Although growing more slowly, the root system of tall fescue gradually increased its percentage and biomass in the deep soil with each passing year.

      (2) As the number of years of grass planting increased, the effect of the root system on soil consolidation gradually increased, particularly in the case of alfalfa, where the root system was able to significantly increase the shear strength of the soil. Regarding the permeability of the root-soil complex, the root systems of alfalfa and tall fescue were found to significantly affect the unsaturated permeability under different suction conditions. At low suction stages, the alfalfa root system effectively promoted water flow through the root-soil channels, thus increasing the soil's unsaturated permeability coefficient. However, at high suction stages, the root system's conductive effect gradually weakened. Conversely, tall fescue roots improved permeability more significantly at low suction, but their effect weakened at high suction.

      (3) The root systems of grass plants of different ages significantly affected the preferential flow characteristics of soil moisture. The development of preferential flow in the six sample plots was as follows: Five-year-old alfalfa > three-year-old alfalfa > five-year-old tall fescue > one-year-old alfalfa > three-year-old tall fescue > one-year-old tall fescue. As vegetation age increased, preferential flow characteristics gradually increased, particularly in alfalfa. Here, water entered the deeper soil layers along the infiltration path of the root system, forming a more obvious preferential flow phenomenon. The root systems of long-term grass plantations formed more effective water conduction channels through their well-developed networks, significantly improving the infiltration capacity of the soil, slowing down the generation of surface runoff and preventing soil erosion.

      (4) There is a significant relationship between the growth period of plant roots, soil moisture distribution and slope stability, as well as the effect on soil and water conservation. The long-term planting of herbaceous plants can effectively improve the seepage capacity of slopes and enhance their soil and water conservation ability. Alfalfa and tall fescue significantly increase water storage capacity after five years, particularly in deep soil, helping to alleviate soil erosion problems during heavy rainfall.

参考文献:

[1]占海歌. 3种草本植物根系特征对土壤抗侵蚀性能影响[D]. 华中农业大学, 2017.

[2]Katul G G, Oren R, Manzoni S, et al. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system[J]. Reviews of Geophysics, 2012, 50(3): RG3002.

[3]Oki T, Kanae S. Global hydrological cycles and world water resources[J]. Science, 2006, 313(5790): 1068-1072.

[4]Cleveland C C,Houlton B Z,Smith W K,et al. Patterns of new versus recycled primary production in the terrestrial biosphere[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(31): 12733-12737.

[5]Fisher R F, Binkley D. Ecology and Management of Forest Soils[M]. Chichester, UK:John Wiley & Sons, Ltd, 2012. Vereecken H, Weihe

[6]鲁建荣, 李云良, 谭志强, 等. 植物根系对土壤水力参数影响的定量研究综述[J]. 土壤学报, 2023, 60(04): 939-952.

[7]王雅琼, 张建军, 李梁, 等. 祁连山区典型草地生态系统土壤抗冲性影响因子[J]. 生态学报, 2018, 38(01): 122-131.

[8]Zhang CB, Liu YT, Liu PC, et al. Untangling the influence of soil moisture on root pullout property of alfafa plant[J]. Journal of Arid Land, 2020, 12(4): 666-675.

[9]Yang QH, Zhang CB, Liu PC, et al. The role of root morphology and pulling direction in pullout resistance of alfalfa roots[J]. Frontiers in Plant Science, 2021, 12: 580825.

[10]Federica G, Chiara V, Rodolfo G, et al. Root characteristics of herbaceous species for topsoil stabilization in restoration projects[J]. Land Degradation & Development, 2017, 28(7): 2074-2085.

[11]万海霞, 马璠, 许浩, 等. 宁夏南部黄土丘陵区典型草本群落根系垂直分布特征与土壤团聚体的关系[J]. 水土保持研究, 2019, 26(06): 80-86+91.

[12]Yildiz A, Graf F, Rickli C, et al. Determination of the shearing behaviour of root-permeated soils with a large-scale direct shear apparatus[J]. Catena, 2018, 166: 98-113.

[13]朱兴华, 彭建兵, 同霄, 马鹏辉. 黄土地区地质灾害链研究初探[J]. 工程地质学报. 2017, (1): 117-122.

[14]张少宏, 康顺祥, 李永红. 降雨对黄土边坡稳定性的影响[J]. 水土保持报. 2005, (5): 52-55.

[15]吴宏伟. 大气–植被–土体相互作用:理论与机理[J]. 岩土工程学报, 2017, 39(1): 1-47.

[16]Bodner G, Leitner D, Kaul H P. Coarse and fine root plants affect pore size distributions differently[J]. Plant and Soil, 2014, 380(1/2): 133-151.

[17]Marcacci K M, Warren J M, Perfect E, et al. Influence of living grass roots and endophytic fungal hyphae on soil hydraulic properties[J]. Rhizosphere,2022:100510.

[18]Shi X Q, Qin T L, Yan D H,et al. A meta-analysis on effects of root development on soil hydraulic properties[J]. Geoderma,2021, 403: 115363.

[19]Scholl P, Leitner D, Kammerer G, et al. Root induced changes of effective 1D hydraulic properties in a soil column[J]. Plant and Soil, 2014, 381(1/2); 193-213.

[20]Leung A K, Garg A, Ng C W W. Effects of plant roots on soil-water retention and induced suction in vegetated soil[J]. Engineering Geology, 2015, 193: 183-197.

[21]Holtham D A L, Matthews G P, Scholefield D S. Measurement and simulation of void structure and hydraulic changes caused by root-induced soil structuring under white clover compared to ryegrass[J]. Geoderma,2007, 142(1/2): 142-151.

[22]潘天辉, 杜峰, 王月. 陕北黄土区护坡植物根系分布和抗剪增强分析[J]. 水土保持研究, 2020, 27(03): 357-363+371.

[23]徐文秀, 杨玲, 鲍玉海, 等. 大型水库消落带2种典型耐淹草本植物单根抗拉力学特性[J]. 水土保持研究, 2020, 27(5): 259-264+272.

[24]朱海丽, 胡夏嵩, 毛小青, 等. 青藏高原黄土区护坡灌木植物根系力学特性研究[J].岩石力学与工程学报, 2008(S2): 3445-3452.

[25]惠尚, 张云伟, 刘晶, 等. 丛生竹根系抗拉力学特性[J]. 山地学报, 2013, 31(1): 65-70.

[26]付江涛, 李晓康, 刘昌义, 等. 标距对垂穗披碱草根系抗拉特性影响统计研究[J]. 岩石力学与工程学报, 2021, 40(S2): 3399-3413.

[27]王斌, 范茂攀, 郑毅, 等. 香根草根系固土拉力的原位测定[J]. 云南农业大学学报(自然科学), 2012, 27(2): 257-262.

[28]宋享桦, 谭勇, 张生杰. 暴雨气候下砂土边坡植被护坡模型试验研究[J]. 哈尔滨工业大学学报, 2021, 53(5): 123-133.

[29]高鹏, 范茂攀, 郑毅. 不同生育期小麦根系固土力的原位测定[J]. 云南农业大学学报(自然科学版), 2011, 26(4): 529-534.

[30]张兴玲, 胡夏嵩, 李国荣, 等. 青藏高原东北部黄土区灌木幼林根系护坡的时间效应[J]. 农业工程学报, 2012, 28(4): 136-141.

[31]Waldron L. J., Dakessian S. Soil reinforcement by roots: calculation of increased soil Shear resistance from root properties[J]. Soil Science, 1981, 132(6): 427-435.

[32]程洪, 张新全. 草本植物根系网固土原理的力学试验探究[J]. 水土保持通报, 2002(5): 20-23.

[33]杨亚川, 莫永京, 王芝芳, 等. 土壤-草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J]. 中国农业大学学报, 1996(2): 31-38.

[34]Reubens B., Poesen J. Danjon F., et al. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review[J]. Trees, 2007, 21: 385-402.

[35]Mahannopkul K., Jotisankasa A. Influences of root concentration and suction on Chrysopogon zizanioides reinforcement of soil[J]. Soils and Foundations, 2019(4), 500-516.

[36]Baets S., Poesen J., Reubens B., et al. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength[J]. Plant and Soil, 2008, 305: 207-226.

[37]刘亚斌, 李淑霞, 余冬梅, 等. 西宁盆地黄土区典型草本植物单根抗拉力学特性试验[J]. 农业工程学报, 2018, 34(15): 157-166.

[38]刘亚斌, 胡夏嵩, 余冬梅, 等. 西宁盆地黄土区2种灌木植物根-土界面微观结构特征及摩擦特性试验[J]. 岩石力学与工程学报, 2018, 37(05): 1270-1280.

[39]Fan C. C., Su C. F. Role of roots in the shear strength of root-reinforced soils with high moisture content[J]. Ecological Engineering, 2008, 33: 157–166.

[40]孔纲强, 文磊, 刘汉龙, 等. 植物根系分布形态及含根复合土强度特性试验[J]. 岩土力学, 2019, 40(10): 3717-3723.

[41]程磊, 郝延周. 根系特征参数对土体强度影响的试验研究[J]. 科学技术与工程, 2018, 18(08): 271-276.

[42]蒋希雁, 杨尚青, 冯峰, 陈宇宏, 许梦然. 植被根系对土体渗透特性影响的试验研究[J]. 合肥工业大学学报(自然科学版), 2022, 45(03): 370-375.

[43]胡兵立, 苏立君, 谢奇峻. 乔木根径、含量和分布类型对根土复合体饱和渗透系数的影响[J/OL]. 土木与环境工程学报(中英文), 1-11[2024-03-27].

[44]李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报, 2013, 33( 5) : 1535-1547.

[45]祁子寒, 王云琦, 王玉杰, 李通, 王余靖, 何相昌. 根系对浅表层土大孔隙分布特征及饱和渗透性的影响[J]. 水土保持学报, 2021, 35(05): 94-100+107.

[46]于皓, 董智, 杨建英, 等. 基于CT扫描的不同土地利用类型土壤大孔隙特征及其入渗能力研究[J]. 干旱区资源与环境, 2023, 37(03): 55-61.

[47]陈钰馨. 赣南丘陵区四种典型林分对红壤水分分布的影响机理研究[D]. 南昌市: 南昌大学, 2022.

[48]陈晋龙. 覆盖层中植物-土-水相互作用的现场试验研究[D]. 哈尔滨市: 哈尔滨工业大学, 2015.

[49]Meek B D, Tar D, Rol P D, et al. Infiltration Rate as Affected by an Alfalfa and No-tile Cotton Dropping System[J]. Soil Science American Journal, 1990, 54(9): 505-508.

[50]Devitt D A, Smith S D. Root Channel Macropores Enhance Downward Movement of Water in a Mojave Desert Ecosystem[J]. Journal of Arid Environments, 2002, 50(1): 99-108.

[51]李建兴, 谌芸, 何丙辉, 等. 不同草本的根系分布特征及对土壤水分状况的影响[J]. 水土保持通报, 2013, 11(1): 81-86.

[52]于皓, 董智, 杨建英, 等. 基于CT扫描的不同土地利用类型土壤大孔隙特征及其入渗能力研究[J]. 干旱区资源与环境, 2023, 37(03): 55-61.

[53]李超. 考虑降水与草本生长龄期影响的根系土水分迁移及力学特性研究[D]. 西安市: 西安理工大学, 2023.

[54]张文豪. 草类根系对不同土体渗透性能影响的试验研究[D]. 长沙市: 长沙理工大学, 2019.

[55]魏凌傲, 王正君, 郜迪. 不同类型降雨条件下含裂隙土质边坡渗流特性分析[J]. 三峡大学学报(自然科学版), 2018, 40(05): 11-16.

[56]马吉倩, 付宏渊, 王桂尧, 等. 降雨条件下成层土质边坡的渗流特征[J]. 长沙市: 中南大学学报(自然科学版), 2018, 49(02): 464-471.

[57]段旭龙, 何忠明, 王保林. 强降雨条件下考虑渗透力影响的粗粒土高路堤边坡稳定性[J]. 中南大学学报(自然科学版), 2018, 49(08): 2016-2023.

[58]赵丽兵, 张宝贵. 紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究[J]. 农业工程学报, 2007, (09): 7-12.

[59]朱海丽, 胡夏嵩, 毛小青, 等. 青藏高原黄土区护坡灌木植物根系力学特性研究[J]. 岩石力学与工程学报, 2008, (S2): 3445-3452.

[60]吴云涛, 叶万军, 杨更社, 等. 考虑应力路径的土体微观孔隙及宏观变形特征试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2311-2320.

[61]Lazrak, T., Kacem, M., Sghaier, J., et al. A determination of unsaturated hydraulic properties using drainage gravity test and particle swarm optimization algorithm [J]. Journal of Porous Media, 2013, 16(16): 1025-1034.

[62]Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media [J]. Water Resources Research, 1976, 12(3): 513-522.

[63]鲁建荣, 李云良, 谭志强, 等. 植物根系对土壤水力参数影响的定量研究综述[J]. 土壤学报, 2023, 60(04): 939-952.

[64]程竞萱, 程金花, 郑欣, 等. 不同植被覆盖下土壤优先流特征及影响因素[J]. 河南农业大学学报, 2018, 52(06): 973-982.

[65]敖新林. 基材-植被耦合作用下黄土边坡防护效应演化的模型试验研究[D]. 长安大学, 2024.

[66]Molz FJ, Irwin Remson. Models of water transport in the soil-pant system: a review[J]. WaterResourcesRes., 0ct., 1991,17(5):1245-1260.

[67]齐丽彬, 樊军, 邵明安, 等. 紫花苜蓿不同根系分布模式的土壤水分模拟和验证[J]. 农业工程学报, 2009, 25(04): 24-29.

RICHARDS L.A.Capillary conduction of liquids through porous mediums[J]. Physics, 1931, 1(5): 318-333

中图分类号:

 TU41    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式