- 无标题文档
查看论文信息

论文中文题名:

 深部岩石工作面开采底板扰动破坏规律研究    

姓名:

 牟谦    

学号:

 18204209055    

保密级别:

 内部    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 矿井灾害防治    

第一导师姓名:

 李昂    

第一导师单位:

 西安科技大学    

第二导师姓名:

 牟林    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-28    

论文外文题名:

 Study on disturbance failure law of rock working face floor in deep mining    

论文中文关键词:

 下保护层岩石面 ; 底板破坏规律 ; 相似模拟 ; 数值模拟 ; 现场实测    

论文外文关键词:

 Lower protective layer rock working face ; Floor failure law ; Similar simulation ; Numerical simulation ; In-situ measurement    

论文中文摘要:

平顶山矿区首次采用下保护层岩石工作面开采方式来解放深部受瓦斯突出威胁的己组煤炭资源,但由于岩石工作面开采深度近千米,承压水头高、煤岩层距寒武系灰岩顶部近、地温高,一旦发生底板水害,抢险工作难度大。为客观评价深部采场受寒武系灰岩水害威胁程度,需对深部岩石工作面开采底板扰动破坏规律展开系统性研究。本文采用理论分析、相似模拟、数值模拟及现场实测等多种手段,对保护层开采过程中底板隔水岩层塑性破坏特征、应力场和位移场演化规律进行深入研究,主要结论如下:

(1)在单一岩层底板塑性滑移线场理论基础上,建立了多层结构底板塑性滑移线场理论模型,推导得出复合底板最大破坏深度理论解析解,并给出了滑移破坏形态;考虑底板扰动和承压导升双重影响,建立了非充分采动状态下底板隔水岩层组整体稳定性力学模型,推导得出单、双层结构底板水压与采面推进度关系理论解及极限水压力表达式,并提出了底板隔水层稳定性判别准则,结合临界开采尺寸分析了实际工况下最小极限水压力。

(2)通过自主设计研发承压水反力实验平台,首次实现了承压水压力与地层压力协同工作共同承载,即弹簧模拟孔隙水压力、千斤顶模拟地层有效应力。采用新型实验材料模拟分析了非充分采动及充分采动期间采场顶底板裂隙从萌生、扩展至贯通破坏的演化全过程,得出了下保护层工作面开采引起的底板变形和破坏规律。

(3)通过建立实际开采工况数值模型,分析了不同推进度下顶底板岩体应力场和位移场演化规律、塑性变形特征以及采场底板支承压力分布形态,动态再现了底板岩层开采渐进破坏过程,给出了顶底板塑性破坏区范围。

(4)采用振弦式应力计和应变计分别实时监测了岩石工作面煤岩体支承压力和底板岩体变形量,得到了超前工作面和下帮煤岩体支承压力采动变化规律以及底板扰动发育形态,确定了底板实际最大破坏深度值,实测数值与相似模拟和数值模拟分析结果相吻合,验证了多层结构底板塑性滑移线场理论的科学性。

论文外文摘要:

Pingdingshan mining area for the first time adopts the mining method of rock working face in the lower protective layer to liberate the deep coal resources threatened by gas outburst. However, the buried depth of the rock working face is nearly 1000 m, with high confined water pressure at the bottom, the distance between the mining layer and the top of Cambrian limestone is close, and the ground temperature is high. Once the water inrush from the floor, the rescue work is difficult. To objectively evaluate the threat degree of deep stope affected by Cambrian limestone water disaster, it is necessary to carry out systematic research on the disturbance and failure law of floor in deep rock mining face. This paper adopts theoretical analysis, similar simulation, numerical simulation and field measurement to discuss the plastic failure characteristics, stress field and displacement field deformation law of the floor aquifuge during the protection layer mining. The main conclusions are as follows:

(1) Based on the theory of plastic slip line field of single rock floor, the theoretical model of plastic slip line field of multi-layer structure floor is established for the first time, the theoretical analytical solution of maximum failure depth of composite floor is derived, and the slip failure mode is given. Considering the dual effects of floor disturbance and confined water uplifting, a mechanical model of the overall stability of floor aquifuge under the condition of not full mining was established. The theoretical solution of the relationship between the floor water pressure of the single and double-layer structure and the advancing progress of the mining face and the expression of the limit water pressure are derived, and the criterion for judging the stability of the floor aquifuge was put forward. Finally, the minimum ultimate water pressure under actual working conditions was analyzed in conjunction with the critical mining size.

(2) Through the self-designed confined water simulation experiment platform, the confined water pressure and formation pressure are jointly carried, i.e. the spring simulates the pore water pressure and the jack simulates the effective stress of the formation. By using new experimental materials, the evolution process of the roof and floor cracks from initiation, expansion to through failure during the period of not full mining and full mining is simulated and analyzed, and the deformation and failure law of floor caused by the mining of lower protective layer rock working face is obtained.

(3) Through the establishment of the numerical analysis model of the actual mining conditions, the evolution law of the stress field and displacement field of the roof and floor rock mass, plastic deformation characteristics, and the distribution of the abutment pressure of the stope floor are analyzed. The progressive failure process of floor rock under the mining condition is reproduced dynamically, and the range and depth of plastic failure area of roof and floor are given.

(4) Vibrational chord stress gauge and strain gauge are used to monitor the abutment pressure of coal and rock mass and the deformation of floor rock mass, respectively. The mining variation law of abutment pressure of advanced working face and lower wall coal and rock mass and the development form of floor disturbance is obtained, and the actual maximum failure depth of floor is determined. The measured values are consistent with the results of similar simulation and numerical simulation analysis, and the scientific validity of the theory of plastic slip line field of multi-layer structure floor is verified.

参考文献:

[1] 李昂. 渭北煤田承压水体上采煤底板破坏突水机理与应用研究[M]. 中国矿业大学出版社, 2015.

[2] 李昂. 带压开采下底板渗流与应力耦合破坏突水机理及其工程应用[D]. 西安科技大学, 2012.

[3] 潘国营, 马亚芬, 赵东. 平顶山十矿下保护层开采围岩破坏数值模拟及水害防治[J]. 河南理工大学学报(自然科学版),2017, 36(06) : 15–21.

[4] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报,2015, 34(11) : 2161–2178.

[5] BRINGEMEIER D. Inrush and mine inundation—A real threat to Australian coal mines [C]//Proceedings of the International Mine Water Association Annual Conference, Bunbury, Australia. 2012, 30.

[6] 施龙青, 韩进. 底板突水机理及预测预报[M]. 中国矿业大学出版社, 2004.

[7] WANG J-A, PARK H D. Coal mining above a confined aquifer [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(4) : 537–551.

[8] BENSE V F, VAN DEN BERG E H, VAN BALEN R T. Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands [J]. Hydrogeology Journal, 2003, 11(3) : 319–332.

[9] MOKHOV A V. Fissuring due to inundation of coal mines and its hydrodynamic implications [J]. Doklady Earth Sciences, 2007, 414(1) : 519–521.

[10] ISLAM Md R, SHINJO R. Mining-induced fault reactivation associated with the main conveyor belt roadway and safety of the Barapukuria Coal Mine in Bangladesh: Constraints from BEM simulations [J]. International Journal of Coal Geology, 2009, 79(4) : 115–130.

[11] ODINTSEV V N, MILETENKO N A. Water inrush in mines as a consequence of spontaneous hydrofracture [J]. Journal of Mining Science, 2015, 51(3) : 423–434.

[12] SHREEDHARAN S, KULATILAKE P H S W. Discontinuum–Equivalent Continuum Analysis of the Stability of Tunnels in a Deep Coal Mine Using the Distinct Element Method [J]. Rock Mechanics and Rock Engineering, 2016, 49(5) : 1903–1922.

[13] 施龙青. 底板突水机理研究综述[J]. 山东科技大学学报(自然科学版),2009, 28(03) : 17–23.

[14] 赵庆彪, 赵昕楠, 武强, 等. 华北型煤田深部开采底板“分时段分带突破”突水机理[J]. 煤炭学报,2015, 40(07) : 1601–1607.

[15] 尹立明, 郭惟嘉, 路畅. 深井底板突水模式及其突变特征分析[J]. 采矿与安全工程学报,2017, 34(03) : 459–463.

[16] YIN L, MA K, CHEN J, et al. Mechanical Model on Water Inrush Assessment Related to Deep Mining Above Multiple Aquifers [J]. Mine Water and the Environment, 2019, 38(4) : 827–836.

[17] 郭惟嘉, 张士川, 孙文斌, 等. 深部开采底板突水灾变模式及试验应用[J]. 煤炭学报,2018, 43(01) : 219–227.

[18] 李春元, 张勇, 彭帅, 等. 深部开采底板岩体卸荷损伤的强扰动危险性分析[J]. 岩土力学,2018, 39(11) : 3957–3968.

[19] 李春元, 张勇, 左建平, 等. 深部开采砌体梁失稳扰动底板破坏力学行为及分区特征[J]. 煤炭学报,2019, 44(05) : 1508–1520.

[20] 翟晓荣, 吴基文, 张红梅, 等. 基于流固耦合的深部煤层采动底板突水机理研究[J]. 煤炭科学技术,2017, 45(06) : 170–175.

[21] 李文平, 乔伟, 李小琴, 等. 深部矿井水害特征、评价方法与治水勘探方向[J]. 煤炭学报,2019, 44(08) : 2437–2448.

[22] 李振华, 周甲富, 张帅龙. 带压开采工作面底板突水规律相似模拟试验[J]. 河南理工大学学报(自然科学版),2016, 35(04) : 458–463.

[23] LI Z, ZHAI C, XIE H, et al. Similar simulation test for breakage law of working face floor in coal mining above aquifer [J]. Journal of Computational and Theoretical Nanoscience, American Scientific Publishers, 2016, 13(7) : 4230–4235.

[24] ZHANG S, GUO W, LI Y. Experimental simulation of water-inrush disaster from the floor of mine and its mechanism investigation [J]. Arabian Journal of Geosciences, 2017, 10(22) : 503.

[25] ZHU G, ZHANG W, WANG S, et al. Experimental Research on Characteristics of Fault Activation and Confined Water Rising [J]. Geotechnical and Geological Engineering, 2018, 36(4) : 2625–2636.

[26] 李海龙, 白海波, 马丹, 等. 采动动载作用下底板岩层裂隙演化规律的相似模拟研究[J]. 采矿与安全工程学报,2018, 35(02) : 366–372.

[27] BAI L, LIANG Y, SONG Y, et al. Study on Failure Law and Failure Depth of Floor in Deep Mining [J]. Geotechnical and Geological Engineering, 2019, 37(6) : 4933–4946.

[28] 孟祥瑞, 徐铖辉, 高召宁, 等. 采场底板应力分布及破坏机理[J]. 煤炭学报,2010, 35(11) : 1832–1836.

[29] 李昂, 谷拴成, 陈方方. 带压开采煤层底板破坏深度理论分析及数值模拟——以陕西澄合矿区董家河煤矿5号煤层为例[J]. 煤田地质与勘探,2013, 41(04) : 56–60.

[31] ZHU S, LIU R, ZHANG S, et al. Characteristics of Deformation and Failure of Deep Coal Seam Floor Affected by Fully Mechanized Mining [J]. Geotechnical Testing Journal, 2016, 39(1) : 20150042.

[32] LIU W, DU Y, LIU Y, et al. Failure Characteristics of Floor Mining-Induced Damage Under Deep Different Dip Angles of Coal Seam [J]. Geotechnical and Geological Engineering, 2019, 37(2) : 985–994.

[33] MENG X, LIU W, ZHAO J, et al. In Situ Investigation and Numerical Simulation of the Failure Depth of an Inclined Coal Seam Floor: A Case Study [J]. Mine Water and the Environment, 2019, 38(3) : 686–694.

[34] 刘树才, 刘鑫明, 姜志海, 等. 煤层底板导水裂隙演化规律的电法探测研究[J]. 岩石力学与工程学报,2009, 28(02) : 348–356.

[35] 段宏飞, 姜振泉, 朱术云, 等. 综采薄煤层采动底板变形破坏规律实测分析[J]. 采矿与安全工程学报,2011, 28(03) : 407–414.

[36] 段宏飞, 姜振泉, 张蕊, 等. 杨村煤矿综采条件下薄煤层底板破坏深度的实测与模拟研究[J]. 煤炭学报,2011, 36(S1) : 13–17.

[37] 刘伟韬, 曹光全, 申建军, 等. 底板采动破坏深度实测与模拟[J]. 辽宁工程技术大学学报(自然科学版),2013, 32(12) : 1585–1589.

[38] 陈继刚, 熊祖强, 李卉, 等. 倾斜特厚煤层综放带压开采底板破坏特征研究[J]. 岩石力学与工程学报,2016, 35(S1) : 3018–3023.

[39] 孔皖军, 郑根源, 国伟, 等. 采动条件下底板岩层破坏深度动态测试研究及应用[J]. 煤炭工程,2018, 50(10) : 96–100.

[40] 赵春虎. 孤岛工作面底板破坏深度微震测试与模拟分析[J]. 煤田地质与勘探,2019, 47(04) : 110–116.

[41] 王连国, 韩猛, 王占盛, 等. 采场底板应力分布与破坏规律研究[J]. 采矿与安全工程学报,2013, 30(03) : 317–322.

[42] 黄琪嵩, 程久龙. 软硬互层岩体采场底板的应力分布及破坏特征研究[J]. 岩土力学,2017, 38(S1) : 36–42.

[43] 刘启蒙, 李鹏飞, 张缓缓, 等. 损伤变量在煤层底板开采破坏深度计算中的应用[J]. 矿业安全与环保,2017, 44(05) : 59–63.

[44] 孙闯, 宋业杰, 樊振丽. 倾斜煤层底板破坏深度的断裂力学模型研究[J]. 中国煤炭,2018, 44(04) : 46–51.

[45] 宋文成, 梁正召, 刘伟韬, 等. 采场底板破坏特征及稳定性理论分析与试验研究[J]. 岩石力学与工程学报,2019, 38(11) : 2208–2218.

[46] 鲁海峰, 孟祥帅, 颜伟, 等. 采煤工作面层状结构底板采动稳定及破坏深度的圆弧滑动解[J]. 岩土力学,2020, 41(01) : 166–174.

[47] 李昂, 牟谦, 刘朝阳, 等. 渭北煤田多因素影响下底板扰动破坏深度研究[J]. 煤炭工程,2020, 52(05) : 138–143.

[48] LI A, MU Q, ZHANG W, et al. Research on a Numerical Simulation and Prediction Model of Floor Mining Failure Depth in the Chenghe Mining Area [J]. Geofluids, 2020, 2020 : 1–14.

[49] 张金才, 刘天泉. 论煤层底板采动裂隙带的深度及分布特征[J]. 煤炭学报,1990, (02) : 46–55.

[50] 马强. 渭北煤田承压水上开采下组煤贯通型断层底板突水机理研究[D]. 西安科技大学, 2020.

[51] LI A, MA Q, LI K, et al. Failure mechanism of the high pressure water in the Weibei on the top of the seams floor aquifers [J]. Journal of Mines, Metals and Fuels, 67(5) : 269–278.

[52] 张俊, 姚多喜. 煤层底板变形破坏的相似材料模拟研究综述[J]. 唐山学院学报,2019, 32(06) : 47–52.

[53] 刘云, 王艾伦. 复杂系统相似性原理与相似条件研究[J]. 系统工程学报,2009, 24(03) : 350–354.

[54] 冯梅梅, 茅献彪, 白海波, 等. 承压水上开采煤层底板隔水层裂隙演化规律的试验研究[J]. 岩石力学与工程学报,2009, 28(02) : 336–341.

[55] 张保良, 郭惟嘉, 张新国, 等. 煤层开采底板承压水导升模拟试验系统研制与应用[J]. 煤炭学报,2016, 41(08) : 2057–2062.

[56] 崔景昆, 孙守新, 谷客磊, 等. 承压水上带压开采底板突水相似模拟试验研究[J]. 煤炭技术,2016, 35(11) : 129–131.

[57] ZHAO J, CHEN J, ZHANG X, et al. Distribution characteristics of floor pore water pressure based on similarity simulation experiments [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(9) : 4805–4816.

[58] 孙文斌, 张士川, 李杨杨, 等. 固流耦合相似模拟材料研制及深部突水模拟试验[J]. 岩石力学与工程学报,2015, 34(S1) : 2665–2670.

[59] 文志杰, 姜鹏飞, 景所林, 等. 煤矿地下水库底板渗流模拟试验系统研制及验证[J/OL]. 煤炭学报,2021 : 1–11.

[60] SUN W, ZHANG S, GUO W, et al. Physical Simulation of High-Pressure Water Inrush Through the Floor of a Deep Mine [J]. Mine Water and the Environment, 2017, 36(4) : 542–549.

[61] 赵毅鑫, 姜耀东, 吕玉凯, 等. 承压工作面底板破断规律双向加载相似模拟试验[J]. 煤炭学报,2013, 38(03) : 384–390.

[62] 许延春, 陈新明, 李见波, 等. 大埋深高水压裂隙岩体巷道底臌突水试验研究[J]. 煤炭学报,2013, 38(S1) : 124–128.

[63] 王怀文, 周宏伟, 左建平, 等. 光测方法在岩层移动相似模拟实验中的应用[J]. 煤炭学报,2006, (03) : 278–281.

[64] 康向涛, 高璐, 罗蜚, 等. 数字散斑技术在煤矿相似模拟实验中的应用[J]. 中国安全生产科学技术,2020, 16(11) : 140–146.

[65] 李亮. 西部矿区深部仿生开采多相多场耦合作用机制研究[D]. 西安科技大学, 2020.

[66] 孙猛. 平顶山矿区地应力分布规律及其应用研究[D]. 中国矿业大学, 2014.

中图分类号:

 TD327.3    

开放日期:

 2023-07-31    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式