论文中文题名: | 基于CEEMDAN的平硐变形监测数据去噪及预测研究 |
姓名: | |
学号: | 19207205038 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085208 |
学科名称: | 工学 - 工程 - 电子与通信工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤矿智能化 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-06 |
论文外文题名: | Fiber grating; Roadway deformation; CEEMDAN method; Genetic algorithm; LSTM-BP neural network |
论文中文关键词: | 光纤光栅 ; 巷道变形 ; CEEMDAN法 ; 遗传算法 ; LSTM-BP神经网络 |
论文外文关键词: | Fiber grating ; Roadway deformation ; CEEMDAN method ; Genetic algorithm ; LSTM-BP neural network |
论文中文摘要: |
~在矿山安全中,井下巷道变形的监测一直是学者们研究的热点。其中光纤光栅传感器以其体积小、表征变形量多、布设方便等优点可用于巷道变形监测。由于井下环境复杂,光纤光栅传感器监测的数据往往伴随着噪声,导致监测数据曲线不够平滑,不利于预警系统的分析和决策。且岩层运动具有随机性和不确定性,使用传统的预测手段难以达到准确预测巷道变形的目的,因此本文将去噪算法和人工智能领域的算法结合,引入光纤光栅监测巷道变形系统中,可有效解决光纤光栅数据噪声和巷道变形预测难的问题。 |
论文外文摘要: |
~In mine safety,the deformation monitoring of underground roadway has always been a hot topic for scholars. The fiber grating sensor can be used for roadway deformation monitoring because of its small size,large deformation and convenient layout. Due to the complex underground environment,the data monitored by fiber grating sensors are often accompanied by noise,resulting in the monitoring data curve is not smooth,which is not conducive to the analysis and decision-making of early warning systems. And the rock movement has randomness and uncertainty,it is difficult to achieve the purpose of accurate prediction of roadway deformation by traditional prediction methods. Therefore,this paper combines the denoising algorithm and the algorithm in the field of artificial intelligence,and introduces the fiber grating monitoring roadway deformation system,which can effectively solve the problem of fiber grating data noise and roadway deformation prediction. |
中图分类号: | TD76 |
开放日期: | 2022-06-22 |