- 无标题文档
查看论文信息

题名:

 基于蛋白质组学的镰刀菌NF01对蒙东褐煤降解和液化机理研究    

作者:

 牛显    

学号:

 16103304005    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081901    

学科:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 煤炭转化与开发    

导师姓名:

 索永录    

导师单位:

 西安科技大学    

提交日期:

 2024-06-27    

答辩日期:

 2024-05-30    

外文题名:

 Mechanism Study of Mengdong Lignite Biodegradation and Bioliquefaction by Fusarium sp. NF01 Using Proteomics    

关键词:

 褐煤 ; 镰刀菌属 ; 微生物降解 ; 微生物液化 ; 蛋白质组学 ; 流态化开采    

外文关键词:

 Lignite ; Fusarium genus ; Microbial degradation ; Microbial liquefaction ; Proteomics ; Fluidized bed mining    

摘要:

煤炭的微生物转化是实现煤炭清洁转化、多元增值、安全高效的有效途径。然而,由于煤炭结构和生物转化机理的复杂性,以及传统分子生物学方法的局限性,目前对煤炭微生物转化中降解和液化机理的理解尚不深入。为此,本文以蒙东褐煤和原位采集菌株作为基本研究对象,采用实验研究、数据分析、工程设计等研究方法,系统地分析了菌株的生物特性和褐煤的理化性质,对比了褐煤生物降解和液化前后的微观结构,深入探讨了生物降解和液化褐煤过程中的蛋白质组学,揭示了褐煤环境下生物响应规律和降解液化原因,并解析了生物降解和液化褐煤结构的作用机理。此外,还对褐煤的生物液化产物进行了全组分分析,提出了一种褐煤的原位微生物流态化开采构想。本研究不仅为煤炭微生物转化机理研究提供了理论数据,也为探索煤炭的微生物流态化开采提供了新的思路。本文主要研究成果如下:

(1)从原位煤层中筛选出一株能够降解和液化褐煤的真菌菌株,通过形态学观测和内转录间隔区测序,该菌株被鉴定为镰刀菌属,命名为Fusarium sp. NF01或镰刀菌NF01。研究发现,培养基中碳源的改变会显著影响菌株的生物特性。为探究菌株生物特性及其对褐煤的生物降解和液化情况,配制了不同碳源(G:葡萄糖;M:麦芽糖;SGC:葡萄糖酸钠;SGT:谷氨酸钠)的基本培养基(MM),对比了菌株的生长曲线、菌液pH-t曲线、显/褪色反应,并对褐煤理化性质(氧化预处理、元素组成、微观形貌、官能团、自由基)、生物降解率、生物液化量进行了测定分析。结果表明:当培育MM-SGC时,菌株生长良好,培养液呈现碱性,生物降解率和液化量最大,分别为42.96%和2.2 mL,预测分泌漆酶和降解木质素的过氧化物酶;此外,褐煤经硝酸预处理,表面变得更加粗糙,且结构裂隙发育,元素含量和官能团改变明显,自由基浓度减小;

(2)基于蛋白质组学分析,揭示了Fusarium sp. NF01培育于MM-G中响应褐煤环境规律和降解原因,解析了生物降解褐煤结构的作用机理。采用稳定同位素标记蛋白质组串联质谱(TMT)技术,对有/无褐煤影响的菌株分泌蛋白质组进行了测试对比,共鉴定出显著差异表达蛋白62个。其中,上调蛋白20个,下调蛋白42个。结合生物信息学数据分析,对前5个显著差异上调蛋白质进行功能/通路注释和富集分析,揭示了菌株主要采用细胞防御、褐煤降解、解毒以及代谢调节等多蛋白调控策略去响应褐煤培养环境的规律,并结合生物产酶特性,建立了漆酶为靶点蛋白的假设;通过漆酶的验证试验和抑制试验,确定了Fusarium sp. NF01能够分泌漆酶,且伴随有褐煤时,漆酶活性水平更高,活性为24.6982 U/L;同时,分泌的漆酶是褐煤生物降解的主要原因。在此研究基础上,重点剖析了漆酶催化含羟基类化合物(如酚类化合物)的机理,结合菌株降解产物,推测了漆酶降解褐煤结构中发生化学键破坏位置和漆酶降解其过程,得到了菌株降解褐煤的作用机理;

(3)基于蛋白质组学分析,揭示了Fusarium sp. NF01培育于MM-SGC中响应褐煤环境规律和液化原因,解析了生物液化褐煤结构的作用机理。采用稳定同位素标记蛋白质组的TMT技术和生物信息学分析对菌株在有/无褐煤条件下的蛋白质组进行了测试对比,共鉴定出显著差异表达蛋白18个。其中,上调蛋白8个,下调蛋白10个。通过对前3个显著差异上/下调蛋白质的功能/通路注释和富集分析,揭示了菌株主要采用营养物质的转运和合成、质膜的主动调节、免疫的优化、细胞损伤和死亡的抑制、生长迟缓和代谢不良等多级蛋白质策略去响应褐煤环境的规律,并结合菌液碱性特征,选择上调蛋白中最显著的亚精胺合成酶为靶点蛋白。进一步利用生物胺的靶向检测和抑制多胺下的褐煤生物液化试验,阐明了菌株通过分泌亚精胺合成酶催化腐胺(Put)和脱羧化S-腺苷甲硫氨酸(dc-Sam)生物合成了亚精胺,且分泌的多胺,即亚精胺(占比65%,含量128.903 ug/g)、腐胺(占比20.4%,含量40.541 ug/g)、精胺(占比8.4%,含量16.616 ug/g),是褐煤生物液化的主要原因。同时,推断了菌株合成Put和dc-Sam的代谢途径。在此研究基础上,重点剖析了多胺物解离基团(氨基、亚氨基和氢氧根离子)与含有羧基、醛基、羰基等化合物的化学反应机理,结合菌株液化产物,推测了多胺液化褐煤结构中发生化学键破坏位置和液化过程,得到了菌株液化褐煤的作用机理;

(4)采用pH值测定仪、水分测定仪、X射线荧光光谱仪、傅立叶变换红外吸收光谱仪、X射线衍射仪、气相色谱-质谱仪、裂解气相色谱-质谱仪、热重分析仪等研究方法,对Fusarium sp. NF01液化褐煤产物的理化性质(pH值、水分、元素)和组成成分进行了深入分析。结果表明:生物液化产物pH值为6.98,呈中性,其成分由86.8%水分、5.92%炭黑、2.55%(氨基酸类物质、腐殖酸、混合烃)、2.39%硅酸盐、1.82%(苯并噻唑、邻苯二甲酰亚胺、4-甲基苯酐、Α-菖蒲醇、没药醇氧化物B、2,3-环氧-3,7-二甲基辛-6-烯醇、菲、蒽、雄烯二酮、芥酸酰胺、棕榈酰胺、油酸酰胺、β-雄甾烯醇)、0.42%碳酸钙、小于0.1的挥发物组成。

外文摘要:

Coal bioconversion is an effective approach to achieve clean transformation, diversified value addition, and safe and efficient utilization of coal. However, due to the complexity of coal structure and microbial mechanism, as well as the limitations of traditional molecular biology methods, there are still certain challenges in the in-depth understanding of the enzymatic mechanism during coal degradation. It systematically analyses the biological characteristics of these strains and the physicochemical properties of lignite, comparing microstructural changes pre- and post-biodegradation / bioliquefaction through experimental research, data analysis, and engineering design methods. Building upon this study, we delved into the proteomics of lignite biodegradation and bioliquefaction processes, elucidating the biological response patterns and biodegradation / bioliquefaction mechanisms under lignite environments. We further elucidated the potential mechanistic basis of biodegradation and bioliquefaction's influence on lignite structural modification. Additionally, this study conducted a comprehensive compositional analysis of the bioliquefaction products of lignite and proposed a conceptual framework for in-situ microbial liquefaction mining of lignite. This study not only provides theoretical data for researching the biotransformation mechanism of coal but also offers new insights into the microbial flow-state exploitation of coal. The key contributions of this thesis are summarized as follows.

(1) A fungal strain capable of degrading and liquefying lignite was isolated from an in-situ coal seam. Morphological observation and internal transcribed spacer sequencing identified the strain as a Fusarium species, designated as Fusarium sp. NF01. Carbon source alterations in the culture medium significantly impacted the strain's biological characteristics. To investigate the strain's biological properties and its influence on lignite biodegradation and bioliquefaction, basic media (MM) supplemented with different carbon sources (G: glucose; M: maltose; SGC: sodium gluconate; SGT: sodium glutamate) were prepared. The strain's growth curve, culture pH-t curve, and color fading/recovery reactions were compared. Additionally, lignite's physicochemical properties (oxidative pretreatment, elemental composition, microstructure, functional groups, free radicals), biodegradation rate, and bioliquefaction yield were analyzed. The results indicate that when cultivated in MM-SGC, the strain grows well. The culture medium is alkaline, and the biodegradation rate and liquefaction yield are maximized, reaching 42.96% and 2.2 mL, respectively. It is predicted that this strain secretes laccase and peroxidase, which degrade lignin. Additionally, after pretreatment with nitric acid, the surface of lignite becomes rougher, and structural cracks develop. There are significant changes in element content and functional groups, and the concentration of free radicals decreases.

(2) Through proteomic analysis of Fusarium sp. NF01 cultivated in MM-G, the laws of biological response to lignite environment and the causes of lignite biodegradation were revealed, and the possible biodegradation mechanism of lignite structure was explained. Using tandem mass spectrometry (TMT) with stable isotope labeling, the secreted proteins of strains with and without lignite exposure were compared and tested, and a total of 62 significantly differentially expressed proteins were identified, including 20 upregulated proteins and 42 downregulated proteins. Functional/pathway annotation and enrichment analysis of the top 5 significantly upregulated proteins, combined with bioinformatics data analysis, revealed that the strain mainly employs a multi-protein regulatory strategy involving cell defense, lignite degradation, detoxification, and metabolic regulation to respond to the lignite culture environment. Based on the characteristics of biological enzymes, a hypothesis was established with laccase as the target protein. Laccase verification and inhibition experiments confirmed that Fusarium sp. NF01 can secrete laccase, and its activity level is higher in the presence of lignite, reaching 24.6982 U/L. The secreted laccase is the main factor contributing to the lignite biodegradation. Building upon the previous findings, we further elucidated the mechanism of laccase catalysis for various substrates. By analyzing the biodegradation products, we inferred the specific locations of chemical bond cleavage and the overall degradation process during laccase-mediated lignite degradation. This in-depth analysis led to the formulation of a possible mechanism for lignite degradation by the strain.

(3) Through proteomic analysis of Fusarium sp. NF01 cultivated in MM-G, the laws of biological response to lignite environment and the causes of lignite bioliquefaction were revealed, and the possible bioliquefaction mechanism of lignite structure was explained. Utilizing TMT technology and bioinformatics analysis techniques, the proteomes of the strain under lignite-present and lignite-absent conditions were compared and analyzed. A total of 18 significantly differentially expressed proteins were identified, including 8 upregulated proteins and 10 downregulated proteins. By delving into the functional / pathway annotations and enrichment analyses of the top 3 significantly differentially up/downregulated proteins, we unveiled a multi-level protein strategy employed by the strain to respond to the lignite environment. This strategy encompasses nutrient transport and synthesis, active regulation of the plasma membrane, immune optimization, suppression of cell damage and death, growth retardation, and metabolic impairment. In conjunction with the strain's alkaline characteristics, we selected the most significantly upregulated protein, spermidine synthase, as a target protein for further investigation. To further elucidate the role of bioamines in lignite bioliquefaction, we employed targeted bioamine detection and polyamine-inhibited lignite bioliquefaction assays. These experiments revealed that the strain biosynthesizes spermidine through the secretion of spermidine synthase, catalyzing the conversion of putrescine (Put) and decarboxylated S-adenosylmethionine (dc-Sam). The secreted bioamines, predominantly spermidine (65%, 128.903 ug/g), followed by putrescine (20.4%, 40.541 ug/g) and spermine (8.4%, 16.616 ug/g), were identified as the primary drivers of lignite bioliquefaction. Additionally, we inferred the metabolic pathways involved in the strain's synthesis of Put and dc-Sam. Building upon this research, we delved into the mechanistic details of the chemical reactions between polyamine dissociation groups (amino, imine, and hydroxyl ions) and various substrates. By analyzing the strain's liquefaction products, we inferred the locations of chemical bond cleavage and the overall liquefaction process during polyamine-mediated lignite liquefaction. This in-depth analysis led to the formulation of a possible mechanism for lignite liquefaction by the strain.

(4) A comprehensive array of analytical techniques was employed to conduct both qualitative and quantitative assessments of the physicochemical properties and composition of the liquefied lignite products derived from Fusarium sp. NF01. These methods included pH measurement, moisture determination, X-ray fluorescence spectroscopy, Fourier transform-infrared absorption spectroscopy, X-ray diffraction, gas chromatography-mass spectrometry, pyrolysis gas chromatography-mass spectrometry, and thermogravimetric analysis. The resulting analysis revealed that the bioliquefaction products exhibited a neutral pH value of 6.98. The composition of these products was as follows: 86.8% water, 5.92% carbon black, 2.55% (amino acid substances, humic acid, mixed hydrocarbons), 2.39% silicate, 1.82% (benzo-thiazole, phthalimide, 4-methylphthalic anhydride, α-calamus alcohol, bisabolol oxide B2,3-epoxy-3,7-dimethyloct-6-enol, phenanthrene, anthracene, androstenedione, erucamide, palmitamide, oleamide, β-sitosterol), 0.42% calcium carbonate, and trace amounts of volatile compounds (less than 0.1%).

参考文献:

[1] 牛煜, 牛显, 郭红光, 等. 生物流态化采煤的内涵及技术构想[J]. 太原理工大学学报, 2018, 49(05): 777-784.

[2] 谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43(05): 1187-1197.

[3] Kirk M F, Martini A M, Breecker D O, et al. Impact of commercial natural gas production on geochemistry and microbiology in a shale-gas reservoir[J]. Chem Geol, 2012, 332-333(07): 15-25.

[4] Zhang J, Liang Y N. Evaluating approaches for sustaining methane production from coal through biogasification[J]. Fuel, 2017, 202: 233-240.

[5] Scott C D, Strandberg G W, Lewis S N. Microbial solubilization of coal[J]. Biotechnol Progr, 1986, 2(3): 131-139.

[6] Sekhohola L M, Igbinigie E E, Cowan A K. Biological degradation and solubilisation of coal[J]. Biodegradation, 2013, 24(3): 305-318.

[7] Ghani M J, Rajoka M I, Akhtar K. Investigations in fungal solubilization of coal: Mechanisms and significance[J]. Biotechnol Bioproc E, 2015, 20(4): 634-642.

[8] 范涛, 初茉, 畅志兵. 蒙东褐煤热解技术工业应用进展[J]. 化工进展, 2021, 40(03): 1362-1370.

[9] 石开仪. 白腐真菌hypocrea lixii ah对抚顺长焰煤及其模型化合物生物液化机理研究[D]. 徐州: 中国矿业大学, 2011.

[10] Stout S A, Boon J J, Spackman W. Molecular aspects of the peatification and early coalification of angiosperm and gymnosperm woods[J]. Geochim Cosmochim Acta, 1988, 52(2): 405-414.

[11] 牛煜. 黄孢原毛平革菌在煤体中代谢—传输的实验研究[D]. 太原: 太原理工大学, 2018.

[12] 徐敬尧. 煤炭生物降解转化新菌种基因工程的构建研究[D]. 安徽: 安徽理工大学, 2009.

[13] Tian J, Ni H Y, Han Y M, et al. Primary pm2.5 and trace gas emissions from residential coal combustion: Assessing semi-coke briquette for emission reduction in the beijing-tianjin-hebei region, china[J]. Atmos Environ, 2018, 191: 378-386.

[14] Ralph J P, Catcheside D E A. Depolymerisation of macromolecules from morwell brown coal by mesophilic and thermotolerant aerobic microorganisms[J]. Fuel Process Technol, 1994, 40(2): 193-203.

[15] Bean R M, Campbell J A, Franz J A, et al. Analysis of biodegraded coals[J]. Mol Biochem Parasitol, 1988, 19(1): 1-19.

[16] Hölker U, Fakoussa R M, Höfer M. Growth substrates control the ability offusarium oxysporumto solubilize low-rank coal[J]. Appl Microbiol Biotechnol, 1995, 44(3-4): 351-355.

[17] Machnikowska H, Pawelec K, Podgórska A. Microbial degradation of low rank coals[J]. Fuel Process Technol, 2002, 77: 17-23.

[18] 苏现波, 夏大平, 赵伟仲, 等. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(06): 1-30.

[19] 鲍园, 常佳宁, 刘向荣, 等. 煤层气生物工程关键预处理技术及其作用机制评述[J]. 煤田地质与勘探, 2022, 50(11): 103-114.

[20] 韩威, 杨海波, 赵秀琛, 等. 煤的微生物溶(降)解研究[J]. 燃料化学学报, 1993, (03): 332-336.

[21] 李建涛, 刘向荣, 杨杰, 等. 光-氧氧化预处理褐煤微生物降解效果提升的原因[J]. 煤炭转化, 2020, 43(01): 47-55.

[22] 郭红光, 王飞, 李治刚. 微生物增产煤层气技术研究进展[J]. 微生物学通报, 2015, 42(03): 584-590.

[23] 张亚婷, 孟庆宇, 周安宁. 微生物对神府光氧化煤基腐殖酸的转化[J]. 化学与生物工程, 2009, 26(07): 79-88.

[24] 徐敬尧, 张明旭. 球红假单胞菌原生质体的微波诱变及其煤炭降解转化[J]. 中国矿业大学学报, 2014, 43(01): 136-142.

[25] Sabar M A, Ali M I, Fatima N, et al. Degradation of low rank coal by rhizopus oryzae isolated from a pakistani coal mine and its enhanced releases of organic substances[J]. Fuel, 2019, 253: 257-265.

[26] Etemadzadeh S S, Emtiazi G, Etemadifar Z. Heterotrophic bioleaching of sulfur, iron, and silicon impurities from coal by fusarium oxysporum fe and exophiala spinifera fm with growing and resting cells[J]. Curr Microbiol, 2016, 72(6): 707-715.

[27] Zhao O Y, Zhang X N, Feng S D, et al. Starch-enhanced degradation of hmw pahs by fusarium sp in an aged polluted soil from a coal mining area[J]. Chemosphere, 2017, 174: 774-780.

[28] Laborda F, Monistrol I F, Luna N, et al. Processes of liquefaction/solubilization of spanish coals by microorganisms[J]. Appl Microbiol Biot, 1999, 52(1): 49-56.

[29] Hofrichter M, Fritsche W. Depolymerization of low rank coal by extracellular fungal enzyme systems .1. Screening for low rank-coal-depolymerizing activities[J]. Appl Microbiol Biot, 1996, 46(3): 220-225.

[30] Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Ii. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus nematoloma frowardii b19[J]. Appl Microbiol Biot, 1997, 47(4): 419-424.

[31] Fakoussa R M, Frost P J. In vivo-decolorization of coal-derived humic acids by laccase-excreting fungus trametes versicolor[J]. Appl Microbiol Biot, 1999, 52(1): 60-65.

[32] Ralph J P, Catcheside D E A. Involvement of manganese peroxidase in the transformation of macromolecules from low-rank coal by phanerochaete chrysosporium[J]. Appl Microbiol Biot, 1998, 49(6): 778-784.

[33] Götz G K E, Fakoussa R M. Fungal biosolubilization of rhenish brown coal monitored by curie-point pyrolysis / gas chromatography / mass spectrometry using tetraethylammonium hydroxide[J]. Appl Microbiol Biotechnol, 1999, 52(1): 41-48.

[34] Hofrichter M, Bublitz F, Fritsche W. Fungal attack on coal: I. Modification of hard coal by fungi[J]. Fuel Processing Technology, 1997, 52(1): 43-53.

[35] Yanagi Y, Tamaki H, Otsuka H, et al. Comparison of decolorization by microorganisms of humic acids with different 13C nmr properties[J]. Soil Biol Biochem, 2002, 34(5): 729-731.

[36] Scheibner K, Hofrichter M, Fritsche W. Mineralization of 2-amino-4,6-dinitrotoluene by manganese peroxidase of the white-rot fungus nematoloma frowardii[J]. Biotechnol Lett, 1997, 19(9): 835-839.

[37] Laborda F, Fernandez M, Luna N, et al. Study of the mechanisms by which microorganisms solubilize and/or liquefy spanish coals[J]. Fuel Process Technol, 1997, 52(1): 95-107.

[38] Steffen K T, Hatakka A, Hofrichter M. Degradation of humic acids by the litter-decomposing basidiomycete collybia dryophila[J]. Appl Microbiol Biot, 2002, 68(7): 3442-3448.

[39] Hölker U, Ludwig S, Scheel T, et al. Mechanisms of coal solubilization by the deuteromycetes trichoderma atroviride and fusarium oxysporum[J]. Appl Microbiol Biotechnol, 1999, 52(1): 57-59.

[40] Midgley D J, Hendry P, Pinetown K L, et al. Characterisation of a microbial community associated with a deep, coal seam methane reservoir in the gippsland basin, australia[J]. INT J Coal Geol, 2010, 82(3-4): 232-239.

[41] Quigley D R, Ward B, Crawford D L, et al. Evidence that microbially produced alkaline materials are involved in coal biosolubilization[J]. Appl Biochem Biotechnol, 1989, 20-21(1): 753-763.

[42] Belcarz A, Ginalska G, Kornillowicz-Kowalska T. Extracellular enzyme activities of bjerkandera adusta r59 soil strain, capable of daunomycin and humic acids degradation[J]. Appl Microbiol Biotechnol, 2005, 68(5): 686-694.

[43] Gupta R K, Deobald L A, Crawford D L. Depolymerization and chemical modification of lignite coal by pseudomonas cepacia strain dlc-07[J]. Appl Microbiol Biot, 1990, 24-25(1): 899-911.

[44] Odier E, Rolando C. Catabolism of arylglycerol-beta-aryl ethers lignin model compounds by pseudomonas cepacia 122[J]. Biochimie, 1985, 67(2): 191-197.

[45] Kilbane J J, Chatterjee D K, Karns J S, et al. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of pseudomonas cepacia[J]. Appl Environ Microbiol, 1982, 44(2): 514-516.

[46] Kordel M, Hofmann B, Schomburg D, et al. Extracellular lipase of pseudomonas sp. Strain atcc 21808: Purification, characterization, crystallization, and preliminary x-ray diffraction data[J]. J Bacteriol, 1991, 173(15): 4836-4841.

[47] Cohen M S, Gabriele P D. Degradation of coal by the fungi polyporus versicolor and poria monticola[J]. Appl Environ Microbiol, 1982, 44(1): 23-27.

[48] Yukiko Y, Seiji H, Hajime T, et al. Relation of chemical properties of soil humic acids to decolorization by white rot fungus–coriolus consors[J]. Soil Sci Plant Nutr, 2003, 49(2): 201-206.

[49] Strandberg G W, Lewis S N. Solubilization of coal by an extracellular product fromstreptomyces setonii 75vi2[J]. J Ind Microbiol, 1987, 1(6): 371-375.

[50] Igbinigie E E, Aktins S, van Breugel Y, et al. Fungal biodegradation of hard coal by a newly reported isolate, neosartorya fischeri[J]. Biotechnology journal, 2008, 3(11): 1407-1416.

[51] Cohen M S, Feldman K A, Brown C S, et al. Isolation and identification of the coal-solubilizing agent produced by trametes versicolor[J]. Appl Environ Microbiol, 1990, 56(11): 3285-3291.

[52] David Y, Baylon M G, Pamidimarri S D V N, et al. Screening of microorganisms able to degrade low-rank coal in aerobic conditions: Potential coal biosolubilization mediators from coal to biochemicals[J]. Biotechnol Bioproc E, 2017, 22(2): 178-185.

[53] Akimbekov N, Digel I, Qiao X H, et al. Lignite biosolubilization by bacillus sp. Rkb 2 and characterization of its products[J]. Geomicrobiol J, 2019, 47(1): 7-16.

[54] 陈超, 郭红光, 张攀攀, 等. 外加电场作用下煤制生物甲烷的条件优化试验研究[J]. 煤炭科学技术, 2020, 48(12): 224-230.

[55] 袁红莉, 蔡亚岐, 周希贵, 等. 降解褐煤菌种选育及降解产物研究[J]. 应用与环境生物学报, 1999, 5(s1): 21-24.

[56] Zhiwei, Gao, Tongguo, et al. The biosolubilization of lignite by bacillus sp y7 and characterization;of the soluble products[J]. Fuel, 2013, 103(12): 639-645.

[57] Liu T, Hou J-h, Peng Y-l. Effect of a newly isolated native bacteria, pseudomonas sp. Np22 on desulfurization of the low-rank lignite[J]. Int J Miner Process, 2017, 162: 6-11.

[58] Ghani M J, Rajoka M I, Akhtar K. Investigations in fungal solubilization of coal: Mechanisms and significance[J]. Biotechnol Bioproc E, 2015, 20(4): 634-642.

[59] Gupta A, Verma J P. Sustainable bio-ethanol production from agro-residues: A review[J]. Renew Sust Energ Rev, 2015, 41: 550-567.

[60] Fakoussa R M, Hofrichter M. Biotechnology and microbiology of coal degradation[J]. Appl Microbiol Biotechnol, 1999, 52(1): 25-40.

[61] Quigley D R, Breckenridge C R, Dugan P R, et al. Effects of multivalent cations on low-rank coal solubilities in alkaline solutions and microbial cultures[J]. Energy Fuels, 1989, 3(5): 571-574.

[62] Fakoussa R M. Influence of different chelators on the solubilization/liquefaction of different pretreated and natural lignites[J]. Fuel Process Technol, 1994, 40(2-3): 183-192.

[63] Yuan H, Yang J, Chen W. Production of alkaline materials, surfactants and enzymes by penicillium decumbens strain p6 in association with lignite degradation/ solubilization[J]. Fuel, 2006, 85(10): 1378-1382.

[64] Hölker U S H, Grosse S. Solubilization of low-rank coal by trichoderma atroviride; evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite,[J]. J Ind Microbiol Biotechnol, 2002, 28(4): 207–212.

[65] Yang Y, Yang J, Li B, et al. An esterase from penicillium decumbens p6 involved in lignite depolymerization[J]. Fuel, 2018, 214: 416-422.

[66] Klein J. Biological processing of fossil fuels[J]. Appl Microbiol Biotechnol, 1999, 52(1): 2-15.

[67] Polman J K, Miller K S, Stoner D L, et al. Solubilization of bituminous and lignite coals by chemically and biologically synthesized surfactants[J]. J Chem Technol Biotechnol, 1994, 61(1): 11-17.

[68] Yin S D, Tao X X, Shi K Y. The role of surfactants in coal bio-solubilisation[J]. Fuel Process Technol, 2011, 92(8): 1554-1559.

[69] Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems .2. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus nematoloma frowardii b19[J]. Appl Microbiol Biotechnol, 1997, 47(4): 419-424.

[70] Falade A O, Nwodo U U, Iweriebor B C, et al. Lignin peroxidase functionalities and prospective applications[J]. Microbiologyopen, 2017, 6(1): 14-20.

[71] Kersten P, Cullen D. Extracellular oxidative systems of the lignin-degrading basidiomycete phanerochaete chrysosporium[J]. Fungal Genet Biol, 2007, 44(2): 77-87.

[72] Yadav M, Yadav P, Yadav K D S. Purification, characterization, and coal depolymerizing activity of lignin peroxidase from gloeophyllum sepiarium mtcc-1170[J]. Biochemistry-Moscow, 2009, 74(10): 1125-1131.

[73] Glenn J K, Morgan M A, Mayfield M B, et al. An extracellular H2O2-requiring enzyme preparation involved in lignin biodegradation by the white rot basidiomycete phanerochaete chrysosporium[J]. Biochem Biophys Res Commun, 1983, 114(3): 1077-1083.

[74] Wondrack L, Szanto M, Wood W A. Depolymerization of water soluble coal polymer from subbituminous coal and lignite by lignin peroxidase[J]. Appl Biochem Biotechnol, 1989, 20-21(1): 765-780.

[75] Ralph J P, Graham L A, Catcheside D E A. Extracellular oxidases and the transformation of solubilised low rank coal by wood-rot fungi[J]. Appl Microbiol Biotechnol, 1996, 46(3): 226-232.

[76] Kuwahara M, Glenn J K, Morgan M A, et al. Separation and characterization of two extracelluar h2o2-dependent oxidases from ligninolytic cultures of phanerochaete chrysosporium[J]. FEBS Lett, 1984, 169(2): 247-250.

[77] Hofrichter M. Review: Lignin conversion by manganese peroxidase (mnp)[J]. Enzyme Microb Technol, 2002, 30(4): 454-466.

[78] Wariishi H, Valli K, Gold M H. Manganese(ii) oxidation by manganese peroxidase from the basidiomycete phanerochaete-chrysosporium - kinetic mechanism and role of chelators[J]. J Biol Chem, 1992, 267(33): 23688-23695.

[79] Quintanar L, Yoon J, Aznar C P, et al. Spectroscopic and electronic structure studies of the trinuclear cu cluster active site of the multicopper oxidase laccase: Nature of its coordination unsaturation[J]. J Am Chem Soc, 2005, 127(40): 13832-13845.

[80] Yadav M, Yadav H S. Applications of ligninolytic enzymes to pollutants, wastewater, dyes, soil, coal, paper and polymers[J]. Environ Chem Lett, 2015, 13(3): 309-318.

[81] 王国栋, 陈晓亚. 漆酶的性质、功能、催化机理和应用[J]. 植物学通报, 2003, (04): 469-475.

[82] Nunes C S, Kunamneni A. Chapter 7 - laccases—properties and applications [M] //C S Nunes, V Kumar, Enzymes in human and animal nutrition, Academic Press, 2018: 133-161.

[83] Cohen M S, Bowers W C, Aronson H, et al. Cell-free solubilization of coal by polyporus versicolor[J]. Appl Environ Microbiol, 1987, 53(12): 2840-2843.

[84] Hofrichter M, Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Ii. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus nematoloma frowardii b19[J]. Appl Microbiol Biotechnol, 1996, 47(4): 419-424.

[85] Kwiatos N, Jedrzejczak-Krzepkowska M, Strzelecki B, et al. Improvement of efficiency of brown coal biosolubilization by novel recombinant fusarium oxysporum laccase[J]. Amb Express, 2018, 8: 9.

[86] Revankar M S, Lele S S. Enhanced production of laccase using a new isolate of white rot fungus wr-1[J]. Process Biochem, 2006, 41(3): 581-588.

[87] Rosales E, Rodríguez Couto S, Sanromán M A. Increased laccase production by trametes hirsuta grown on ground orange peelings[J]. Enzyme Microb Technol, 2007, 40(5): 1286-1290.

[88] 姚菁华. 褐煤的微生物解聚研究[D]. 徐州: 中国矿业大学, 2014.

[89] Gupta R K, Deobald L A, Crawford D L. Depolymerization and chemical modification of lignite coal by pseudomonas-cepacia strain dlc-07[J]. Appl Biochem Biotechnol, 1990, 24-5: 899-911.

[90] Aytar P, Aksoy D O, Toptas Y, et al. Isolation and characterization of native microorganism from turkish lignite and usability at fungal desulphurization[J]. Fuel, 2014, 116: 634-641.

[91] Swinbanks D. Government backs proteome proposal[J]. Nature, 1995, 378(6558): 653-653.

[92] 康玉军. 虹鳟肝脏响应高温胁迫的蛋白质组学与代谢组学研究[D]. 兰州: 甘肃农业大学, 2020.

[93] Service R F. Can celera do it again?[J]. Science, 2000, 287(5461): 2136-2138.

[94] Issa F. Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma[J]. Transplantation, 2019, 103(5): 855-856.

[95] Cheng L J, Wang X H, Chou H D, et al. Proteomic sequencing of stellate ganglions in rabbits with myocardial infarction[J]. Front Physiol, 2021, 12.

[96] Wang Z K, Zhang R, Liu F J, et al. Tmt-based quantitative proteomic analysis reveals proteomic changes involved in longevity[J]. Proteomics Clinical Applications, 2019, 13(4): 11-18.

[97] 余元元. 十溴联苯醚降解菌群gy1结构分析及其优势菌Microbacterium y2的降解机理研究[D]. 广州: 华南理工大学, 2020.

[98] 钟琦, 王红旗, 姜茹菡, 等. 共代谢条件下荧蒽降解菌的差异蛋白质组学分析[J]. 中国环境科学, 2022, 42(09): 4423-4432.

[99] 王燕. Sphingobium yanoikuyae shj对邻苯二甲酸二乙酯的生物降解途径及酶学响应机理[D]. 北京: 中国地质大学, 2018.

[100] 汤继顺. 利用转录组测序和蛋白质组学分析筛选绵羊多羔候选基因的研究[D]. 北京: 中国农业科学院, 2019.

[101] 冯昕. 基于蛋白质组学的高抗铜微紫青霉菌铜抗性机制研究[D]. 南宁: 广西大学, 2018.

[102] Thompson A, Schafer J, Kuhn K, et al. Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS[J]. Anal Chem, 2003, 75(8): 1895-1904.

[103] Rauniyar N, Yates J R. Isobaric labeling-based relative quantification in shotgun proteomics[J]. J Proteome Res, 2014, 13(12): 5293-5309.

[104] Scott A R. Improving coal gas recovery with microbially enhanced coalbed methane[M], Springer Netherlands, 1999: 89-110.

[105] Fallgren P H, Zeng C P, Ren Z Y, et al. Feasibility of microbial production of new natural gas from non-gas-producing lignite[J]. Int J Coal Geol, 2013, 115: 79-84.

[106] Flores R M, Rice C A, Stricker G D, et al. Methanogenic pathways of coal-bed gas in the powder river basin, united states: The geologic factor[J]. Int J Coal Geol, 2008, 76(1): 52-75.

[107] Park S Y, Liang Y. Biogenic methane production from coal: A review on recent research and development on microbially enhanced coalbed methane (mecbm)[J]. Fuel, 2016, 166: 258-267.

[108] Scott A R. Improving coal gas recovery with microbially enhanced coalbed methane [C] // Coalbed Methane: Scientific, Environmental, and Economic Evaluations[R], Netherlands: Kluwer Academic Publishers, 1999: 89-111.

[109] Yoon S P, Jeon J Y, Lim H S. Stimulation of biogenic methane generation from lignite through supplying an external substrate[J]. Int J Coal Geol, 2016, 162: 39-44.

[110] Mitchell N, Love G, Drinnan N. Process for the microbial conversion of a subsurface formation[P]. USA: AU2015271647A1, 2016-12-08.

[111] Davis K J, Gerlach R. Transition of biogenic coal-to-methane conversion from the laboratory to the field: A review of important parameters and studies[J]. Int J Coal Geol, 2018, 185: 33-43.

[112] 苏现波, 徐影, 吴昱, 等. 盐度、pH对低煤阶煤层生物甲烷生成的影响[J]. 煤炭学报, 2011, 36(08): 1302-1306.

[113] 王爱宽, 秦勇. 褐煤本源菌在煤层生物气生成中的微生物学特征[J]. 中国矿业大学学报, 2011, 40(06): 888-893.

[114] Guo H Y, Dong Z W, Su X B, et al. Synergistic biodegradation of coal combined with corn straw as a substrate to methane and the prospects for its application[J]. Energy Fuels, 2018, 32(6): 7011-7016.

[115] Guo H G, Cheng Y T, Huang Z X, et al. Factors affecting co-degradation of coal and straw to enhance biogenic coalbed methane[J]. Fuel, 2019, 244: 240-246.

[116] Guo H Y, Zhang M L, Dong Z W, et al. The mechanisms of biogenic methane metabolism by synergistic biodegradation of coal and corn straw[J]. Bioresour Technol, 2020, 298: 9-16.

[117] 周守为, 陈伟, 李清平. 深水浅层天然气水合物固态流化绿色开采技术[J]. 中国海上油气, 2014, 26(05): 1-7.

[118] Klebingat S, Kempka T, Schulten M, et al. Optimization of synthesis gas heating values and tar by-product yield in underground coal gasification[J]. Fuel, 2018, 229: 248-261.

[119] Bhutto A W, Bazmi A A, Zahedi G. Underground coal gasification: From fundamentals to applications[J]. Prog Energy Combust Sci, 2013, 39(1): 189-214.

[120] 谢和平, 鞠杨, 高明忠, 等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报, 2018, 43(05): 1210-1219.

[121] 谢和平, 高峰, 鞠杨, 等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报, 2017, 42(03): 547-556.

[122] 王世伟, 王卿惠, 李小鹏, 等. 镰刀菌分子鉴定与重要应用的研究进展[J]. 微生物学通报, 2018, 45(04): 907-919.

[123] Pessoa M G, Paulino B N, Mano M C R, et al. Fusarium species-a promising tool box for industrial biotechnology[J]. Appl Microbiol Biotechnol, 2017, 101(9): 3493-3511.

[124] Escriva L, Font G, Manyes L. In vivo toxicity studies of fusarium mycotoxins in the last decade: A review[J]. Food Chem Toxicol, 2015, 78: 185-206.

[125] Singh R, Kumar M, Mittal A, et al. Microbial enzymes: Industrial progress in 21st century[J]. 3 Biotech, 2016, 6: 15-23.

[126] Xiros C, Katapodis P, Christakopoulos P. Evaluation of fusarium oxysporum cellulolytic system for an efficient hydrolysis of hydrothermally treated wheat straw[J]. Bioresour Technol, 2009, 100(21): 5362-5365.

[127] Panagiotou G, Christakopoulos P, Olsson L. Simultaneous saccharification and fermentation of cellulose by fusarium oxysporum f3 - growth characteristics and metabolite profiling[J]. Enzyme Microb Technol, 2005, 36(5-6): 693-699.

[128] Chhaya U, Gupte A. Effect of different cultivation conditions and inducers on the production of laccase by the litter-dwelling fungal isolate fusarium incarnatum ld-3 under solid substrate fermentation[J]. Ann Microbiol, 2013, 63(1): 215-223.

[129] Wu Y R, Nian D L. Production optimization and molecular structure characterization of a newly isolated novel laccase from fusarium solani mas2, an anthracene-degrading fungus[J]. Int Biodeterior Biodegrad, 2014, 86: 382-389.

[130] Thadathil N, Kuttappan A K P, Vallabaipatel E, et al. Statistical optimization of solid state fermentation conditions for the enhanced production of thermoactive chitinases by mesophilic soil fungi using response surface methodology and their application in the reclamation of shrimp processing by-products[J]. Ann Microbiol, 2014, 64(2): 671-681.

[131] Ali S S, Vidhale N N. Protease production by fusarium oxysporum in solid- state fermentation using rice bran[J]. Microbiol Res, 2013, 1(3): 45-47.

[132] Suresh P V, Sakhare P Z, Sachindra N M, et al. Extracellular chitin deacetylase production in solid state fermentation by native soil isolates of penicillium monoverticillium and fusarium oxysporum[J]. J Food Sci Tech Mys, 2014, 51(8): 1594-1599.

[133] Olajuyigbe F M, Nlekerem C M, Ogunyewo O A. Production and characterization of highly thermostable beta-glucosidase during the biodegradation of methyl cellulose by fusarium oxysporum[J]. Biochem Res Int, 2016, 2016: 1-8.

[134] Oliveira B H, Coradi G V, Attili-Angelis D, et al. Comparison of lipase production on crambe oil and meal by fusarium sp (gibberella fujikuroi complex)[J]. Eur J Lipid Sci Technol, 2013, 115(12): 1413-1425.

[135] Amoah J, Ho S H, Hama S, et al. Converting oils high in phospholipids to biodiesel using immobilized aspergillus oryzae whole-cell biocatalysts expressing fusarium heterosporum lipase[J]. Biochem Eng J, 2016, 105: 10-15.

[136] Soni H, Rawat H K, Ahirwar S, et al. Screening, statistical optimized production and application of β-mannanase from some newly isolated fungi[J]. Eng Life Sci, 2016.

[137] Yusuf F, Chaubey A, Jamwal U, et al. A new isolate from fusarium proliferatum (auf-2) for efficient nitrilase production[J]. Appl Biochem Biotechnol, 2013, 171(4): 1022-1031.

[138] de Almeida M N, Guimaraes V M, Falkoski D L, et al. Optimization of endoglucanase and xylanase activities from fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse[J]. Appl Biochem Biotechnol, 2014, 172(3): 1332-1346.

[139] Behera S S, Ray R C. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies[J]. Int J Biol Macromol, 2016, 86: 656-669.

[140] Indira D, Sharmila D, Balasubramanian P, et al. Utilization of sea water based media for the production and characterization of cellulase by fusarium subglutinans mtcc 11891[J]. Biocatalysis & Agricultural Biotechnology, 2016, 7: 187-192.

[141] Alvarez R, Clemente C, Gomez-Limon D. The influence of nitric acid oxidation of low rank coal and its impact on coal structure[J]. Fuel, 2003, 82(15-17): 2007-2015.

[142] He X Q, Liu X F, Nie B S, et al. Ftir and raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.

[143] Wang S Q, Tang Y G, Schobert H H, et al. Ftir and 13C NMR investigation of coal component of late permian coals from southern china[J]. Energy Fuels, 2011, 25(12): 5672-5677.

[144] Basaran Y, Denizli A, Sakintuna B, et al. Bio-liquefaction/solubilization of low-rank turkish lignites and characterization of the products[J]. Energy Fuels, 2003, 17(4): 1068-1074.

[145] 陈允魁. 红外吸收光谱法及其应用[M]. 上海: 上海交通大学出版社, 1993: 144.

[146] 刘洁. 褐煤中易分离/热解组分的解析及褐煤大分子结构模型的构建[D]. 徐州: 中国矿业大学, 2019.

[147] Liu Z Q, Wei X Y, Liu F J, et al. Temperature-controlled hydrogenation of anthracene over nickel nanoparticles supported on attapulgite powder[J]. Fuel, 2018, 223: 222-229.

[148] 位爱竹. 煤炭自燃自由基反应机理的实验研究[D]. 徐州: 中国矿业大学, 2008.

[149] 赵继尧. 顺磁共振谱对氧化煤的初步研究[J]. 煤炭科技资料, 1991, 7(3): 70-72.

[150] Wang B Y, Tai C, Wu L, et al. Methane production from lignite through the combined effects of exogenous aerobic and anaerobic microflora[J]. International J Coal Geol, 2017, 173: 84-93.

[151] 鲍园, 李争岩, 安超, 等. 多手段表征富油煤微生物厌氧发酵孔隙结构变化特征及机制[J]. 煤炭学报, 2023, 48(02): 891-899.

[152] Yin S D, Tao X X, Shi K Y, et al. Biosolubilisation of chinese lignite[J]. Energy, 2009, 34(6): 775-781.

[153] Korshin G V, Li C W, Benjamin M M. Monitoring the properties of natural organic matter through uv spectroscopy: A consistent theory[J]. Water Research, 1997, 31(7): 1787-1795.

[154] Doskocil L, Burdikova-Szewieczkova J, Enev V, et al. Spectral characterization and comparison of humic acids isolated from some european lignites[J]. Fuel, 2018, 213: 123-132.

[155] Li Z H, Kong B, Wei A Z, et al. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method[J]. Environ Sci Pollut R 2016, 23(23): 23593-23605.

[156] 苗曙光. 基于gpr与esr的煤岩性状识别方法研究[D]. 徐州: 中国矿业大学, 2019.

[157] Li Y H, Zhao H Y, Song Q, et al. Influence of critical moisture content in lignite dried by two methods on its physicochemical properties during oxidation at low temperature[J]. Fuel, 2018, 211: 27-37.

[158] 田红丽, 刘荣杰, 李平. 反应-蒸馏合成双丙酮醇工艺研究[J]. 信阳师范学院学报(自然科学版), 2015, 28(03): 393-395.

[159] 崇明本. 2-庚酮制备研究[D]. 无锡: 江南大学, 2004.

[160] Gerlt J A, Babbitt P C, Jacobson M P, et al. Divergent evolution in enolase superfamily: Strategies for assigning functions[J]. J Biol Chem, 2012, 287(1): 29-34.

[161] 李菲. 结核分枝杆菌抗原致骨髓造血细胞增殖分化异常实验研究暨烯醇化酶-1单克隆抗体制备与作用初步研究[D]. 兰州: 兰州大学, 2019.

[162] Eroles P, Sentandreu M, Elorza M V, et al. The highly immunogenic enolase and hsp70p are adventitious candida albicans cell wall proteins[J]. Microbiology-Sgm, 1997, 143: 313-320.

[163] Elahian F, Sepehrizadeh Z, Moghimi B, et al. Human cytochrome b5 reductase: Structure, function, and potential applications[J]. Crit Rev Biotechnol, 2014, 34(2): 134-143.

[164] Rhoads K, Sacco J C, Drescher N, et al. Individual variability in the detoxification of carcinogenic arylhydroxylamines in human breast[J]. Toxicol Sci, 2011, 121(2): 245-256.

[165] Woischke C, Blaj C, Schmidt E M, et al. Cyb5r1 links epithelial-mesenchymal transition and poor prognosis in colorectal cancer[J]. Oncotarget., 2016, 7(21): 31350-31360.

[166] Lund R R, Leth-Larsen R, Di Caterino T, et al. Nadh-cytochrome b5 reductase 3 promotes colonization and metastasis formation and is a prognostic marker of disease-free and overall survival in estrogen receptor-negative breast cancer[J]. Mol Cell Proteomics, 2015, 14(11): 2988-2999.

[167] Diaz-Ruiz A, Lanasa M, Garcia J, et al. Overexpression of cyb5r3 and nqo1, two nad(+)-producing enzymes, mimics aspects of caloric restriction[J]. Aging Cell, 2018, 17(4): 13-19.

[168] Vizan P, Di Croce L, Aranda S. Functional and pathological roles of ahcy[J]. Front Cell Dev Biol, 2021, 9: 12-19.

[169] Devogelaere B, Sammels E, De Smedt H. The irbit domain adds new functions to the ahcy family[J]. Bioessays, 2008, 30(7): 642-652.

[170] Tehlivets O, Hasslacher M, Kohlwein S D. S-adenosyl-l-homocysteine hydrolase in yeast: Key enzyme of methylation metabolism and coordinated regulation with phospholipid synthesis[J]. FEBS Lett, 2004, 577(3): 501-506.

[171] Li Y J, Chen J J, Liu J, et al. Binding of cu2+ to s-adenosyl-l-homocysteine hydrolase[J]. J Inorg Biochem, 2004, 98(6): 977-983.

[172] Alibhoy A A, Giardina B J, Dunton D D, et al. Vps34p is required for the decline of extracellular fructose-1,6-bisphosphatase in the vacuole import and degradation pathway[J]. J Biol Chem, 2012, 287(39): 33080-33093.

[173] Brown C R, Cui D Y, Hung G G C, et al. Cyclophilin a mediates vid22p function in the import of fructose-1,6-bisphosphatase into vid vesicles[J]. J Biol Chem, 2001, 276(51): 48017-48026.

[174] Regelmann J, Schule T, Josupeit F S, et al. Catabolite degradation of fructose-1,6-bisphosphatase in the yeast saccharomyces cerevisiae: A genome-wide screen identifies eight novel gid genes and indicates the existence of two degradation pathways[J]. Mol Biol Cell, 2003, 14(4): 1652-1663.

[175] Gao S, Gold S E, Glenn A E. Characterization of two catalase-peroxidase-encoding genes in fusarium verticillioides reveals differential responses to in vitro versus in planta oxidative challenges[J]. Mol Plant Pathol, 2018, 19(5): 1127-1139.

[176] Sooch S S, Kauldhar B S, Puri M. Recent insights into microbial catalases: Isolation, production and purification[J]. Biotechnol Adv, 2014, 32(8): 1429-1447.

[177] Ogawa J, Sulistyaningdyah W T, Li Q S, et al. Two extracellular proteins with alkaline peroxidase activity, a novel cytochrome c and a catalase-peroxidase, from bacillus sp no.13[J]. BBActa-Proteins Proteom, 2004, 1699(1-2): 65-75.

[178] Zamocky M, Godocikova J, Koller F, et al. Potential application of catalase-peroxidase from comamonas terrigena n3h in the biodegradation of phenolic compounds[J]. Anton Leeuw Int J G, 2001, 79(2): 109-117.

[179] 苏宝玲, 王月阳, 白震, 等. Abts底物检测漆酶活力条件和算法比较——以长白山两种林分土壤为例[J]. 土壤通报, 2016, 47(05): 1162-1168.

[180] Eichlerova I, Snajdr J, Baldrian P. Laccase activity in soils: Considerations for the measurement of enzyme activity[J]. Chemosphere, 2012, 88(10): 1154-1160.

[181] 张恬馨, 韩美玲, 于海泳, 等. 单一和混合金属离子对糙皮侧耳cy 568液体发酵时漆酶活性的影响[J]. 菌物学报, 2024, 43(01): 106-116.

[182] 范长征. 堆肥过程中木质素降解及甲烷排放相关功能基因研究[D]. 湖南: 湖南大学, 2015.

[183] 范芳芳. 白腐真菌漆酶基因表达调控及其功能研究[D]. 湖南: 湖南大学, 2013.

[184] 阿比旦·艾尼瓦尔. 细菌白漆酶melac13220的固定化、分子改造及应用研究[D]. 吉林: 吉林大学, 2023.

[185] 李宇. 基于漆酶催化的酪氨酸接枝/交联羊毛改性及机理研究[D]. 江苏: 江南大学, 2022.

[186] 望兆博. 类芬顿-漆酶双功能协同催化体系的构建及其对水中pnp的去除研究[D]. 武汉: 武汉科技大学, 2023.

[187] Feng L, Zhao G Y, Zhao Y Y, et al. Construction of the molecular structure model of the shengli lignite using tg-gc/ms and ftir spectrometry data[J]. Fuel, 2017, 203: 924-931.

[188] 徐芳. 霍林河褐煤分子模型构建及其热解反应分子动力学模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020.

[189] Ghani M J, Akhtar K, Khaliq S, et al. Characterization of humic acids produced from fungal liquefaction of low-grade thar coal[J]. Process Biochem, 2021, 107: 1-12.

[190] Strapoc D, Mastalerz M, Dawson K, et al. Biogeochemistry of microbial coal-bed methane[J]. Annu Rev Earth Pl Sc, 2011, 39: 617-656.

[191] Xia D P, Huang S, Gao Z X, et al. Effect of different inorganic iron compounds on the biological methanation of CO2 sequestered in coal seams[J]. Renewable Energy, 2021, 164: 948-955.

[192] Zhang L P, Hu S, Chen Q D, et al. Molecular structure characterization of the tetrahydrofuran-microwave-extracted portions from three chinese low-rank coals[J]. Fuel, 2017, 189: 178-185.

[193] Li H, Shi S L, Lin B Q, et al. Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals[J]. Energy, 2019, 187.

[194] Li S, Ni G H, Nie B S, et al. Microstructure characteristics of lignite under the synergistic effect of oxidizing acid and ionic liquid [bmim][cl][J]. Fuel, 2021, 289: 10-17.

[195] 周静, 刘向荣, 赵顺省, 等. 两种细菌降解新疆大南湖褐煤的最优工艺条件[J]. 煤炭转化, 2021, 44(05): 10-21.

[196] Wang J, He Y Q, Li H, et al. The molecular structure of inner mongolia lignite utilizing xrd, solid state 13C NMR, hrtem and xps techniques[J]. Fuel, 2017, 203: 764-773.

[197] Casillo A, Papa R, Ricciardelli A, et al. Anti-biofilm activity of a long-chain fatty aldehyde from antarctic pseudoalteromonas haloplanktis tac 125 against staphylococcus epidermidis biofilm[J]. Front Cell Infect Mi, 2017, 7: 13-19.

[198] Papa R, Selan L, Parrilli E, et al. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and pseudomonas aeruginosa[J]. Front Microbiol, 2015, 6: 10-19.

[199] Busscher H J, van der Mei H C, Subbiahdoss G, et al. Biomaterial-associated infection: Locating the finish line in the race for the surface[J]. Sci Transl Med, 2012, 4(153): 153-163.

[200] Kaiser A E, Gottwald A M, Wiersch C S, et al. Spermidine metabolism in parasitic protozoa - a comparison to the situation in prokaryotes, viruses, plants and fungi[J]. Folia Parasitol, 2003, 50(1): 3-18.

[201] Pegg A E. Functions of polyamines in mammals[J]. J Biol Chem, 2016, 291(29): 14904-14912.

[202] Lopez-Cebral R, Paolicelli P, Romero-Caamano V, et al. Spermidine-cross-linked hydrogels as novel potential platforms for pharmaceutical applications[J]. J Pharm Sci, 2013, 102(8): 2632-2643.

[203] Eisenberg T, Abdellatif M, Schroeder S, et al. Cardioprotection and lifespan extension by the natural polyamine spermidine[J]. Nat Med, 2016, 22(12): 1428-1438.

[204] Tang G F, Xia H X, Liang J T, et al. Spermidine is critical for growth, development, environmental adaptation, and virulence in fusarium graminearum[J]. Front Microbiol, 2021, 12: 14-21.

[205] Niu X, Zhang J B, Wang C Y, et al. Evaluation of the lignite biotransformation capacity of fusarium sp. Nf01 cultured on different growth substrates[J]. Can J Microbiol, 2021, 67(8): 613-621.

[206] Falhof J, Pedersen J T, Fuglsang A T, et al. Plasma membrane H+-atpase regulation in the center of plant physiology[J]. Molecular Plant, 2016, 9(3): 323-337.

[207] Zhang M X, Wang Y, Chen X, et al. Plasma membrane H+-atpase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis[J]. Nature Communications, 2021, 12(1): 12-22.

[208] Wu L Y, Yuan Z L, Wang P W, et al. The plasma membrane H+-atpase fgpma1 regulates the development, pathogenicity, and phenamacril sensitivity of fusarium graminearum by interacting with fgmyo-5 and fgbmh2[J]. Mol Plant Pathol, 2022, 23(4): 489-502.

[209] Morsomme P, Slayman C W, Goffeau A. Mutagenic study of the structure, function and biogenesis of the yeast plasma membrane H+-atpase[J]. BBA- Biomembranes, 2000, 1469(3): 133-157.

[210] Cheng H Q, Zou Y N, Wu Q S, et al. Arbuscular mycorrhizal fungi alleviate drought stress in trifoliate orange by regulating h+-atpase activity and gene expression[J]. Front Plant Sci, 2021, 12: 9-18.

[211] Suzuki H, Fukuyama K, Kumagai H. Bacterial gamma-glutamyltranspeptidases, physiological function, structure, catalytic mechanism and application[J]. P Jpn Acad B-Phys, 2020, 96(9): 440-469.

[212] Brennan P N, Dillon J F, Tapper E B. Gamma-glutamyl transferase (gamma-gt) - an old dog with new tricks?[J]. Liver International, 2022, 42(1): 9-15.

[213] Suzuki H, Hashimoto W, Kumagai H. Escherichia-coli k-12 can utilize an exogenous gamma-glutamyl peptide as an amino-acid source, for which gamma-glutamyl-transpeptidase is essential[J]. J Bacteriol, 1993, 175(18): 6038-6040.

[214] Heath R S, Pontini M, Bechi B, et al. Development of an r- selective amine oxidase with broad substrate specificity and high enantioselectivity[J]. Chemcatchem, 2014, 6(4): 996-1002.

[215] 尧宇翔. 细菌分解代谢氮杂环污染物尼古丁的分子机制研究[D]. 上海: 上海交通大学, 2014.

[216] Frej A D, Clark J, Le Roy C I, et al. The inositol-3-phosphate synthase biosynthetic enzyme has distinct catalytic and metabolic roles[J]. Mol Cell Biol, 2016, 36(10): 1464-1479.

[217] Reynolds T B. Strategies for acquiring the phospholipid metabolite inositol in pathogenic bacteria, fungi and protozoa: Making it and taking it[J]. Microbiology-Sgm, 2009, 155: 1386-1396.

[218] de la Torre F, Canas R A, Pascual M B, et al. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants[J]. J Exp Bot, 2014, 65(19): 5527-5534.

[219] Werner T, Vargas H E, Chalasani N. Macro-aspartate aminotransferase and monoclonal gammopathy: A review of two cases[J]. Dig Dis Sci, 2007, 52(5): 1197-1198.

[220] Waner T, Nyska A. The toxicological significance of decreased activities of blood alanine and aspartate-aminotransferase[J]. Veterinary Research Communications, 1991, 15(1): 73-78.

[221] 李璐. 豆豉生物胺与微生物的关系及多胺产生菌的代谢工程改造[D]. 武汉: 华中农业大学, 2019.

[222] Qin Z N, Yu Q W, Zhou P, et al. C60-based chemical labeling strategy for the determination of polyamines in biological samples using matrix-assisted laser desorption/ionization mass spectrometry[J]. Talanta, 2021, 224: 7-14.

[223] 俞杰, 龙奕华, 李汪涛, 等. 伯胺类化合物合成研究进展[J]. 高校化学工程学报, 2021, 35(06): 955-965.

[224] 黄元忠. 脂肪胺、氨、芳香胺碱性大小的分析[J]. 武钢大学学报, 1998, (02): 46-48.

[225] 梁鑫鑫. 酶催化合成亚精胺的研究[D]. 无锡: 江南大学, 2022.

[226] Shim J, Shin Y, Lee I, et al. L-methionine production [M] //A Yokota, M Ikeda, Amino acid fermentation, 2017: 152-177.

[227] Qian Z G, Xia X X, Lee S Y. Metabolic engineering of escherichia coli for the production of putrescine: A four carbon diamine[J]. Biotechnol Bioeng, 2009, 104(4): 651-662.

[228] Wallace H M, Fraser A V. Inhibitors of polyamine metabolism: Review article[J]. Amino Acids, 2004, 26(4): 353-365.

[229] 刘海龙 关, 李广敏. 精胺和甲基乙二醛-双(脒基腙)对小麦幼苗抗旱性的影响[J]. 华北农学报, 2003, (03): 41-43.

[230] 吕剑. 胺的合成与反应原理[M]. 北京: 化学工业出版社, 2015: 451.

[231] 邢其毅. 基础有机化学(上/下册)[M]. 北京: 高等教育出版社, 2005: 1233.

[232] 李姗姗. 界面水结构和功能的光谱电化学研究[D]. 合肥: 中国科学技术大学, 2022.

[233] 王志红. 神华不粘煤和胜利褐煤与生物质共液化反应研究[D]. 北京: 中国矿业大学, 2009.

[234] 张英. 白钨矿与含钙脉石矿物浮选分离抑制剂的性能与作用机理研究[D]. 长沙: 中南大学, 2012.

[235] 陈红凤. 土壤腐殖酸在多组分矿物上的选择吸附特性及作用机制量化[D]. 武汉: 华中农业大学, 2018.

[236] 陆国元. 有机化学[M]. 南京: 南京大学出版社, 2018: 448.

[237] 孔娇. 两种低阶煤中有机质的逐级解离及分析[D]. 徐州: 中国矿业大学, 2016.

[238] 石云. 含膦氧或苯并噻唑衍生物的绿色合成与杀菌活性研究[D]. 南京: 南京农业大学, 2019.

[239] 高滋. 化合物大辞典[M]. 上海: 上海辞书出版社, 2022: 536.

[240] 李岩, 张伟杰, 唐晓旭, 等. 炭黑含量测定方法标准对比研究[J]. 中国塑料, 2021, 35(10): 120-125.

[241] 徐锐. 发酵技术[M]. 重庆: 重庆大学出版社, 2023: 270.

[242] 陈廷根. 钻井工程理论与技术[M]. 山东: 石油大学出版社, 2000: 335.

中图分类号:

 TD984    

开放日期:

 2026-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式