- 无标题文档
查看论文信息

论文中文题名:

 气体爆炸最小点火能数学模型构建及参数耦合性研究    

姓名:

 李大方    

学号:

 18220089035    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 气体与粉尘爆炸控制    

第一导师姓名:

 罗振敏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Study on the construction of the mathematical model of the minimum ignition energy of gas explosion and the coupling of parameters    

论文中文关键词:

 可燃气体 ; 最小点火能 ; 火焰诱导期 ; 过剩点火能 ; 强度效应 ; 催化效应    

论文外文关键词:

 Flammable gas ; Minimum ignition energy ; Flame induction period ; Excess ignition energy ; Intensity effect ; Catalytic effect    

论文中文摘要:

气体爆炸事故频发于煤矿行业,对国民经济造成了不可忽略的损失,如何预控和防治此类事故已成为安全领域的科研热点。针对多因素耦合的气体燃爆过程,完善爆炸点火、效应特性的基础理论体系,对爆炸预控、防治技术的发展具有重要现实意义。

本文根据热力学基础理论,提出火焰逐层传播构想,将复杂多变的燃烧过程具象为多次火焰传播的叠加效应。结合微元化与求和积分的方法,建立计算可燃气最小点火能的数学模型。采用高速摄像环境下20L球型密闭爆炸实验系统,捕捉点火初期爆炸特性参数,通过实例验证模型的可靠性。形成具有95%精确度且适用于任意浓度可燃气体与理想粉体(粉体粒子均匀分布)的最小点火能预测方法。

通过基础化学分析对模型特性与参数规律进行剖析,并评估模型在可燃粉体领域的适用性。分子结构与键能对最小点火能起主要作用,分子结构越复杂、键能越高,最小点火能越大。对于有机同系物而言,分子量对最小点火能起次要作用,分子量越小,最小点火能越大。燃料分子放热与传热能力、传热面积与分子数目影响火焰对外加能量的依赖性,依赖越小燃料被点燃所需能量越小。其中放热与传热能力增强会减弱火焰对外加能量的依赖,燃料分子数目上升会减弱火焰对外加能量的依赖,增大传热面积会加重火焰对外加能量的依赖。特别的是,火焰诱导期与最小点火能的近线性关系是可燃气燃爆过程中的非偶然性现象。

引入过剩点火能表述实际点火能与最小点火能的差值,其对可燃气爆炸具有物理与化学的双重作用。物理作用致使爆炸压力峰值上升、爆炸强度增大,化学作用致使爆炸压力峰值提前、爆炸压力上升速率加快,由此提出强度效应量与催化效应量两个特征参数表述理化作用的程度。采用电子点火环境下20L球型密闭爆炸实验系统,探究体积分数及点火能量对强度效应量与催化效应量的影响。强度效应量与过剩点火能呈线性正相关关系。催化效应量与过剩点火能呈非线性负相关关系。燃料分子数目越多,过剩点火能的作用越弱,强度效应量与催化效应量越小。

本文对煤矿安全生产具有重要的理论指导意义与工程应用价值,一方面,火焰逐层传播构想为简化传热传质问题提供了新思路。另一方面,气体爆炸压力与最小点火能的数学模型为爆炸预警监测技术与新型防控设施的发展提供了新方向。

论文外文摘要:

Gas explosion accidents occur frequently in the coal mining industry, which has caused non-negligible losses to the national economy. How to pre-control and prevent such accidents has become a hot spot of scientific research in the field of safety. Aiming at the gas explosion process with multi-factor coupling, perfecting the basic theoretical system of explosion ignition and effect characteristics is of great practical significance to the development of explosion pre-control and prevention technology.

This paper puts forward the idea of flame propagation layer by layer according to the basic theory of thermodynamics. The complex and changeable combustion process is represented as the superposition effect of multiple flame propagation. Combined with the method of differentiating and summing integral, a mathematical model for calculating the minimum ignition energy of combustible gas is established. The explosion characteristic parameters at the initial stage of ignition are captured by a 20L spherical closed explosion experimental system in a high-speed camera environment, and the reliability of the model is verified by an example. A minimum ignition energy prediction method with 95% accuracy and suitable for any concentration of combustible gas and ideal powder (uniform distribution of powder particles) is formed.

The characteristics and parameter rules of the model are analyzed by basic chemical analysis, and the applicability of the model in the field of combustible powder is evaluated. Molecular structure and bond energy play an important role in the minimum ignition energy. The more complex the molecular structure is, the higher the bond energy is and the greater the minimum ignition energy is. For organic homologues, molecular weight plays an important role in the minimum ignition energy. The smaller the molecular weight, the greater the minimum ignition energy. The exothermic and heat transfer capacity of fuel molecules, the heat transfer area and the number of molecules affect the dependence of flame on external energy. the smaller the dependence, the less energy required for fuel to be ignited. Among them, the enhancement of exothermic and heat transfer capacity will weaken the dependence of flame on external energy, the increase of the number of fuel molecules will weaken the dependence of flame on external energy, and the increase of heat transfer area will increase the dependence of flame on external energy. In particular, the near-linear relationship between the flame induction period and the minimum ignition energy is a non-accidental phenomenon in the process of combustible gas explosion.

The excess ignition energy is introduced to express the difference between the actual ignition energy and the minimum ignition energy, which has both physical and chemical effects on the flammable gas explosion. The physical action leads to the increase of the explosion pressure peak value and the explosion intensity, while the chemical action leads to the advance of the explosion pressure peak value and the acceleration of the explosion pressure rise rate. As a result, two characteristic parameters, intensity effect, and catalytic effect are proposed to express the degree of physical and chemical action. A 20L spherical closed explosion experimental system under an electronic ignition environment was used to explore the effects of volume fraction and ignition energy on intensity effect and catalytic effect. There is a positive linear correlation between the strength effect and the excess ignition energy. There is a non-linear negative correlation between the catalytic effect and the excess ignition energy. The more the number of fuel molecules is, the weaker the effect of excess ignition energy is, and the smaller the intensity effect and catalytic effect are.

This paper has important theoretical guiding significance and engineering application value for coal mine safety production. On the one hand, the idea of flame propagation layer by layer provides a new idea for simplifying the problem of heat and mass transfer. On the other hand, the mathematical model of gas explosion pressure and minimum ignition energy provides a new direction for the development of explosion early warning and monitoring technology and new prevention and control facilities.

参考文献:

[1] 贾凡, 肖树涛. 煤矿瓦斯爆炸原因分析及防治措施[J]. 山东工业技术, 2019(04):94.

[2] Jinjia Zhang, David Cliff, Kaili Xu, et al. Focusing on the patterns and characteristics of extraordinarily severe gas explosion accidents in Chinese coal mines [J]. Process Safety and Environmental Protection. 2018, 117:390-398.

[3] 刘艳亮. 2002~2016年我国煤矿事故统计分析及预防措施[J]. 陕西煤炭, 2018, 37(03):104-107.

[4] 蒋星星, 李春香. 2013—2017年全国煤矿事故统计分析及对策[J]. 煤炭工程, 2019, 51(01):101-105.

[5] 刘航, 曾志华. 2018年全国煤矿安全事故统计分析[J]. 内蒙古煤炭经济, 2019(06):189-190.

[6] 卜祝龙. 煤低温氧化阶段指标气体研究分析[J]. 内蒙古煤炭经济, 2018(21):263.

[7] Dong Ma, Botao Qin, Yuan Gao, et al. Study on the explosion characteristics of methane–air with coal dust originating from low-temperature oxidation of coal [J]. Fuel. 2020, 260.

[8] 杨杰, 马丽萍, 王立春, 等. 利用褐煤热解制备CO的热力学、动力学研究[J/OL]. 化学世界, 2019(10).

[9] Yawei Song, Shengqiang Yang, Qin Xu, et al. Effect of low-temperature oxidation of coal with different metamorphic degrees on coal quality characteristics and outburst comprehensive index [J]. Process Safety and Environmental Protection. 2019, 132:142-152.

[10] 述子青, 刘宁. 煤的热解行为及硫的脱除研究[J]. 化工管理, 2019(27):202-203.

[11] 赵翔宇, 李洪波, 李自力, 等. 低温工况甲烷最小点火能实验研究[J]. 爆炸与冲击, 2018, 38(02):353-358.

[12] Weikuo Zhang, Xiaolong Gou, Zheng Chen. Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures [J]. Fuel. 2017, 187:111-116.

[13] 王犇, 刘小琴, 谢传欣. 温度对烃类可燃气体最小点火能的影响[J]. 安全与环境学报, 2016, 16(02):90-93.

[14] 杨帆, 钟杰, 刘兴华, 等. 甲烷-空气最小点火能与耦合系数的计算及应用[J]. 高压物理学报, 2015, 29(05):392-400.

[15] Gan Cui, Weiping Zeng, Zili Li, et al. Experimental study of minimum ignition energy of methane/air mixtures at elevated temperatures and pressures [J]. Fuel. 2016, 175:257-263.

[16] 张伟阔, 苟小龙, 孔文俊, 等. 稀释气体对预混甲烷/空气点火的影响[J]. 工程热物理学报, 2013, 34(06):1189-1192.

[17] 黄文祥, 李树刚, 李孝斌, 等. 不同点火能量作用下管道内瓦斯爆炸火焰传播特征[J]. 煤矿安全, 2011, 42(08):7-10.

[18] Gan Cui, Shun Wang, Zhenxiao Bi, et al. Minimum ignition energy for the CH4/CO2/O2 system at low initial temperature [J]. Fuel. 2018, 233:159-165.

[19] Angelika Wähner, Gisbert Gramse, Tim Langer, et al. Determination of the minimum ignition energy on the basis of a statistical approach [J]. Journal of Loss Prevention in the Process Industries. 2013, 26:1655-1660.

[20] 章文义, 李玉艳, 潘峰, 等. 丙烷-氧气预混气体的火焰传播及点火特性[J]. 爆破器材, 2019, 48(04):27-32.

[21] 张驰, 钟北京, 郑东. 正庚烷/空气混合气最小点火能量及其影响因素[J]. 航空动力学报, 2018, 33(02):456-462.

[22] Weiqing Wang, Zuoyu Sun. Experimental studies on explosive limits and minimum ignition energy of syngas: A comparative review [J]. International Journal of Hydrogen Energy. 2019, 44:5640-5649.

[23] 王犇, 邵世玺, 赵清, 等. 丙烯气体最小点火能研究[J]. 环境工程, 2014, 32(S1):801-804.

[24] Yuan Wang, Wang Han, Zheng Chen. Effects of fuel stratification on ignition kernel development and minimum ignition energy of n-decane/air mixtures [J]. Proceedings of the Combustion Institute. 2019, 37:1623-1630.

[25] 胡锐, 吴小华, 胡耀元. (H_2+CO+CH_4+Air)多元爆炸性混合气体爆炸形态与波形的区划[J]. 化学学报, 2010, 68(07):623-632.

[26] 王昌建, 徐胜利, 贾光明. H_2/O_2/Ar可燃气体激光诱导火花点火的实验研究[J]. 中国科学(E辑:技术科学), 2007(11):1461-1468.

[27] Longjie Jiang, Shenqyang (Steven) Shy, Nguyen Minh Tien, et al. Spark ignition probability and minimum ignition energy transition of the lean iso-octane/air mixture in premixed turbulent combustion [J]. Combustion and Flame. 2018, 187:87-95.

[28] Eduardo Fernández-Tarrazo, Mario Sánchez-Sanz, Antonio L. Sánchez, et al. Minimum ignition energy of methanol–air mixtures [J]. Combustion and Flame. 2016, 171:234-236.

[29] 张黄伟, 郭鹏, 陈正. 预混气体自由基点火的机理研究[J]. 工程热物理学报, 2012, 33(12):2219-2222.

[30] Qi Zhang, Rumei Tian, Ying Huang, et al. Effects of humidity on minimum ignition energy of gaseous epoxypropane/air mixtures [J]. Journal of Loss Prevention in the Process Industries. 2012, 25:982-988.

[31] Ryo Ono, Masaharu Nifuku, Shuzo Fujiwara, et al. Minimum ignition energy of hydrogen–air mixture: Effects of humidity and spark duration [J]. Journal of Electrostatics. 2007, 65:87-93.

[32] He Dong, Peng Zhimin, Ding Yanjun. Time-resolved CO2 concentration and ignition delay time measurements in the combustion processes of n-butane/hydrogen mixtures [J]. Combustion and Flame. 2019, 207:222-231.

[33] Xianzhao Song, Hao Su, Lifeng Xie, et al. Experimental investigations of the ignition delay time, initial ignition energy and lower explosion limit of zirconium powder clouds in a 20 L cylindrical vessel [J]. Process Safety and Environmental Protection. 2019.

[34] Sepideh Hosseinzadeh, Jan Berghmans, Jan Degreve, et al. A model for the minimum ignition energy of dust clouds [J]. Process Safety and Environmental Protection. 2019, 121:43-49.

[35] Wataru Ebina, Chihong Liao, Hiroyoshi Naito, et al. Effect of water mist on minimum ignition energy of propane/air mixture [J]. Proceedings of the Combustion Institute. 2017, 36:3271-3278.

[36] 黄兴旺, 张延松, 胡凯. 面粉最小点火能的研究[J]. 粮食与油脂, 2019, 32(04):66-68.

[37] Shunyao Wang, Zhicheng Shi, Xu Peng, et al. Effect of the ignition delay time on explosion severity parameters of coal dust/air mixtures [J]. Powder Technology. 2019, 342:509-516.

[38] Yang Liu, Chenglong Tang, Cheng Zhan, et al. Low temperature auto-ignition characteristics of methylcyclohexane/ethanol blend fuels: Ignition delay time measurement and kinetic analysis [J]. Energy. 2019, 177:466-475.

[39] 高焕然. 点火因素对油气混合气体爆炸影响实验研究[D]. 首都经济贸易大学, 2018.

[40] 邓同晔, 徐庆尧, 沈双晏. NO_x对甲烷点火延迟时间影响的数值研究[J]. 兵工学报, 2017, 38(03):476-482.

[41] 陈其盛, 窦志国, 李兰. 甲苯、正癸烷点火延迟的激波管实验研究[J]. 含能材料, 2015, 23(10):971-976.

[42] 张传钊, 李萍, 赵岩, 等. 二甲苯点火延迟时间和燃烧发射光谱测量[J]. 推进技术, 2014, 35(03):392-396.

[43] Jun Li, Hongyu Huang, Noriyuki Kobayashi, et al. Numerical study on laminar burning velocity and ignition delay time of ammonia flame with hydrogen addition [J]. Energy. 2017, 126:796-809.

[44] Charles Turquand d’Auzay, Vassilios Papapostolou, Samer F. Ahmed, et al. On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures [J]. Combustion and Flame. 2019, 201:104-117.

[45] Pranav Bagaria, Shrey Prasad, Jingze Sun, et al. Effect of particle morphology on dust minimum ignition energy [J]. Powder Technology. 2019, 355:1-6.

[46] Shy S.S., Minh Tien Nguyen, Shih Yao Huang. Effects of electrode spark gap, differential diffusion, and turbulent dissipation on two distinct phenomena: Turbulent facilitated ignition versus minimum ignition energy transition [J]. Combustion and Flame. 2019, 205:371-377.

[47] Pranav Bagaria, Jiaqi Zhang, Chad Mashuga. Effect of dust dispersion on particle breakage and size distribution in the minimum ignition energy apparatus [J]. Journal of Loss Prevention in the Process Industries. 2018, 56:518-523.

[48] Shy S.S., Shiu Y.W., Jiang L.J., et al. Measurement and scaling of minimum ignition energy transition for spark ignition in intense isotropic turbulence from 1 to 5 atm [J]. Proceedings of the Combustion Institute. 2017, 36:1785-1791.

[49] 刘雪岭, 张奇. 正烷烃液体云雾最小点火能实验研究[J]. 北京理工大学学报, 2018, 38(12):2572-2575.

[50] 张琰, 李晋, 任常兴, 等. 机械碰撞对可燃气体的引燃特性及引燃概率[J]. 消防科学与技术, 2018, 37(12):1605-1608.

[51] 郑秋雨, 孙永强, 王旭, 等. 可燃液体雾滴粒径分布对其引燃性的影响[J]. 安全与环境学报, 2018, 18(05):1779-1783.

[52] 赵金钢, 李玉艳, 刘大斌, 等. 氢化镁对金属混合物最小点火能的影响[J]. 含能材料, 2018, 26(05):422-425.

[53] Kwangseok Choi, Kwansu Choi, Koujirou Nishimura. Experimental study on the influence of the nitrogen concentration in the air on the minimum ignition energies of combustible powders due to electrostatic discharges [J]. Journal of Loss Prevention in the Process Industries. 2015, 34:163-166.

[54] Zheng Chen, Michael P. Burke, Yiguang Ju. On the critical flame radius and minimum ignition energy for spherical flame initiation [J]. Proceedings of the Combustion Institute. 2011, 33:1219-1226.

[55] Peng Zhao, Xin Tan, Martin Schmidt, et al. Minimum explosion concentration of coal dusts in air with small amount of CH4/H2/CO under 10-kJ ignition energy conditions [J]. Fuel. 2020, 260.

[56] Jean-Luc Beduneau, Bonggyu Kim, Laurent Zimmer, et al. Measurements of minimum ignition energy in premixed laminar methane/air flow by using laser induced spark [J]. Combustion and Flame. 2003, 132:653-665.

[57] S. Coronel, R. Mével, S.P.M. Bane, et al. Experimental study of minimum ignition energy of lean H2-N2O mixtures [J]. Proceedings of the Combustion Institute. 2013, 34:895-902.

[58] C.C. Huang, S.S. Shy, C.C. Liu, et al. A transition on minimum ignition energy for lean turbulent methane combustion in flamelet and distributed regimes [J]. Proceedings of the Combustion Institute. 2007, 31:1401-1409.

[59] 金永飞, 宋跃, 程方明. 脉冲点火方式下点火能对甲烷爆炸极限的影响[J]. 煤矿安全, 2017, 48(10):28-30.

[60] 李洪波, 崔淦, 李自力, 等. 基于简化机理的甲烷/空气混合气体爆炸特性研究[J]. 消防科学与技术, 2017, 36(09):1197-1202.

[61] 任纯力, 李新光, 王福利, 等. 敏感条件对粉尘云最小点火能的影响规律分析[J]. 中国安全科学学报, 2009, 19(08):79-85.

[62] He Z, Li X, Liu L, et al. The intrinsic mechanism of methane oxidation under explosion condition: A combined ReaxFF and DFT study [J]. Fuel. 2014, 124:85-90.

[63] Hu F, Li P, Guo J, et al. Global reaction mechanisms for MILD oxy-combustion of methane [J]. Energy. 2018, 147:839-857.

[64] 程方明, 陈晓坤, 文虎, 等. 一种测试可燃性气体点火延迟时间的实验系统及方法[P]. 中国专利: CN105115920A, 2015-12-02.

[65] 张传钊, 李萍, 赵岩, 等. 二甲苯点火延迟时间和燃烧发射光谱测量[J]. 推进技术, 2014, 35(03):392-396.

[66] 谢伟, 李萍, 张昌华, 等. 利用OH自由基特征发射谱测量正庚烷的点火延迟时间[J]. 光谱学与光谱分析, 2011, 31(02):488-491.

[67] Sangmin K, Jihwan L, Sanghyup L, et al. Study on the ignition mechanism of Ni-coated aluminum particles in air [J]. Combustion and Flame. 2018, 198:24-39.

[68] Wang G, Jia S, Niu X, et al. Potential factors and mechanism of particulate matters explosive increase induced by free radicals oxidation [J]. Journal of Environmental Sciences. 2019, 81:205-213.

[69] An J, Jiang Y, Ye M, et al. One-dimensional turbulence simulations and chemical explosive mode analysis for flame suppression mechanism of hydrogen/air flames [J]. International Journal of Hydrogen Energy. 2013, 38(18):7528-7538.

[70] Sun X, Lu S. On the mechanisms of flame propagation in methane-air mixtures with concentration gradient [J]. Energy. 2020, 202:117782.

[71] Samuel V C, Gautham K. A comprehensive assessment of heat loss mechanisms on the propagation of lean, premixed ethylene-oxygen flames in millimeter-scale tubes [J]. Applied Thermal Engineering. 2020, 176:115434.

[72] Deng J, Li H, Yang Y, et al. Microcosmic dynamics and thermodynamics analysis of fire damp explosion [J]. Journal of China Coal Society. 2006, 31:488-491.

[73] Mehran A, Alireza H, Mohsen D. A comprehensive analysis of a laboratory scale counter flow wet cooling tower using the first and the second laws of thermodynamics [J]. Applied Thermal Engineering. 2017, 125:1389-1401.

[74] Wang L. Generalized Fourier law [J]. International Journal of Heat and Mass Transfer. 1994, 37(17):2627-2634.

[75] Xu S, Tu Y, Huang P, et al. Effects of wall temperature on methane MILD combustion and heat transfer behaviors with non-preheated air [J]. Applied Thermal Engineering. 2020, 174:115282.

[76] Sun S, Zhao J, Zhao J, et al. The effective thermal conductivity of methane hydrate-bearing seasand [J]. The Journal of Chemical Thermodynamics. 2019, 132:423-431.

[77] Zhang W, Gou X, Chen Z. Effects of water vapor dilution on the minimum ignition energy of methane, n-butane and n-decane at normal and reduced pressures [J]. Fuel. 2017, 187:111-116.

[78] Chen C, Lu C, Yao B, et al. Combustion science [M]. Beijing, Machinery Industry Press. 2014.

[79] Yang S, Tao W. Heat transfer [M]. Beijing, Higher Education Press. 2011.

[80] Fu Z. Fire prevention in industrial enterprises [M]. Beijing, China Public Security Renmin University Press. 2008.

[81] Chen N. Electrical fire prevention course [M]. Beijing, China Public Security Renmin University Press. 2008.

[82] Babrauskak V. Ignition Handbook [M]. ISSAQUAH, WA, Fire Science Publishers. 2003.

中图分类号:

 X932    

开放日期:

 2021-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式