论文中文题名: | 基于深度学习的长时目标跟踪算法研究 |
姓名: | |
学号: | 19207040024 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081001 |
学科名称: | 工学 - 信息与通信工程 - 通信与信息系统 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-10 |
论文外文题名: | Research on Long-term Target Tracking Algorithm Based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | Deep learning ; Siamese network ; Long-term tracking ; Object re-detection ; Template matching |
论文中文摘要: |
目标跟踪在智能监控、自动驾驶和军事制导等领域发挥着重要作用。近几年,随着深度学习短时跟踪算法的性能不断提高,人们开始关注接近实际场景的长时跟踪应用。长时跟踪的视频序列长度远大于短时跟踪,并且目标形变、消失与重现等问题尤其突出,直接应用短时跟踪算法无法应对这些困难,跟踪性能急剧下降。因此,本文提出以下两种深度学习长时目标跟踪改进算法。 针对长时跟踪过程中目标消失与重现的问题,本文设计了一种基于动态模板匹配的孪生网络长时目标跟踪算法(SiamDTM_LT)。采用置信度分数判断目标跟丢状态,若判断目标丢失,则启动动态模板匹配的全局搜索重检测机制,获得目标的粗略预测定位,随后利用SiamFC++ 跟踪器精确定位目标位置,从而解决目标丢失问题。为提高重检测时粗略预测位置的准确度,本文还提出自适应动态匹配模板更新策略。在VOT2018_LT、VOT2019_LT、UAV20L、TLP和LaSOT五个长时数据集中测试,结果显示SiamDTM_LT算法不仅跟踪性能得到显著提高,在LaSOT数据集上成功率值为0.556,而且跟踪速度达到45.5FPS,满足实时目标跟踪的需求。 为进一步提高算法的跟踪性能,本文设计了一种基于动态模板匹配的双模型孪生网络长时目标跟踪算法(DMSiamDTM_LT),主要提出两种改进策略:(1)“局部-全局-局部”跟踪策略,提高算法应对目标离开视野、被部分遮挡等多种挑战时的跟踪稳定性;(2)SiamFC++ 双模型跟踪策略,充分适应目标外观的变化情况,提高算法的抗干扰能力。在VOT2018_LT、VOT2019_LT、UAV20L、TLP和LaSOT五个长时数据集中测试,结果显示DMSiamDTM_LT算法的跟踪性能显著提高,在LaSOT数据集上成功率值为0.574。与其他先进目标跟踪算法相比, DMSiamDTM_LT算法在目标形变、光照变化、部分遮挡等复杂场景中表现优异,跟踪速度达到40.7FPS,满足实时目标跟踪的需求。 |
论文外文摘要: |
Target tracking plays an important role in intelligent surveillance, autopilot and military guidance. In recent years, with the continuous improvement of the performance of the deep learning short-term tracking algorithm, people began to pay attention to the long-term tracking applications close to the actual scene. The video sequence length of long-term tracking is much longer than that of short-term tracking, and the problems of target deformation, disappearance and reappearance are particularly prominent. The direct application of short-term tracking algorithm can not deal with these difficulties, and the tracking performance drops sharply. Therefore, this paper proposes the following two improved algorithms for deep learning long-term target tracking. Aiming at the problem of target disappearance and reappearance in the process of long-term tracking, this paper designs a siamese network long-term target tracking algorithm based on dynamic template matching (SiamDTM_LT). The confidence score is used to judge the target tracking status. If the target is lost, the global search and re-detection mechanism of dynamic template matching is started to obtain the rough positioning of the target. Then the SiamFC++ tracker is used to accurately locate the target position, so as to solve the problem of target disappearance. In order to improve the accuracy of rough positioning during re-detection, an adaptive dynamic matching template updating strategy is also proposed. Tested in five long-term datasets of VOT2018_LT, VOT2019_LT, UAV20L, TLP and LaSOT, the results show that SiamDTM_LT algorithm not only has significantly improved the tracking performance, with a success rate of 0.556 on the lasot dataset, but also has a tracking speed of 45.5fps, which meets the needs of real-time target tracking. In order to further improve the tracking performance of the algorithm, a double model Siamese networks long-term tracking based on dynamic template matching (DMSiamDTM_LT) is designed in this paper. Two improved strategies are mainly proposed: (1) the "local-global-local" tracking strategy improves the tracking stability of the algorithm when the target leaves the field of view and is partially occluded; (2) SiamFC++ double model tracking strategy fully adapts to the changes of target appearance and improves the anti-interference ability of the algorithm. Tested in five long-term datasets of VOT2018_LT, VOT2019_LT, UAV20L, TLP and LaSOT, the results show that the tracking performance of DMSiamDTM_LT algorithm is significantly improved, and the success rate on LaSOT data set is 0.574. Compared with other advanced target tracking algorithms, DMSiamDTM_LT algorithm performs well in complex scenes such as target deformation, illumination change and partial occlusion. The tracking speed reaches 40.7fps, meeting the needs of real-time target tracking. |
参考文献: |
[1] 陆峰,刘华海,黄长缨,等.基于深度学习的目标检测技术综述[J].计算机系统应用, 2021, 30(3): 1-13. [2] 卢湖川,李佩霞,王栋.目标跟踪算法综述.模式识别与人工智能[J].2018,31(1): 61-76. [3] 宋春华,高仕博,程咏梅.自主空中加油视觉导航系统中的锥套检测算法[J].红外与激光工程,2013,42(4): 1089-1094. [4] 李志朋.基于机器视觉的运动目标跟踪方法研究[J].电子技术与软件工程,2021(1): 78-79. [11] 刘嘉敏,谢文杰,黄鸿,汤一明.基于空间和通道注意力机制的目标跟踪方法[J].电子与信息学报,2021,43(9): 2569-2576. [31] 贾迪,朱宁丹,杨宁华,等.图像匹配方法研究综述[J].中国图象图形学报,2019,24(5): 0677-0699. [44] 范大昭,董杨,张永生.卫星影像匹配的深度卷积神经网络方法[J].测绘学报,2018,47(6): 844-853. [45] 邓文浩.长时目标跟踪算法的研究与应用[D].成都:电子科技大学,2021. [47] 赵德明.基于深度学习的长时目标跟踪[D].成都:电子科技大学,2021. [50] 陈方芳,宋代平.基于动态模板匹配的自适应尺度目标跟踪算法[J/OL].激光与光电子学进展, 2022-02-18: 1-15. [51] 沈玉玲,伍忠东,赵汝进,等.基于模型更新与快速重检测的长时目标跟踪[J].光学学报, 2020, 40(3): 121-130. |
中图分类号: | TP391.4 |
开放日期: | 2022-06-22 |