- 无标题文档
查看论文信息

论文中文题名:

 宽带超材料吸波体设计及其雷达散射截面缩减特性研究    

姓名:

 马霞    

学号:

 19207040034    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0810    

学科名称:

 工学 - 信息与通信工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 信息与通信工程    

研究方向:

 超材料吸波体及其应用    

第一导师姓名:

 田丰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-08    

论文外文题名:

 Design of Broadband Metamaterial Absorber and its Radar Cross Section Reduction Characteristics    

论文中文关键词:

 传输线理论 超材料 吸波体 雷达散射截面    

论文外文关键词:

 Equivalent Circuit Theory ; Metamaterial ; Absorber ; RCS    

论文中文摘要:

       超材料吸波体在电磁隐身以及电磁防护领域具有广泛的应用,为实现雷达散射截面(Radar Cross Section, RCS)的减缩提供了新的方法和思路。传统的超材料吸波体具有斜入射特性差以及只能吸收沿着单个方向传播的电磁波的特点,本文分别设计具有宽角度入射特性和双向吸收特性的宽带超材料吸波体来提升吸波体的吸收方向性。

       针对超材料吸波体的吸收率随着斜入射角度的增大而减小问题,基于传输线理论,将金属开缝圆环和扇形金属谐振器分别等效为电阻R、电感L、电容C构成的并联回路,将介质基板和空气层分别等效为一段传输线,构建等效电路模型。根据此等效电路模型,设计一种开缝金属圆环和扇形谐振器加载集总电阻的宽带超材料吸波体。在45°入射角范围内,TE波和TM波在1.61 GHz ~ 4.45 GHz的吸收率大于0.9,相对带宽为93.73%。当电磁波垂直入射时,相较于同尺寸的金属板,吸波体的RCS缩减值可达到52.2 dB,并且在[-45°,45°]入射角范围内,均表现出良好的RCS缩减特性。采用印刷电路板工艺进行样品加工,采用自由空间法对吸波体的电磁特性进行测试,实验结果与仿真结果吻合。

       针对超材料吸波体只能实现单个方向传播的电磁波的吸收问题,基于传输线理论,分别将“十”字开缝环和交叉偶极子等效为RLC并联和串联等效电路。基于此等效电路模型,设计出一种“ABA”组合结构的宽带双向超材料吸波体,通过将两个I型结构正交地附着在超薄的FR4衬底上,实现双向完美吸收。在1.43 GHz ~ 2.51 GHz,+z和-z方向上的TE波和TM波的吸收率都大于0.9。并且该吸波体具有良好的极化不敏感特性和宽角度入射特性。与同尺寸的金属板相较,吸波体的RCS缩减值可达到17.56 dB,并且在[-30°,30°]入射角范围内,都具有良好的RCS缩减特性。加工一个10×10阵列的样品,验证所设计的吸波体的双向吸收特性。

       本文基于传输线理论研究具有斜入射增强以及双向吸收特性的宽带超材料吸波体,有益于推动全向吸波体的技术发展及其在电磁兼容以及电磁隐身等领域的广泛应用。

论文外文摘要:

Metamaterial absorbers have been widely used in electromagnetic stealth and electromagnetic protection, providing a new method and idea for Radar Cross Section (RCS) reduction. Traditional metamaterial absorbers have the disadvantages of poor oblique incidence and can only absorb electromagnetic waves propagating along a single direction. In this paper, broadband metamaterial absorbers with wide angle incidence and bidirectional absorption are designed to improve the directivity of the absorber.

The absorptance of the traditional metamaterial absorber decreases with the increase of the oblique incident angle. In this paper, an equivalent circuit model of the metal resonator structure is established based on the transmission line theory, the metal split ring and the fan-shaped metal resonator are equivalent to the parallel circuit composed of resistance R, inductance L and capacitance C, and the dielectric substrate and air layer are equivalent to a transmission line, respectively. A broadband metamaterial absorber composed of double loop split-rings and a set of metal sector is designed according to the equivalent circuit model, the lumped resistors are inserted into the gaps of the loop split-rings and sectors for expanding the absorption bandwidth. The absorptance is larger than 0.9 in 1.61 ~ 4.45 GHz with the fractional bandwidth is 93.73%. The most important advantage of the designed absorber is that the absorptance can stay the absorptance at normal incidence as the incidence angle increases to 45º for both TE wave and TM wave. When the electromagnetic wave is incident vertically, the RCS reduction value of the absorber can reach 52.2 dB compared with the same size metal plate, and in the range of incidence angle [-45°,45°], it exhibits good RCS reduction characteristics. A sample is fabricated by using printed circuit board technology, and the electromagnetic characteristics of the absorber are tested by using free space method. The experimental results are in good agreement with the simulation results.

The previous metamaterial absorber can only absorb electromagnetic waves propagating in a single direction. In this paper, a cross and hollow crosses and cross dipole are equivalent to RLC parallel and series equivalent circuit based on the transmission line theory, respectively, the ADS circuit simulation software is used to fit the equivalent circuit model of metal resonant structure, and a broadband bidirectional metamaterial absorber with a combined ABA structure is designed based on the equivalent circuit model, and two orthogonal I-shaped structures are pasted on both sides of the ultra-thin substrate (FR-4) instead of the metal plate for enhancing absorptance of the absorber. Simulated results show that absorptance of the designed absorber is larger than 0.9 in 1.43 GHz ~ 2.51 GHz along forward and backward directions both under TE and TM polarizations. And the absorber exhibits excellent polarization insensitivity and wide angle incidence characteristics. Compared with the same size metal plate, the RCS reduction value of the absorber can reach 17.56 dB, and in the range of incidence angle [-30°,30°], it exhibits good RCS reduction characteristics. A 10×10 array sample is processed to verify the bidirectional absorption characteristics.

In this thesis, a broadband metamaterial absorber with oblique incident enhancement and bidirectional absorption is studied based on transmission line theory, which is beneficial to promote the development of omnidirectional absorber technology and its wide application in electromagnetic compatibility and electromagnetic stealth.

参考文献:

[1] 王彦朝, 许河秀, 王朝辉等. 电磁超材料吸波体的研究进展[J]. 物理学报, 2020, 69(13): 134101.

[2] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402.

[3] Murugesan A, Selvan K T, Iyer A K, et al. A review of metasurface-assisted RCS reduction techniques[J]. Progress In Electromagnetics Research B, 2021, 94: 75-103.

[4] 赵晓鹏. 微波超材料与超表面中波的行为[M]. 北京: 科学出版社, 2015.

[5] Veselago V G. The Electrodynamic of substances with simultaneous negative values of ε and µ[J]. Soviet Physics Uspekhi, 1968, 10(4): 509-514.

[6] Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons in thin-wire structures[J]. Journal of Physics: Condensed Matter, 1998, 10: 4785-4810.

[7] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075-2084.

[8] Shelby A R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79.

[9] Peng L, Liu D, Cheng H, et al. A multilayer film based selective thermal emitter for infrared stealth technology[J]. Advanced Optical Materials, 2018, 6(23): 1801006.

[10] Kim J, Han K, Hahn J W. Selective dual-band metamaterial perfect absorber for infrared stealth technology[J]. Scientific Reports, 2017, 7: 6740.

[11] 贾丹, 何应然, 韩国栋. 一种宽带吸波的隐身天线罩设计[J]. 现代雷达, 2017, 39(3): 62-65.

[12] Alkurt F O, Altintas O, Ozakturk M, et al. Enhancement of image quality by using metamaterial inspired energy harvester[J]. Physics Letters A, 2020, 384(1): 126041.

[13] Duan X, Chen X, Zhou Y, et al. Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(9): 1617-1621.

[14] Alavikia B, Almoneef T S, Ramahi O M. Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer[J]. Applied Physics Letters, 2015, 107(24): 243902.

[15] Lin K-T, Lin H, Yang T, et al. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion[J]. Nature Communications, 2020, 11(1): 1389.

[16] Li P, Liu B, Ni Y, et al. Large-scale nanophotonic solar selective absorbers for high-efficiency solar thermal energy conversion[J]. Advanced Materials, 2015, 27(31): 4585-4591.

[17] Yu J, Jiang W, Gong S. Wideband angular stable absorber based on spoof surface plasmon polariton for RCS reduction[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(7): 1058-1062.

[18] Liu T, Cao X, Gao J, et al. RCS reduction of waveguide slot antenna with metamaterial absorber[J]. IEEE Transactions on Antennas and Propagation, 2012, 61(3): 1479-1484.

[19] Guo S, Zhao Y, Cao Q, et al. Multistate active control RCS signature for the continuous adjustment absorber/reflector transformation applications[J]. Optics Express. Express, 2021, 29(15): 24151-24160.

[20] Lari E S, Vafapour Z, Ghahraloud H. Optically tunable triple - band perfect absorber for nonlinear optical liquids sensing[J]. IEEE Sensors Journal, 2020, 20(17): 10130-10137.

[21] Hasan D, Lee C. Hybrid metamaterial absorber platform for sensing of CO2 gas at Mid-IR[J]. Advanced Science, 2018, 5(5): 1700581.

[22] Vafapour Z. Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications[J]. IEEE Transactions on Nanobioscience, 2019, 18(4): 622-627.

[23] Cetin A E, Korkmaz S, Durmaz H, et al. Quantification of multiple molecular fingerprints by dual-resonant perfect absorber[J]. Advanced Optical Materials, 2016, 4(8): 1274-1280.

[24] Bhattarai K, Ku Z, Silva S, et al. A large-area, mushroom-capped plasmonic perfect absorber : Refractive index sensing and Fabry - Perot cavity mechanism[J]. Advanced Optical Materials, 2015, 3(12): 1779-1786.

[25] Bilal R M H, Baqir M A, Choudhury P K, et al. Polarization-insensitive multi-band metamaterial absorber operating in the 5G spectrum[J]. Optik, 2020, 216: 164958.

[26] Li A, Singh S, Sievenpiper D. Metasurfaces and their applications[J]. Nanophotonics, 2018, 7(6): 989-1011.

[27] Zuo W, Yang Y, He X, et al. A miniaturized metamaterial absorber for ultrahigh - frequency RFID system[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 329-332.

[28] Kim I, So S, Rana A S, et al. Thermally robust ring-shaped chromium perfect absorber of visible light[J]. Nanophotonics, 2018, 7(11): 1827-1833.

[29] Chirumamilla M, Chirumamilla A, Yang Y, et al. Large-area ultrabroadband absorber for solar thermophotovoltaics based on 3D titanium nitride nanopillars[J]. Advanced Optical Materials, 2017, 5(22): 1700552.

[30] Zhao L, Liu H, He Z, et al. All-metal frequency-selective absorber/emitter for laser stealth and infrared stealth[J]. Applied Optics, 2018, 57(8): 1757-1764.

[31] Chen K, Adato R, Altug H. Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy[J]. ACS Nano, 2012, 6(9): 7998-8006.

[32] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器[J]. 物理学报, 2012, 61(5): 058101.

[33] Hannan S, Islam M T, Faruque M R I, et al. Angle-insensitive co-polarized metamaterial absorber based on equivalent circuit analysis for dual band WiFi applications[J]. Scientific Reports, 2021, 11: 13791.

[34] Wang N, Tong J, Zhou W, et al. Novel quadruple-band microwave metamaterial absorber[J]. IEEE Photonics Journal, 2015, 7(1): 5500506.

[35] Ghosh S, Srivastava K V. Broadband polarization-insensitive tunable frequency selective surface for wideband shielding[J]. IEEE Transactions on Electromagnetic Compatibility, 2018, 60(1): 166-172.

[36] Li A, Luo Z, Wakatsuchi H, et al. Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications[J]. IEEE Access, 2017, 5: 27439-27452.

[37] Yu P, Besteiro L V., Huang Y, et al. Broadband metamaterial absorbers[J]. Advanced Optical Materials, 2019, 7(3): 1800995.

[38] Liu Y, Gu S, Luo C, et al. Ultra-thin broadband metamaterial absorber[J]. Applied Physics A: Materials Science and Processing, 2012, 108: 19-24.

[39] Ding F, Cui Y, Ge X, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2013, 103506(2012): 2010-2014.

[40] 孔祥林, 马洪宇, 陈鹏等. 基于电阻膜的超宽带超材料吸波体设计[J]. 电波科学学报, 2021, 36(6): 947-952.

[41] 吕世奇, 高军, 曹祥玉等. 一种基于集总电阻加载的小型化超宽带超材料吸波体设计[J]. 电子与信息学报, 2019, 41(6): 1330-1335.

[42] Deng G, Lv K, Sun H, et al. An ultra-wideband, polarization insensitive metamaterial absorber based on multiple resistive film layers with wide-incident-angle stability[J]. International Journal of Microwave and Wireless Technologies, 2021, 13(1): 58-66.

[43] Nguyen T Q H, Nguyen T K T, Cao T N, et al. Numerical study of a broadband metamaterial absorber using a single split circle ring and lumped resistors for X-band applications[J]. AIP Advances, 2020, 10(3): 035326.

[44] Li S J, Wu P X, Xu H X, et al. Ultra-wideband and polarization-insensitive perfect absorber using multilayer metamaterials, lumped resistors, and strong coupling effects[J]. Nanoscale Research Letters, 2018, 13: 386.

[45] Gu S, Su B, Zhao X. Planar isotropic broadband metamaterial absorber[J]. Journal of Applied Physics, 2013, 114(16): 163702.

[46] Zhou F, Fu Y, Tan R, et al. Broadband and wide-angle metamaterial absorber based on the hybrid of spoof surface plasmonic polariton structure and resistive metasurface[J]. Optics Express, 2021, 29(21): 34735.

[47] Jidi L, Cao X, Gao J, et al. Ultra-wideband absorber for electromagnetic waves under large incident angle based on spoof surface plasmon polaritons[J]. Optical Materials Express, 2021, 11(11): 3917.

[48] Huang X, Yang H, Shen Z, et al. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime[J]. Journal of Physics D: Applied Physics, 2017, 50(38): 385304.

[49] Xie J, Quader S, Xiao F, et al. Truly All-dielectric ultrabroadband metamaterial absorber: water-based and ground-free[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(3): 536-540.

[50] Xiong H, Yang F. Ultra-broadband and tunable saline water-based absorber in microwave regime[J]. Optics Express, 2020, 28(4): 5306-5316.

[51] Yan X, Kong X, Wang Q, et al. Water-based reconfigurable frequency selective rasorber with thermally tunable absorption band[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(8): 6162-6171.

[52] Yang G H, Liu X X, Lv Y L, et al. Broadband polarization-insensitive absorber based on gradient structure metamaterial[J]. Journal of Applied Physics, 2014, 115(17): 17E523.

[53] Stephen L, Yogesh N, Subramanian V. Realization of bidirectional, bandwidth-enhanced metamaterial absorber for microwave applications[J]. Scientific Reports, 2019, 9: 10058.

[54] Bakshi S C, Mitra D, Teixeira F L. FSS-based fully reconfigurable rasorber with enhanced absorption bandwidth and simplified bias network[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7370-7381.

[55] Li S, Shen Z, Yang H, et al. Ultra-wideband transmissive water-based metamaterial absorber with wide angle incidence and polarization insensitivity[J]. Plasmonics, 2021, 16(4): 1269-1275.

[56] Mo B, Wang C. Broadband and wideangle absorption of transparent conformal metamaterial[J]. Advanced Composites and Hybrid Materials, 2022, 5(1):383-389.

[57] Wang J, Yang R, Tian J, et al. A dual-band absorber with wide-angle and polarization insensitivity[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(7): 1242-1246.

[58] Cong L L, Cao X Y, Song T, et al. Angular-and polarization-insensitive ultrathin double-layered metamaterial absorber for ultra-wideband application[J]. Scientific Reports, 2018, 8: 9627.

[59] Amiri M, Tofigh F, Shariati N, et al. Wide ‑ angle metamaterial absorber with highly insensitive absorption for TE and TM modes[J]. Scientific Reports, 2020, 10(1): 13638.

[60] 雷晓勇, 霍树云, 李燕等. 小型化超材料吸波体设计与电磁吸收分析[J]. 电波科学学报, 2021, 36(6): 896-904.

[61] Shi T, Jin L, Han L, et al. Dispersion-engineered, broadband, wide-angle, polarization-independent microwave metamaterial absorber[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(1): 229-238.

[62] Lee D, Hwang J G, Lim D, et al. Incident angle- and polarization-insensitive metamaterial absorber using circular sectors[J]. Scientific Reports, 2016, 6: 27155.

[63] Shen Y, Pang Y, Wang J, et al. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption[J]. Journal of Physics D: Applied Physics, 2015, 48(44): 445008.

[64] 吴雨明, 王任, 丁霄等. 基于等效介质原理的宽角超材料吸波体设计[J]. 物理学报, 2020, 69(22): 224201.

[65] Sui S, Ma H, Wang J, et al. Absorptive coding metasurface for further radar cross section reduction[J]. Journal of Physics D: Applied Physics, IOP Publishing, 2018, 51(6): 065603.

[66] Huang H, Omar A A, Shen Z. Low-RCS and beam-steerable dipole array using absorptive frequency-selective reflection structures[J]. IEEE Transactions on Antennas and Propagation, IEEE, 2020, 68(3): 2457-2462.

[67] Han Y, Gong S, Wang J, et al. Reducing RCS of patch antennas via dispersion engineering of metamaterial absorbers[J]. IEEE Transactions on Antennas and Propagation, IEEE, 2020, 68(3): 1419-1425.

[68] Kong X, Jiang S, Kong L, et al. Transparent metamaterial absorber with broadband radar cross-section (RCS) reduction for solar arrays[J]. IET Microwaves, Antennas and Propagation, 2020, 14(13): 1580-1586.

[69] 张厚. 电磁兼容原理[M]. 西安: 西北工业大学出版社, 2009.

[70] Luukkonen O, Simovski C, Granet G, et al. Simple and accurate analytical model of planar grids and high-impedance surfaces comprising metal strips or patches[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(6): 1624-1632.

[71] Knott E F, Shaeffer J, Tuley M. Radar cross section[M].SciTech Publishing, 2004.

[72] 丁鹭飞. 雷达原理[M]. 第四版, 北京: 电子工业出版社, 2012.

中图分类号:

 TB34    

开放日期:

 2022-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式