- 无标题文档
查看论文信息

论文中文题名:

 邻近工作面相向回采复合采空区煤自燃危险区域研究    

姓名:

 罗金雷    

学号:

 20220226095    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 翟小伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Study on the risk area of coal spontaneous combustion in the composite mining area of adjacent working face with opposite back mining    

论文中文关键词:

 相向回采 ; 复合采空区 ; 煤自燃 ; 防治技术    

论文外文关键词:

 Phase mining ; composite mining area ; coal spontaneous combustion ; prevention and control technology    

论文中文摘要:

受矿井采掘布局影响,相邻两工作面存在相向回采现象。在回采过程中,煤柱受到叠加采动应力影响,极易导致煤柱产生裂隙形成漏风通道,使得采空区内部漏风量增大且流场紊乱,容易形成复合采空区。复合采空区一旦发生煤自燃,氧化产生的各种有毒有害气体会在复合采空区内不断流动,使火区位置难以判定,治理难度增加。本文以陕北某矿2206工作面与其邻近煤矿2201工作面相向回采为研究背景,通过实验研究、数值模拟研究煤自燃特性及极限参数、煤柱裂隙演化规律,在此基础上建立复合采空区煤自燃模型,研究复合采空区煤自燃危险区域,最后根据上述研究成果提出邻近工作面相向开煤自燃防治措施,达到有效避免煤自燃灾害发生的目的,获得如下研究成果:

(1)采用程序升温实验研究煤自燃特性参数,结果表明煤样耗氧速率、气体生成速率和放热强度均随温度升高而指数增长,并结合现场实际情况,确定CO、C2H4和C3H8作为监测指标气体;确定采空区上限漏风强度为0.0015m/s,下限氧浓度6.9%,为煤自燃危险区域的判断提供基础参数。

(2)利用FLAC3D模拟研究邻近工作面相向回采时煤柱应力位移分布特征及裂隙演化规律,发现当工作面相距120m时,两工作面采动应力开始相互影响;当工作面相距40m时,两工作面采动应力影响显著;当工作面相遇时,两工作面采动应力相互影响程度进一步增加,但煤柱裂隙发育程度仍较小。当两工作面相遇后煤柱受到两侧叠加的采空区覆岩压力,同时受到二次采动影响,并且随着工作面推进,采空区覆岩压力增大,裂隙发育程度增大,当两工作面相错80m时,相错区域的煤柱应力位移大幅增加,煤柱变形程度增大,裂隙发育程度加剧。

(3)基于复合采空区空间分布特征,结合计算流体力学理论建立了复合采空区数值模型,掌握相向回采工作面复合采空区的氧气浓度分布规律,并研究了煤柱孔隙率及两工作面压差对复合采空区的氧气分布影响规律。结果表明随着煤柱孔隙率及工作面压差的增大,复合采空区氧化带范围增大。

(4)根据前文研究结果,结合现场实际情况,确定邻近工作面相向回采复合采空区煤自燃发火影响因素,针对不同回采阶段的复合采空区煤自燃危险区域,优化回采方案,把漏风堵漏、调压控风、采空区覆盖隔氧及惰化降氧等多种煤自燃防控技术相结合优化煤自燃综合防控技术,并构建了邻近工作面相向回采复合采空区煤自燃防控体系,有效控制了邻近工作面相向回采复合采空区煤自燃问题。

论文外文摘要:

Influenced by the mining layout of the mine, two adjacent working faces are back-mined in opposite directions. In the back mining process, the coal column is affected by the superimposed mining stress, which will easily lead to the formation of air leakage channels in the coal column, making the air leakage inside the mining area increase and the flow field disorderly, which will easily form the compound mining area. Once coal spontaneous combustion occurs in the compound mining area, various toxic and harmful gases produced by oxidation will flow continuously in the compound mining area, making it difficult to determine the location of the fire area and increasing the difficulty of management. This paper takes 2206 working face of a mine in northern Shaanxi Province and its neighboring coal mine 2201 working face of the opposite direction back mining as the research background, through experimental research, numerical simulation research coal spontaneous combustion characteristics and limit parameters, coal column fissure evolution law, on this basis to establish the composite mining area coal spontaneous combustion model, research composite mining area coal spontaneous combustion risk area, and finally based on the above research results to put forward the neighboring working face of the opposite direction open coal spontaneous combustion prevention measures In order to achieve the purpose of effectively avoiding the occurrence of coal spontaneous combustion disaster, the following research results were obtained:

(1) Using the programmed warming experiment to study the parameters of coal spontaneous combustion characteristics, the results show that the oxygen consumption rate, gas generation rate and exothermic intensity of coal samples increase exponentially with the increase of temperature, and combined with the actual situation on site, CO, C2H4 and C3H8 are determined as the monitoring index gases; the upper limit of air leakage intensity in the mining area is determined to be 0.0015m/s, and the lower limit of oxygen concentration is 6.9%, which provides the basic parameters for the coal spontaneous combustion risk area provide basic parameters for the judgment of coal spontaneous combustion risk area.

(2) Using FLAC3D simulation to study the characteristics of coal column stress displacement distribution and fissure evolution law when the neighboring working faces are retrieved in opposite directions, it is found that when the working faces are 120m apart, the mining stresses of the two working faces start to influence each other; when the working faces are 40m apart, the mining stresses of the two working faces affect each other significantly; when the working faces meet, the degree of mutual influence of the mining stresses of the two working faces increases further, but the coal column fissure The development degree is still small. When the two working faces meet, the coal column is subjected to the overburden pressure of the mining area superimposed on both sides, and is also affected by secondary mining, and as the working face advances, the overburden pressure of the mining area increases, and the degree of fissure development increases, and when the two working faces are staggered by 80m, the stress displacement of the coal column in the staggered area increases significantly, the deformation of the coal column increases, and the degree of fissure development intensifies.

(3) Based on the spatial distribution characteristics of the composite mining area, a numerical model of the composite mining area was established based on the theory of computational fluid dynamics to grasp the distribution law of oxygen concentration in the composite mining area of the phase back mining face, and the influence law of coal column porosity and pressure difference between the two working faces on the oxygen distribution in the composite mining area was studied. The results show that with the increase of porosity of coal column and pressure difference of working face, the range of oxidation zone in composite mining area increases.

(4) According to the results of the previous study, combined with the actual situation of the site, the factors influencing the spontaneous combustion of coal in the composite mining area of the adjacent working face and the risk area of spontaneous combustion of coal in the composite mining area at different stages of recovery are determined, the recovery plan is optimized, and various coal spontaneous combustion prevention and control techniques, such as air leakage plugging, pressure control air, oxygen barrier in the mining area cover and inerting oxygen reduction, are combined to optimize the comprehensive coal spontaneous combustion prevention and control technology, and the adjacent.

参考文献:

[1]刘雅文. 《BP世界能源统计年鉴》2021年版发布:能源市场遭受巨大冲击[J]. 中国石油和化工, 2021(08): 32-33.

[2]王德明, 邵振鲁, 朱云飞. 煤矿热动力重大灾害中的几个科学问题[J]. 煤炭学报, 2021, 46(01): 57-64.

[3]Wang Y L, Jia L, Guo B H, et al. Investigation of interaction mechanisms during co-combustion of sewage sludge and coal slime: Combustion characteristics and NO/SO2 emission behavior.[J]. The Science of the total environment, 2022, 851(P1): 158166-158166.

[4]王刚. 基于重金属迁移机理的乌达煤田火区探测研究[D]. 阜新: 辽宁工程技术大学, 2020.

[5]Shi Q L, Qin B T, Liang H J, et al. Effects of igneous intrusions on the structure and spontaneous combustion propensity of coal: A case study of bituminous coal in Daxing Mine, China[J]. Fuel, 2018, 216: 181-189.

[6]Xiong X H, Yu S L, Qin D C, et al. Evolution behaviors of the nitrogen-containing species and SO2 from coal fast pyrolysis[J]. Journal of the Energy Institute, 2022, 105: 133-140.

[7]林柏泉, 李庆钊, 周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报, 2021, 46(06): 1715-1726.

[8]杨超凡. 综采工作面面间煤柱稳定性及工程应用研究[D]. 西安:西安科技大学, 2021.

[9]Liu Q H, Xue YB, Ma D, et al. Failure Characteristics of the Water-Resisting Coal Pillar under Stress-Seepage Coupling and Determination of Reasonable Coal Pillar Width[J]. Water, 2023, 15(5): 1002-1002.

[10]Zheng W C, Yang S Q, Li W Z, et al. Research of inorganic fire‐extinguishing materials on preventing and controlling gas and coal spontaneous combustion in the narrow coal pillar and adjacent goaf[J]. Fire and Materials, 2020, 44(5): 660-672.

[11]王高昂, 朱斯陶, 姜福兴等. 倾斜综放工作面双层叠加煤柱诱冲机理及安全回采技术[J]. 采矿与安全工程学报, 2023, 40(01): 36-47.

[12]胥振. 陈四楼矿窄煤柱沿空掘巷围岩控制技术研究[D]. 徐州: 中国矿业大学, 2022.

[13]Liu Y, Wen H, Guo J, et al. Coal spontaneous combustion and N2 suppression in triple goafs: A numerical simulation and experimental study[J]. Fuel, 2020, 271(C): 117625-117625.

[14]马成甫, 张闯, 张喜梁等. 压注塑性材料在防治破碎煤柱漏风及自燃中的应用[J]. 煤炭科技, 2022, 43(02): 116-119.

[15]康文杰. 宁夏羊场湾矿小煤柱工作面煤自燃规律及防灭火技术研究[D]. 徐州: 中国矿业大学, 2020.

[16]马成甫, 郝培生, 计鹏举, 等. 冲击矿压条件下煤柱破碎漏风治理技术研究[J]. 能源技术与管理, 2022, 47(02): 51-52.

[17]吴建宾, 李冬, 张彦宽, 等. 陕蒙矿区深部回采沿空侧煤自燃特性与分区防控方法[J]. 煤矿安全, 2022, 53(09): 65-70.

[18]Tang Z Q, Yang S Q, Xu G, et al. Disaster-causing mechanism and risk area classification method for composite disasters of gas explosion and coal spontaneous combustion in deep coal mining with narrow coal pillars[J]. Process Safety and Environmental Protection, 2019, 132(C): 182-188.

[19]张志科. 回采巷道煤柱隐蔽火灾发生机理研究[D]. 廊坊: 华北科技学院, 2018.

[20]郭睿智. 营盘壕综采面沿空侧漏风特性与煤自燃预控方法研究[D]. 西安: 西安科技大学, 2019.

[21]卓辉. 浅埋藏近距离煤层群回采裂隙漏风及煤自然发火规律研究[D]. 徐州: 中国矿业大学, 2021.

[22]陈昊熠. 浅埋煤层回采覆岩变形破坏及地表沉陷预测研究[D]. 贵阳: 贵州大学, 2022.

[23]翟小伟, 尚博, 郑增荣, 等. 浅埋近距离煤层相邻对向回采工作面煤自燃防治技术与应用[J]. 煤矿安全, 2021, 52(06): 98-103.

[24]黄庆享, 王林涛, 杜君武, 等. 浅埋邻近工作面相向回采房柱采空区煤柱稳定性分析[J]. 采矿与安全工程学报, 2022, 39(01): 118-125.

[25]吴建宾, 李冬, 张彦宽, 等. 陕蒙矿区深部回采沿空侧煤自燃特性与分区防控方法[J]. 煤矿安全, 2022, 53(09): 65-70.

[26]郑万成. 小煤柱条件下煤自燃阻化封堵材料研究[D]. 徐州: 中国矿业大学, 2021.

[27]王春森, 郑茂慧. 大断面沿空掘进巷道窄煤柱内裂隙演化规律分析[J]. 中国矿山工程, 2021, 50(04): 9-12+28.

[28]霍丙杰, 黄宇轩, 靳京爵, 等. 沿空掘巷小煤柱渗透率演化规律实验研究[J/OL]. 煤炭科学技术: 1-10[2022-11-20].

[29]赵学文. 倾斜煤层窄煤柱工作面瓦斯运移规律及防治技术研究[D]. 西安: 西安科技大学, 2020.

[30]胡魏魏. 窄煤柱回采工作面采空区瓦斯运移规律及其防治技术研究[D]. 西安: 西安科技大学, 2015.

[31]Cheng J W, Wu Y H, Wang Y, et al. Characterizing Coal Pillar Deformation and Air Leakage Pattern During Longwall Face Mining[J]. Mining Metallurgy & Exploration, 2022, 39(4): 1487-1500.

[32]范公勤, 闫瑞兵, 雷照源, 等. “应力-渗流-损伤”分析下的煤柱宽度设计[J]. 西安科技大学学报, 2017, 37(02): 164-170.

[33]何耀宇, 宋选民, 赵金昌. 复杂受压条件下不同尺寸煤柱破坏倾向性研究[J].采矿与安全工程学报, 2015, 32(04): 592-596.

[34]Lu Y, Qin B. Identification and control of spontaneous combustion of coal pillars; a case study in the Qianyingzi Mine, China[J]. Natural hazards (Dordrecht), 2015,75(3): 2683-2697.

[35]郭金帅. 区段煤柱蠕变损伤机制及其支承顶板裂隙演化规律研究[D]. 徐州: 中国矿业大学, 2021.

[36]Liu S F, Wan Z J, Zhang Y, et al. Research on evaluation and control technology of coal pillar stability based on the fracture digitization method[J]. Measurement, 2020, 158(prepublish): 107713-107713.

[37]王举举. 宜兴矿小煤柱孤岛综采面采空区防火技术研究[D]. 淮南: 安徽理工大学, 2016.

[38]郑旋. 南屯煤矿相邻采空区自燃隐患监测及防治技术[D]. 西安: 西安科技大学, 2017.

[39]张曦, 戴广龙, 聂士斌, 等. 应用能位测定法和SF6示踪技术检测孤岛工作面小煤柱漏风状态[J]. 矿业安全与环保, 2016, 43(05): 41-44.

[40]芮国相, 张金山, 席小斌. 察哈素煤矿31303工作面煤矿破碎煤柱高温区域治理实践[J]. 华北科技学院学报, 2017, 14(04): 39-41.

[41]褚廷湘, 李品, 余明高. 工作面推进下采空区煤自燃进程的动态模拟研究[J]. 中国矿业大学学报, 2019, 48(03): 529-537.

[42]朱帅虎, 王金宝. 综采面邻空煤柱漏风微循环现象研究[J]. 河北工程大学学报(自然科学版), 2016,33(03): 85-88+103.

[43]余明高, 李龙飞, 褚廷湘, 等. 瓦斯抽采下沿空留巷采空区自燃危险区域判定[J]. 河南理工大学学报(自然科学版), 2015, 34(3): 297-304.

[44]赵文彬, 芦继宇, 李振武, 等. 工作面掘采时期邻近采空区动态漏风规律研究[J]. 煤炭工程, 2019, 51(09): 136-141.

[45]王洋, 董小明, 吴建宾, 等. 工作面沿空侧采空区煤自燃危险区域研究[J]. 煤矿安全, 2022, 53(03): 193-199.

[46]Ma L, Guo R Z, Wu M M, et al. Determination on the hazard zone of spontaneous coal combustion in the adjacent gob of different mining stages[J]. Process Safety and Environmental Protection, 2020, 142(prepublish): 370-379.

[47]Liu Y, Wen H, Guo J, et al. Coal spontaneous combustion and N2 suppression in triple goafs: A numerical simulation and experimental study[J]. Fuel, 2020, 271(C): 117625-117625.

[48]张春华, 姚立洪. 长走向工作面巷道煤柱自燃预警及防治技术[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(06): 483-490.

[49]郭睿智. 营盘壕综采面沿空侧漏风特性与煤自燃预控方法研究[D]. 西安: 西安科技大学, 2019.

[50]张天明, 杨胜强, 罗仁俊. “Y”型综采面新老采空区浮煤自燃氧化特点及瓦斯浓度分布规律[J]. 煤炭技术, 2023, 42(03): 178-181.

[51]杨正伟. 水帘洞矿孤岛小煤柱综放面煤自燃防治技术研究[D]. 西安: 西安科技大学, 2019.

[52]宋一帆. 漳村矿沿空留巷综采面采空区与相邻老空区之间气体运移及浮煤氧化规律[D]. 徐州: 中国矿业大学, 2022.

[53]秦汝祥,杨科,刘帅,等.区段煤柱渗透性分析与防火效应研究[J].采矿与安全工程学报,2018,35(03):629-634.

[54]李志强. 浅埋近距离煤层回采巷道围岩控制研究[J]. 山西化工, 2022, 42(03): 125-127.

[55]海林鹏. 大采高综放面沿空掘巷围岩控制研究[D]. 焦作: 河南理工大学, 2017.

[56]李海洋. 煤柱沿空留巷围岩控制应用研究[J]. 山东煤炭科技, 2021, 39(01): 88-90.

[57]常啸, 崔增斌. 巷旁煤柱留设宽度对巷道底鼓及破坏形式的作用分析[J]. 山西冶金, 2021, 44(01): 69-71.

[58]Chen D, Ji C, Xie S, et al. Deviatoric Stress Evolution Laws and Control in Surrounding Rock of Soft Coal and Soft Roof Roadway under Intense Mining Conditions[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-18.

[59]Li J, Qiang X, Wang W, et al. Distribution Law of Principal Stress Difference of Deep Surrounding Rock of Gob-side Entry and Optimum Design of Coal Pillar Width[J]. Tehnicki vjesnik - Technical Gazette, 2019, 26(6): 1112-1117.

[60]Zhao P X, Zhang W J, Li S G, et al. Numerical Simulation Study on Mechanical Characteristics and Width Optimization of Narrow Coal Pillar in Gob-Side Coal Seam Tunnel[J]. Sustainability, 2022, 14(23): 16014-16014.

[61]张金贵, 程志恒, 陈昊熠, 等. 区段煤柱留设宽度分析及优化——以崖窑峁煤矿为例[J]. 煤炭科学技术, 2022, 50(10): 60-67.

[62]程辉, 赵洪宝, 张欢, 等. 近距离煤层工作面煤柱合理留设与巷道围岩控制技术[J]. 工程科学学报, 2022, 44(07): 1147-1159.

[63]Zhou X D, Yang Y L, Zheng K Y, et al. Study on the Spontaneous Combustion Characteristics and Prevention Technology of Coal Seam in Overlying Close Goaf[J]. Combustion Science and Technology, 2022, 194(11): 2233-2254.

[64]Li J H, Zhao Y X, Du J Y. Prevention Technology of Coal Spontaneous Combustion Induced by Gas Drainage in Deep Coal Seam Mining[J]. Fire, 2022, 5(3): 65-65.

[65]Liu L J, Shen Z, Chen J, et al. Study on Spontaneous Combustion “Three Zones” of the Distribution Law and Integrated Fire Prevention Technology in Mined-Out Area of Lingquan Mine[J]. Computational Intelligence and Neuroscience, 2022, 2022.

[66]薛刚. 大柳塔煤矿排矸场综合一体化火区治理方法[J].煤炭科学技术, 2022, 50(S1): 159-167.

[67]郭春生, 李耀谦, 王姣, 等. 小煤柱综放工作面相邻采空区自燃灾害综合治理技术[J]. 矿业安全与环保, 2021, 48(02): 117-121.

[68]王宁, 张飞, 康楷.盘区大巷煤柱回采工作面邻近老空区漏风检测及防治技术[J].煤炭技术, 2020, 39(02): 130-133.

[69]鲁义, 殷召元, 马东, 等. 沿空掘巷工作面停采期煤自燃防治技术[J].煤炭科学技术, 2015, 43(03): 48-51.

[70]刘海健. 孙家沟煤矿小煤柱工作面采空区防灭火技术应用[J]. 石化技术, 2019, 26(02): 206-322.

[71]李晨. 注氮在小煤柱工作面邻近采空区瓦斯防治中应用[J]. 江西煤炭科技, 2022, No.176(04): 180-182.

[72]郭盛华. 无机防灭火材料在小煤柱工作面自燃灾害防治中的应用[J]. 能源技术与管理, 2017, 42(02): 90-92.

[73]Wang W, Qi Y, Liu J. Study on multi field coupling numerical simulation of nitrogen injection in goaf and fire-fighting technology[J]. Scientific Reports, 2022, 12(1): 17399-17399.

[74]戴明颖. 浅埋深易自燃煤层火区注浆灭火技术[J]. 煤矿安全, 2021, 52(03): 112-116+121.

[75]郝建国. 均压通风技术治理浅埋深大漏风火区[J]. 煤炭技术, 2021, 40(02): 120-122.

[76]韩亮. 煤自燃指标气体生成特性及内在规律性研究[D]. 太原: 太原理工大学, 2017.

[77]徐精彩, 薛韩玲, 文虎, 等. 煤氧复合热效应的影响因素分析[J]. 中国安全科学学报, 2001(02): 34-39.

[78]陆伟, 胡千庭, 仲晓星,等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报, 2007(01): 111-115.

[79]马砺, 雷昌奎, 王凯, 等. 高地温环境对煤自燃危险性影响试验研究[J]. 煤炭科学技术, 2016, 44(01): 144-148+156.

[80]翟小伟, 蒋上荣, 王博. 水分对煤孔隙结构及自燃特性的影响研究现状[J]. 煤矿安全, 2020, 51(02): 38-42.

[81]章飞. 复合采空区遗煤自燃极限参数变化及危险区域判定[J]. 矿业安全与环保, 2020, 47(04): 66-72.

[82]张迪, 聂海洋. 基于FLAC3D的综放工作面巷道布置及风量分配研究[J]. 煤炭科学技术, 2022, 50(S1): 132-141.

[83]周佩玲, 张英华, 黄志安, 等. 非均质孔隙率采空区氧化升温规律四维动态模拟[J]. 工程科学学报, 2016, 38(10): 1350-1358.

[84]武义强. 东曲矿极近距离煤层内错布置复合采空区煤自燃危险区域研究[D]. 徐州: 中国矿业大学, 2022.

[85]文虎, 于志金, 翟小伟, 等. 沿空留巷采空区氧化带分布特征与关键参数分析[J]. 煤炭科学技术, 2016, 44(01): 138-143.

[86]杨黎, 郑万成, 赵波, 等. 注氮对相邻采空区自燃“三带”影响模拟研究[J]. 能源与环保, 2022, 44(06): 312-318.

中图分类号:

 TD752.2    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式