论文中文题名: | 预制混凝土节段箱梁日照温度效应及拼装界面误差研究 |
姓名: | |
学号: | 1920429048 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 预制拼装桥梁力学行为 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-14 |
论文答辩日期: | 2022-05-28 |
论文外文题名: | Study on the Effect of Sunlighting Temperature on Precast Concrete Segmental Box Girders and the Error of Assembling Interface |
论文中文关键词: | |
论文外文关键词: | Segmental concrete box girder ; Sunlight temperature effect ; Assembly interface error ; Bowing effect ; Temperature gradient |
论文中文摘要: |
日照温度作用和界面误差是影响预制混凝土节段箱梁接缝截面应力和变形的重要因素,常导致箱梁接缝截面应力传递不佳、变形不协调。因此,本文以机荷高速改扩建项目为背景,运用Midas Civil和ABAQUS有限元软件,建立了预应力连续刚构桥(50 m+90 m+55 m)空间网格模型和三种界面误差形式(预应力损失、弹性模量变化和梁节段的“弓形弯曲效应”)的边跨合拢段实体模型,分析了节段拼装连续刚构桥的日照温度效应,研究了温度作用下三种界面误差对合拢段接缝截面应力和变形的影响。本文的主要研究内容如下: (1)基于全桥有限元分析,研究了竖向和横向温度梯度作用下箱梁应力与变形规律。通过建立了太阳辐射理论模型,确定了桥梁初始温度场,计算日照温度作用下的温度梯度分布。结果表明:温度梯度作用对跨中位置挠度影响最大,且对边跨合拢段和中跨1/4位置处的底板及腹板下侧应力影响最不利,底板和腹板易产生裂缝。 (2)基于右边跨合拢段的有限元分析,研究日照温度作用对合拢前后顶板、底板以及腹板内外表面横向应力、竖向应力和纵向应力的影响,分析了梁段的弯曲变形规律。结果表明:在竖向温度梯度作用下,合拢后节段箱梁顶板、底板和腹板内表面的纵向应力变化显著,竖向应力和横向应力变化明显;而梁段合拢前后顶板和底板弯曲变形增大,合拢后梁段的弯曲变形更大。 (3)基于右边跨合拢段箱梁实体有限元模型,研究三种界面误差(预应力损失、弹性模量变化和“弓形弯曲效应”)在竖向温度梯度作用下的拼接截面应力与变形规律。结果表明:预应力损失和“弓形弯曲效应”对箱梁接缝截面的主应力影响较大,而弹性模量变化的影响较小。在竖向温度梯度作用下,界面误差对接缝截面主应力的影响进一步增大,且存在“弓形弯曲效应”的梁段顶板弯曲变形增大一倍。 |
论文外文摘要: |
Sunlight temperature effects and interface errors are important factors affecting the stresses and deformations in the section of precast concrete section box girder joints. This often results in poor stress transfer and uncoordinated deformation of the box girder joint section. Therefore, this paper uses Midas Civil and ABAQUS finite element software in the context of the Kijho Expressway renovation and expansion project. A spatial grid model of a prestressed continuous rigid bridge (50 m+90 m+55 m) and a solid model of the side span closure section with three forms of interfacial errors (prestress loss, change in elastic modulus and 'bow bending effect' of the girder segments) were developed.This paper analysed the daylight temperature effect on segmental assembled continuous rigid bridges,investigated the effect of three interface errors on the stresses and deformations in the joint section of a jointed section under the effect of temperature. The main research elements of this paper are as follows. (1)Based on the finite element analysis of the whole bridge, the stresses and deformations of the box girder under the effect of vertical and transverse temperature gradients are investigated. A theoretical model of solar radiation has been developed to determine the initial temperature field of the bridge and to calculate the temperature gradient distribution under the effect of insolation temperature. The results show that the temperature gradient has the greatest effect on the deflection at the mid-span position and has the most detrimental effect on the stresses in the bottom slab and the lower side of the web at the side span merging section and the mid-span ¼ position, with the bottom slab and web prone to cracking. (2)Based on the finite element analysis of the right-hand span section, the effect of temperature on the transverse stresses, vertical stresses and longitudinal stresses on the top and bottom plates and the inner and outer surfaces of the web before and after the closure is investigated, and the bending deformation pattern of the girder section is analysed. The results show that the longitudinal stresses on the top, bottom and inner surfaces of the web of the closed section box girder vary significantly under the vertical temperature gradient, and the vertical and transverse stresses vary significantly. The bending deformation of the top and bottom slabs increases before and after the girder section is closed, and the bending deformation of the girder section is greater after the closure. (3)Based on a solid finite element model of the right-span closed section box girder, the stresses and deformations in the spliced section under the effect of vertical temperature gradient are investigated for three types of interface errors (prestress loss, elastic modulus change and "bow bending effect"). The results show that the loss of prestress and the "bow bending effect" have a greater effect on the principal stresses in the joint section of the box girder, while the change in elastic modulus has a smaller effect. The effect of interface errors on the principal stresses in the joint section is further increased by the vertical temperature gradient, and the bending deformation of the top plate of the beam section where the "bow bending effect" exists is doubled |
参考文献: |
[1] 许子宜, 张子飏, 徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43: 288-296. [5] 彭华春, 张康康, 时松, 等. 节段预制拼装桥梁研究综述[J]. 铁道标准设计, 2022, 30(03): 1-11. [7] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(07): 52-61. [8] 陈俊礼. 太阳辐射下钢箱梁温度分布与温度应力的研究[D]. 兰州: 兰州交通大学, 2020. [31] 刘兴法. 混凝土结构的温度应力分析[M]. 人民交通出版社, 1991. [32] 葛耀君, 翟东, 张国泉. 混凝土斜拉桥温度场的试验研究[J]. 中国公路学报, 1996(02): 76-83. [33] 刘海弯. 基于概率统计的大跨径连续刚构桥梁温度梯度及温度效应研究[D]. 西安:长安大学, 2016. [34] 贾琳. 太阳辐射作用下混凝土箱梁的温度分布及温度应力研究[D]. 南京: 东南大学, 2001. [35] 叶见曙, 贾琳, 钱培舒. 混凝土箱梁温度分布观测与研究[J]. 东南大学学报(自然科学版), 2002(05): 788-793. [36] 郭棋武, 方志, 裴炳志, 等. 混凝土斜拉桥的温度效应分析[J]. 中国公路学报, 2002(02): 51-54. [37] 张建荣, 周元强, 林建萍, 等. 太阳辐射对混凝土箱梁温度效应的影响[J]. 同济大学学报(自然科学版), 2008, 36(11): 1479-1484. [38] 聂利英, 刘明坡, 朱倩, 等. 基于实测的混凝土箱梁腹板横向温度效应研究[J]. 世界桥梁, 2016, 44(03): 53-57. [39] 庞振宇, 徐秀丽, 邢世玲, 等. 城市混凝土曲线梁桥温度场及温度效应分析[J]. 中外公路, 2016, 36(01): 124-130. [40] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(03): 73-84. [43] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(05): 59-78. [44] 杨敏, 青宇, 王文飞, 等. 强日照地区混凝土多主梁T梁桥横向梯度温度效应分析[J]. 昆明理工大学学报(自然科学版), 2020, 45(03): 102-110. [45] 肖林, 蔡俊宇, 杨妍秋, 等. 桥梁温度作用与效应2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 167-174. [47] 杨璐, 王志坤, 于永彬. 预应力混凝土箱型梁温度效应下耦合应力分析[J]. 混凝土, 2015, 00(10): 139-143. [48] 黄全成, 滕念管. 高速磁浮大型箱梁日照温度效应分析[J]. 铁道标准设计, 2020, 64(09): 75-81. [53] 陈雄, 张建东, 刘朵, 等. 预制拼装混凝土节段梁的弓形变形研究[J]. 中外公路, 2018, 38(02): 98-102. [54] 魏明, 刘钊, 贺志启. 水化热对短线法预制箱梁节段变形的影响分析[J]. 山东交通科技, 2017(02): 6-9. [55] 陈扬, 刘钊. 节段预制箱梁后浇横隔墙的水化热效应分析[J]. 建筑科学与工程学报, 2012, 29(01): 110-114. [56] 施鑫磊, 高德宝, 李子奇, 等. 温度作用下混凝土拼接桥梁拼接缝界面剪应力研究[J]. 中国安全生产科学技术, 2021, 17(11): 158-164. [57] 张怡雪, 毛江鸿, 方明山, 等. 考虑存梁期影响的节段悬拼混凝土桥徐变变形分析[J]. 桥梁建设, 2021, 51(04): 73-80. [58] 徐丰. 混凝土箱梁桥温度效应关键因素研究[D]. 武汉: 华中科技大学, 2009. [59] Reis A J, Pedro J J O. Bridge design: concepts and analysis[M]. John Wiley & Sons, 2019. [65] 樊健生, 刘诚, 刘宇飞. 钢-混凝土组合梁桥温度场与温度效应研究综述[J]. 中国公路学报, 2020, 33(04): 1-13. [68] 刘芳. 重复荷载作用下节段预制拼装混凝土梁键齿接缝力学行为研究[D]. 成都: 西南交通大学, 2020. [70] 赵建锋, 刘雪飞, 孟庆一, 等. 外置可更换耗能装置的节段拼装CFST桥墩抗震性能分析[J]. 西南交通大学学报, 2022, 04(06): 1-9. [71] 徐有邻, 王晓锋, 刘刚, 等. 混凝土结构理论发展及规范修订的建议[J]. 建筑结构学报, 2007, 28(01): 1-6. |
中图分类号: | U448.21 |
开放日期: | 2024-06-13 |