- 无标题文档
查看论文信息

论文中文题名:

 预制混凝土节段箱梁日照温度效应及拼装界面误差研究    

姓名:

 杨雅茗    

学号:

 1920429048    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 预制拼装桥梁力学行为    

第一导师姓名:

 刘群峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-14    

论文答辩日期:

 2022-05-28    

论文外文题名:

 Study on the Effect of Sunlighting Temperature on Precast Concrete Segmental Box Girders and the Error of Assembling Interface    

论文中文关键词:

 预制节段箱梁 ; 温度效应 ; 拼装界面误差 ; 弓形弯曲效应 ; 预应力损失    

论文外文关键词:

 Segmental concrete box girder ; Sunlight temperature effect ; Assembly interface error ; Bowing effect ; Temperature gradient    

论文中文摘要:

日照温度作用和界面误差是影响预制混凝土节段箱梁接缝截面应力和变形的重要因素,常导致箱梁接缝截面应力传递不佳、变形不协调。因此,本文以机荷高速改扩建项目为背景,运用Midas Civil和ABAQUS有限元软件,建立了预应力连续刚构桥(50 m+90 m+55 m)空间网格模型和三种界面误差形式(预应力损失、弹性模量变化和梁节段的“弓形弯曲效应”)的边跨合拢段实体模型,分析了节段拼装连续刚构桥的日照温度效应,研究了温度作用下三种界面误差对合拢段接缝截面应力和变形的影响。本文的主要研究内容如下:

(1)基于全桥有限元分析,研究了竖向和横向温度梯度作用下箱梁应力与变形规律。通过建立了太阳辐射理论模型,确定了桥梁初始温度场,计算日照温度作用下的温度梯度分布。结果表明:温度梯度作用对跨中位置挠度影响最大,且对边跨合拢段和中跨1/4位置处的底板及腹板下侧应力影响最不利,底板和腹板易产生裂缝。

(2)基于右边跨合拢段的有限元分析,研究日照温度作用对合拢前后顶板、底板以及腹板内外表面横向应力、竖向应力和纵向应力的影响,分析了梁段的弯曲变形规律。结果表明:在竖向温度梯度作用下,合拢后节段箱梁顶板、底板和腹板内表面的纵向应力变化显著,竖向应力和横向应力变化明显;而梁段合拢前后顶板和底板弯曲变形增大,合拢后梁段的弯曲变形更大。

(3)基于右边跨合拢段箱梁实体有限元模型,研究三种界面误差(预应力损失、弹性模量变化和“弓形弯曲效应”)在竖向温度梯度作用下的拼接截面应力与变形规律。结果表明:预应力损失和“弓形弯曲效应”对箱梁接缝截面的主应力影响较大,而弹性模量变化的影响较小。在竖向温度梯度作用下,界面误差对接缝截面主应力的影响进一步增大,且存在“弓形弯曲效应”的梁段顶板弯曲变形增大一倍。

论文外文摘要:

Sunlight temperature effects and interface errors are important factors affecting the stresses and deformations in the section of precast concrete section box girder joints. This often results in poor stress transfer and uncoordinated deformation of the box girder joint section. Therefore, this paper uses Midas Civil and ABAQUS finite element software in the context of the Kijho Expressway renovation and expansion project. A spatial grid model of a prestressed continuous rigid bridge (50 m+90 m+55 m) and a solid model of the side span closure section with three forms of interfacial errors (prestress loss, change in elastic modulus and 'bow bending effect' of the girder segments) were developed.This paper analysed the daylight temperature effect on segmental assembled continuous rigid bridges,investigated the effect of three interface errors on the stresses and deformations in the joint section of a jointed section under the effect of temperature. The main research elements of this paper are as follows.

(1)Based on the finite element analysis of the whole bridge, the stresses and deformations of the box girder under the effect of vertical and transverse temperature gradients are investigated. A theoretical model of solar radiation has been developed to determine the initial temperature field of the bridge and to calculate the temperature gradient distribution under the effect of insolation temperature. The results show that the temperature gradient has the greatest effect on the deflection at the mid-span position and has the most detrimental effect on the stresses in the bottom slab and the lower side of the web at the side span merging section and the mid-span ¼ position, with the bottom slab and web prone to cracking.

(2)Based on the finite element analysis of the right-hand span section, the effect of temperature on the transverse stresses, vertical stresses and longitudinal stresses on the top and bottom plates and the inner and outer surfaces of the web before and after the closure is investigated, and the bending deformation pattern of the girder section is analysed. The results show that the longitudinal stresses on the top, bottom and inner surfaces of the web of the closed section box girder vary significantly under the vertical temperature gradient, and the vertical and transverse stresses vary significantly. The bending deformation of the top and bottom slabs increases before and after the girder section is closed, and the bending deformation of the girder section is greater after the closure.

(3)Based on a solid finite element model of the right-span closed section box girder, the stresses and deformations in the spliced section under the effect of vertical temperature gradient are investigated for three types of interface errors (prestress loss, elastic modulus change and "bow bending effect"). The results show that the loss of prestress and the "bow bending effect" have a greater effect on the principal stresses in the joint section of the box girder, while the change in elastic modulus has a smaller effect. The effect of interface errors on the principal stresses in the joint section is further increased by the vertical temperature gradient, and the bending deformation of the top plate of the beam section where the "bow bending effect" exists is doubled

参考文献:

[1] 许子宜, 张子飏, 徐腾飞. 预制装配式混凝土桥梁结构2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43: 288-296.

[2] Liu T, Wang Z, Guo J, et al. Shear strength of dry joints in precast UHPC segmental bridges: Experimental and theoretical research[J]. Journal of Bridge Engineering, 2019, 24(01): 1-18.

[3] Yuan A, Yang C, Wang J, et al. Shear Behavior of Epoxy Resin Joints in Precast Concrete Segmental Bridges[J]. Journal of Bridge Engineering, 2019, 24(04): 1-13.

[4] Buyukozturk O, Bakhoum M M, Beattie S M. Shear Behavior of Joints in Precast Concrete Segmental Bridges[J]. Journal of Structural Engineering, 1990, 116(12): 3380-3401.

[5] 彭华春, 张康康, 时松, 等. 节段预制拼装桥梁研究综述[J]. 铁道标准设计, 2022, 30(03): 1-11.

[6] Xu Z D, Wu Z. Simulation of the Effect of Temperature Variation on Damage Detection in a Long-span Cable-stayed Bridge[J]. Structural Health Monitoring, 2007, 06(03): 177-189.

[7] 赵人达, 王永宝. 日照作用下混凝土箱梁温度场边界条件研究[J]. 中国公路学报, 2016, 29(07): 52-61.

[8] 陈俊礼. 太阳辐射下钢箱梁温度分布与温度应力的研究[D]. 兰州: 兰州交通大学, 2020.

[9] H Nguyen, Stanton J, Eberhard M, et al. The Effect of Temperature Variations on the Camber of Precast, Prestressed Concrete Girders response[J]. PCI Journal, 2016, 61 (05): 81-82.

[10] Song Z, Xiao J , Shen L. On Temperature Gradients in High-Performance Concrete Box Girder under Solar Radiation[J]. Advances in Structural Engineering, 2012, 15(03): 399-416.

[11] Tayşi N, Abid S. Temperature distributions and variations in concrete box-girder bridges: experimental and finite element parametric studies[J]. Advances in Structural Engineering, 2015, 18(04): 469-486.

[12] Abid S R, Tayi N, Zaka M. Experimental analysis of temperature gradients in concrete box-girders[J]. Construction and Building Materials, 2016, 106(01): 523-532.

[13] Song X M, Melhem H, Li J, et al. Effects of solar temperature gradient on long-span concrete box girder during cantilever construction[J]. Journal of Bridge Engineering, 2016, 21(03).

[14] Tong M, Tham L G, Au F. Numerical modelling for temperature distribution in steel bridges[J]. Computers & Structures, 2001, 79(06): 583-593.

[15] Lee J H. Investigation of Extreme Environmental Conditions and Design Thermal Gradients during Construction for Prestressed Concrete Bridge Girders[J]. Journal of Bridge Engineering, 2012, 17(03): 547-556.

[16] Liu P, Zheng Z, Yu Z. Cooperative work of longitudinal slab ballast-less track prestressed concrete simply supported box girder under concrete creep and a temperature gradient[C]. Structures. Elsevier, 2020, 27: 559-569.

[17] Zhang C, Liu Y, J Liu, et al. Validation of long-term temperature simulations in a steel-concrete composite girder[J]. Structures, 2020, 27: 1962-1976.

[18] Mirambell E, Aguado A. Temperature and Stress Distributions in Concrete Box Girder Bridges[J]. Journal of Structural Engineering, 1990, 116(09): 2388-2409.

[19] Saetta A, Scotta R, Vitaliani R. Stress Analysis of Concrete Structures Subjected to Variable Thermal Loads[J]. Journal of Structural Engineering, 1995, 121(03): 446-457.

[20] AASHTO Guide Specifications for Design and Construction of Segmental Concrete Bridges[M]. American Association of State Highway and Transportation Officials. 1989.

[21] Hoffman P C, Mcclure R M, West H H. Temperature Studies for an Experimental Segmental Bridge[D]. 1980.

[22] Wood B A. Thermal gradients and their effects on segmental concrete box girder bridges[D]. University of Texas at Austin, 1997.

[23] Shushkewich K W. Design of segmental bridges for thermal gradient[J]. PCI journal, 1998, 43(04): 120-137.

[24] Roberts-Wollman C L, Breen J E, Cawrse J. Measurements of thermal gradients and their effects on segmental concrete bridge[J]. Journal of Bridge Engineering, 2002, 7(03): 166-174.

[25] Lee J H, Kalkan I. Analysis of thermal environmental effects on precast, prestressed concrete bridge girders: temperature differentials and thermal deformations[J]. Advances in Structural Engineering, 2012, 15(03): 447-459.

[26] Do T A, Tia M, Nguyen T H, et al. Assessment of Temperature Evolution and Early-Age Thermal Cracking Risk in Segmental High-Strength Concrete Box Girder Diaphragms[J]. KSCE Journal of Civil Engineering, 2022, 26(01): 166-182.

[27] Hagedorn R, Marti-Vargas J R, Dang C N, et al. Temperature Gradients in Bridge Concrete I-Girders under Heat Wave[J]. Journal of Bridge Engineering, 2019, 24(08): 1-14.

[28] Tayşi N, Abid S. Temperature distributions and variations in concrete box-girder bridges: experimental and finite element parametric studies[J]. Advances in Structural Engineering, 2015, 18(04): 469-486.

[29] Zhao L, Zhou L Y, Zhang G C, et al. Experimental study of the temperature distribution in CRTS-II ballastless tracks on a high-speed railway bridge[J]. Applied Sciences, 2020, 10(06): 1980.

[30] Sheng X, Zhou T, Huang S, et al. Prediction of Vertical Temperature Gradient on Concrete Box-girder Considering Different Locations in China[J]. Case Studies in Construction Materials, 2022.

[31] 刘兴法. 混凝土结构的温度应力分析[M]. 人民交通出版社, 1991.

[32] 葛耀君, 翟东, 张国泉. 混凝土斜拉桥温度场的试验研究[J]. 中国公路学报, 1996(02): 76-83.

[33] 刘海弯. 基于概率统计的大跨径连续刚构桥梁温度梯度及温度效应研究[D]. 西安:长安大学, 2016.

[34] 贾琳. 太阳辐射作用下混凝土箱梁的温度分布及温度应力研究[D]. 南京: 东南大学, 2001.

[35] 叶见曙, 贾琳, 钱培舒. 混凝土箱梁温度分布观测与研究[J]. 东南大学学报(自然科学版), 2002(05): 788-793.

[36] 郭棋武, 方志, 裴炳志, 等. 混凝土斜拉桥的温度效应分析[J]. 中国公路学报, 2002(02): 51-54.

[37] 张建荣, 周元强, 林建萍, 等. 太阳辐射对混凝土箱梁温度效应的影响[J]. 同济大学学报(自然科学版), 2008, 36(11): 1479-1484.

[38] 聂利英, 刘明坡, 朱倩, 等. 基于实测的混凝土箱梁腹板横向温度效应研究[J]. 世界桥梁, 2016, 44(03): 53-57.

[39] 庞振宇, 徐秀丽, 邢世玲, 等. 城市混凝土曲线梁桥温度场及温度效应分析[J]. 中外公路, 2016, 36(01): 124-130.

[40] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(03): 73-84.

[41] He J, Xin H, Wang Y, et al. Effect of temperature loading on the performance of a prestressed concrete bridge in Oklahoma:Probabilistic modelling[C]. Structures. Elsevier, 2021, 34: 1429-1442.

[42] Abid S R, N Tayi, Zaka M. Temperature Records in Concrete Box-Girder Segment Subjected to Solar Radiation and Air Temperature Changes[J]. IOP Conference Series: Materials Science and, Engineering, 2020, 870(01).

[43] 刘永健, 刘江, 张宁. 桥梁结构日照温度作用研究综述[J]. 土木工程学报, 2019, 52(05): 59-78.

[44] 杨敏, 青宇, 王文飞, 等. 强日照地区混凝土多主梁T梁桥横向梯度温度效应分析[J]. 昆明理工大学学报(自然科学版), 2020, 45(03): 102-110.

[45] 肖林, 蔡俊宇, 杨妍秋, 等. 桥梁温度作用与效应2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 167-174.

[46] Zhu J, Meng Q. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22(06).

[47] 杨璐, 王志坤, 于永彬. 预应力混凝土箱型梁温度效应下耦合应力分析[J]. 混凝土, 2015, 00(10): 139-143.

[48] 黄全成, 滕念管. 高速磁浮大型箱梁日照温度效应分析[J]. 铁道标准设计, 2020, 64(09): 75-81.

[49] Hossain T, Segura S, Okeil A M. Structural effects of temperature gradient on a continuous prestressed concrete girder bridge: analysis and field measurements[J]. Structure & Infrastructure Engineering, 2020(06): 1-12.

[50] Gutsch A, Rostásy F S.14 YOUNG CONCRETE UNDER HIGH TENSILE STRESSES-CREEP, RELAXATION AND CRACKING[C]. Thermal Cracking in Concrete at Early Ages: Proceedings of the International RILEM Symposium. CRC Press, 1994, 25: 111.

[51] Tu A D, Hoang T T, Bui T T, et al. Evaluation of heat of hydration, temperature evolution and thermal cracking risk in high-strength concrete at early ages[J]. Case Studies in Thermal Engineering, 2020, 21.

[52] Barr P J, Stanton J F, Eberhard M O. Effects of temperature variations on precast, prestressed concrete bridge girders[J]. Journal of Bridge Engineering, 2005, 10(02): 186-194.

[53] 陈雄, 张建东, 刘朵, 等. 预制拼装混凝土节段梁的弓形变形研究[J]. 中外公路, 2018, 38(02): 98-102.

[54] 魏明, 刘钊, 贺志启. 水化热对短线法预制箱梁节段变形的影响分析[J]. 山东交通科技, 2017(02): 6-9.

[55] 陈扬, 刘钊. 节段预制箱梁后浇横隔墙的水化热效应分析[J]. 建筑科学与工程学报, 2012, 29(01): 110-114.

[56] 施鑫磊, 高德宝, 李子奇, 等. 温度作用下混凝土拼接桥梁拼接缝界面剪应力研究[J]. 中国安全生产科学技术, 2021, 17(11): 158-164.

[57] 张怡雪, 毛江鸿, 方明山, 等. 考虑存梁期影响的节段悬拼混凝土桥徐变变形分析[J]. 桥梁建设, 2021, 51(04): 73-80.

[58] 徐丰. 混凝土箱梁桥温度效应关键因素研究[D]. 武汉: 华中科技大学, 2009.

[59] Reis A J, Pedro J J O. Bridge design: concepts and analysis[M]. John Wiley & Sons, 2019.

[60] Abood A A. A comprehensive solar angles simulation and calculation using Matlab [J]. Energy and Environment, 2015, 06(04): 367-376.

[61] Ineichen P. Validation of models that estimate the clear sky global and beam solar irradiance[J]. Solar Energy, 2016, 132: 332-344.

[62] Engerer N A, Mills F P. Validating nine clear sky radiation models in Australia[J]. Solar Energy, 2015, 120: 9-24.

[63] Rigollier C, Bauer O, Wald L. On the clear sky model of the ESRA European Solar Radiation Atlas with respect to the heliosat method. Solar Energy, 2000, 68(01): 33-48.

[64] Chenni R, Matagne E, Khennane M. Study of Solar Radiation in View of Photovoltaic Systems Optimization[J]. Smart Grid Renewable Energy, 2011, 02(04): 367-374.

[65] 樊健生, 刘诚, 刘宇飞. 钢-混凝土组合梁桥温度场与温度效应研究综述[J]. 中国公路学报, 2020, 33(04): 1-13.

[66] Elbadry M M, Ghali A. Temperature Variations in Concrete Bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2355-2374.

[67] Gu B, Zhou F Y, Gao W, et al. Temperature Gradient and Its Effect on Long-Span Prestressed Concrete Box Girder Bridge[J]. Advances in Civil Engineering, 2020, (09): 1-18.

[68] 刘芳. 重复荷载作用下节段预制拼装混凝土梁键齿接缝力学行为研究[D]. 成都: 西南交通大学, 2020.

[69] Rombach G A, Abendeh R. Temperature induced deformations in match-cast segments[D]. IABSE REPORTS, 2004.

[70] 赵建锋, 刘雪飞, 孟庆一, 等. 外置可更换耗能装置的节段拼装CFST桥墩抗震性能分析[J]. 西南交通大学学报, 2022, 04(06): 1-9.

[71] 徐有邻, 王晓锋, 刘刚, 等. 混凝土结构理论发展及规范修订的建议[J]. 建筑结构学报, 2007, 28(01): 1-6.

中图分类号:

 U448.21    

开放日期:

 2024-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式