- 无标题文档
查看论文信息

论文中文题名:

 二氧化碳抑制不粘煤氧化自燃动力学 特征与微观机理研究    

姓名:

 杜雨桐    

学号:

 21220226159    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 煤火灾害防控    

第一导师姓名:

 王凯    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-18    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on the Inhibition of Spontaneous Combustion Kinetic Characteristics and Microscopic Mechanisms of Non-caking Coal by CO2    

论文中文关键词:

 煤自燃 ; 二氧化碳 ; 动力学特征 ; 热效应 ; 活性基团    

论文外文关键词:

 Spontaneous combustion of coal ; carbon dioxide ; kinetic characteristics ; thermal effects ; active functional groups    

论文中文摘要:

不粘煤广泛分布于我国西部地区,其变质程度较低,在开采过程中自燃危险性较高。本文采用理论分析和实验研究相结合的方法,选取陕北矿区不粘煤为研究对象,开展了二氧化碳对其氧化自燃过程中动力学特征及官能团活性的抑制作用等方面的研究,研究结果对煤自燃灾害防治工作具有积极意义。

利用TG及DSC方法进行二氧化碳抑制条件下不粘煤氧化自燃过程表征及动力学特征研究,采用两系列混合气体(二氧化碳-空气;二氧化碳-氮气-氧气)进行三种不同升温速率的热分析实验,以此为基础进行动力学参数计算。研究结果表明,二氧化碳-空气气氛下,二氧化碳浓度的提高使得TG-DTG曲线向高温区域偏移、特征温度点升高、活性氧化阶段氧化反应量降低,增长吸热与放热阶段历程,起到延缓煤自燃进程的作用。二氧化碳-氮气-氧气气氛下,消除氧浓度降低的影响因素,发现二氧化碳气体能有效降低解吸附量、延后特征温度点,但对临界温度T2在浓度达到60%后抑制效果下降,解吸附阶段内吸热量随二氧化碳浓度上升逐级递增,但在浓度达到60%后增量微弱,活性氧化阶段内的特征温度点与二氧化碳浓度呈正比,放热量随二氧化碳浓度增大持续降低。

基于FWO和KAS等转化率法,得出二氧化碳对空气的分压越大,样品在解吸附和活性氧化阶段的活化能均越大。规避氧浓度降低带来的影响,发现解吸附阶段内二氧化碳气体对活化能的提高效果在60%浓度达到峰值;活性氧化阶段内活化能与二氧化碳浓度呈正相关。研究结果表明,60%是二氧化碳气体抑制煤样解吸附阶段氧化自燃的临界浓度值,活性氧化阶段的抑制效果随二氧化碳浓度增大而增强。

通过傅里叶原位红外光谱实验对混合气体下煤氧化自燃过程中官能团变化进行研究,首先结合TG实验数据分析了官能团随特征温度的主要变化趋势,随后对不同气氛下煤分子中官能团变化趋势进行对比,发现不同二氧化碳浓度下,官能团活性具有显著差异性。二氧化碳-空气气氛下,二氧化碳浓度为60%时,羟基、脂肪烃、芳香烃、含氧官能团在解吸附阶段的反应活性最低,活性氧化阶段内则是二氧化碳浓度越大反应强度越弱;二氧化碳-氮气-氧气气氛下的实验数据进一步表明,氧浓度不变时,60%二氧化碳在低温阶段的抑制作用最显著,80%二氧化碳则是在活性氧化阶段对反应强度表现出突出的抑制作用。

论文外文摘要:

Non-stick coal is widely distributed in the western regions of China, and it has a low degree of metamorphism, which makes it highly susceptible to spontaneous combustion during mining. This paper uses a combination of theoretical analysis and experimental research, selecting non-stick coal from the Shaanxi North mining area as the research object. The study explores the effects of carbon dioxide on the kinetic characteristics and functional group activity during the oxidation and spontaneous combustion process of coal, which has significant implications for the prevention and control of coal spontaneous combustion disasters.

Utilizing thermogravimetric (TG) and differential scanning calorimetry (DSC) methods, this research characterizes the oxidation and spontaneous combustion process of non-stick coal under carbon dioxide suppression conditions and investigates its kinetic features using two series of gas mixtures (carbon dioxide-air; carbon dioxide-nitrogen-oxygen) at three different heating rates to calculate kinetic parameters. The results show that under a carbon dioxide-air atmosphere, increasing carbon dioxide concentration shifts the TG-DTG curves to higher temperature regions, raises characteristic temperature points, and decreases the amount of oxidation reactions in the active oxidation stage, thereby extending the endothermic and exothermic stages and delaying the coal's spontaneous combustion process. Under a carbon dioxide-nitrogen-oxygen atmosphere, eliminating the effects of reduced oxygen concentration, carbon dioxide effectively lowers the desorption amount and delays characteristic temperature points, but its inhibition effect on the critical temperature T2 decreases after reaching a concentration of 60%. The desorption stage's endothermic capacity increases with rising carbon dioxide concentration, but the increment becomes negligible after reaching 60%, and the characteristic temperature points in the active oxidation stage are directly proportional to the carbon dioxide concentration, with the heat release continuously decreasing as the carbon dioxide concentration increases.

Based on conversion rate methods like the Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS), it is found that the greater the partial pressure of carbon dioxide in the air, the higher the activation energy during the desorption and active oxidation stages. Avoiding the impact of reduced oxygen concentration, it is found that the enhancing effect of carbon dioxide on activation energy reaches a peak at a 60% concentration during the desorption stage; in the active oxidation stage, the activation energy is directly proportional to the carbon dioxide concentration. The results indicate that 60% is the critical concentration of carbon dioxide for inhibiting coal oxidation and spontaneous combustion during the desorption stage, and the inhibition effect on the active oxidation stage increases with the carbon dioxide concentration.

In-situ Fourier-transform infrared spectroscopy experiments on the coal oxidation and spontaneous combustion process under mixed gas conditions first analyze the main trends in functional group changes according to TG data. Subsequent comparisons of functional group trends in coal molecules under different atmospheres reveal significant differences in functional group activity at different carbon dioxide concentrations. Under a carbon dioxide-air atmosphere, when the carbon dioxide concentration is 60%, the reactivity of hydroxyl, aliphatic hydrocarbon, aromatic hydrocarbon, and oxygen-containing functional groups is the lowest during the desorption stage, and the reaction intensity weakens as the carbon dioxide concentration increases during the active oxidation stage. Further experimental data under a carbon dioxide-nitrogen-oxygen atmosphere show that at a constant oxygen concentration, 60% carbon dioxide has the most significant inhibitory effect at low temperatures, while 80% carbon dioxide exhibits a pronounced inhibitory effect on reaction intensity during the active oxidation stage.

参考文献:

[1] 邓军,李鑫,王凯,等. 矿井火灾智能监测预警技术研究进展及展望[J]. 煤炭科学技术. 2024, 1-20 .

[2] 张和平. 双碳背景下新能源技术发展现状及展望[J]. 现代化工. 2022, 42(08): 7-9.

[3] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报. 2023, 48(07): 2599-2612.

[4] 潘荣锟,胡代民,贾海林,等. 深部开采高温热液侵蚀煤自燃特性研究[J]. 煤炭学报. 2024.

[5] 中华人民共和国2023年国民经济和社会发展统计公报~([1])[N]. 人民日报, (31).

[6] 秦波涛,蒋文婕,史全林,等. 矿井粉煤灰基防灭火技术研究进展[J]. 煤炭科学技术. 2023, 51(01): 329-342.

[7] 郭军,王凯旋,金永飞,等. 煤自燃进程精细划分方法及其智能监测预警——煤火精准防控技术变革[J]. 煤炭学报. 2023, 48(S1): 111-121.

[8] 张迎新,杨康,李日军,等. 新型矿用灭火材料-凝胶干水粉体的制备及灭火实验研究[J]. 材料导报. 2024, 1-18.

[9] 赵光明,王艳芬,艾洁,等. 矿用水泥基注浆材料的发展及展望[J]. 中国矿业大学学报. 2024, 53(01): 1-22.

[10] 葛海军,李彩云,冯志忠. 煤矿改性双组份聚脲注浆堵水材料研究与应用[J]. 煤炭科学技术. 2022, 50(S2): 218-222.

[11] Deng J, Xiao Y, Lu J, et al. Application of composite fly ash gel to extinguish outcrop coal fires in China[J]. Natural Hazards. 2015, 79: 881-898.

[12] Liu Q, Nie W, Hua Y, et al. A study on the dust control effect of the dust extraction system in TBM construction tunnels based on CFD computer simulation technology[J]. Advanced Powder Technology. 2019, 30(10): 2059-2075.

[13] Xu C, Nie W, Liu Z, et al. Multi-factor numerical simulation study on spray dust suppression device in coal mining process[J]. Energy. 2019, 182: 544-558.

[14] 邓军,白祖锦,肖旸,等. 煤自燃灾害防治技术现状与挑战[J]. 煤矿安全. 2020, 51(10): 118-125.

[15] 牛晨凯,夏文成. 低温热解对低阶煤表面疏水性的影响机制及半焦可浮性分析[J]. 煤炭学报. 2018, 43(05): 1423-1431.

[16] 王双明,刘浪,赵玉娇,等. “双碳”目标下赋煤区新能源开发——未来煤矿转型升级新路径[J]. 煤炭科学技术. 2023, 51(01): 59-79.

[17] 马砺,何铖茂,魏泽,等. 离子液体对不粘煤煤粉自燃特性的影响[J]. 工程科学学报. 2022, 44(12): 2008-2016.

[18] 梁运涛,侯贤军,罗海珠,等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术. 2016, 44(06): 1-6.

[19] 王振平,马砺,文虎,等. CO2与N2抑制煤炭氧化自燃对比实验研究[J]. 煤矿安全. 2010, 41(02): 14-17.

[20] 秦波涛,王德明. 矿井防灭火技术现状及研究进展[J]. 中国安全科学学报. 2007(12): 80-85.

[21] 朱建芳,耿瑶,李东明,等. 煤矿CO2防灭火技术研究进展[J]. 煤矿安全. 2021, 52(03): 197-203.

[22] Wang X, Wang L, Li W, et al. Experimental and simulation study of inert gas mixture inhibiting coal spontaneous combustion[J]. Scientific reports. 2024, 14(1): 4305.

[23] 孙可明,罗国年,王传绳. 采空区注超临界CO2防灭火试验研究[J]. 中国安全生产科学技术. 2019, 15(05): 117-122.

[24] 李宗翔,刘宇,王政,等. 九道岭矿采空区注CO2防灭火技术数值模拟研究[J]. 煤炭科学技术. 2018, 46(09): 153-157.

[25] 张长山,张辛亥. 罐装液态二氧化碳直接防灭火技术[J]. 煤矿安全. 2016, 47(09): 82-84.

[26] 阮增定. 液态CO2灭火技术在高瓦斯矿井火灾的治理研究与应用[D]. 太原理工大学, 2013.

[27] Tan B, Li X, Zhang X, et al. Research on initial prevention of spontaneous combustion in coal bunkers based on fire-extinguishing and fireproof inerting[J]. ACS omega. 2022, 7(4): 3359-3368.

[28] Liu H, Tang Y, Ma D. Experimental investigation of spontaneous combustion of anthracite controlled by the chemical deposition of two-phase (hydroxide and CO2) aerosols[J]. Fuel. 2022, 319: 123765.

[29] 王国芝,姜奎,王怡,等. 二氧化碳防灭火技术在采空区发火治理中的应用研究[J]. 金属矿山. 2021(10): 214-220.

[30] 李珍宝,王凤双,魏高明,等. 液态CO2溶浸无烟煤的氧化动力学特征[J]. 煤炭学报. 2020, 45(S1): 330-335.

[31] 杨琛. 液态CO2抑制煤自燃技术研究及应用[D]. 西安科技大学, 2018.

[32] Hu J, Yao H, Wang H, et al. Experimental Study on Inhibition of Spontaneous Combustion of Coal with Different Metamorphic Degree by CO2[J]. Solid Fuel Chemistry. 2023, 57(7): 494-501.

[33] 王伟峰,杭天,梁成,等. 矿井地面固定式液态CO2防灭火工艺流程模拟[J]. 西安科技大学学报. 2013, 33(06): 640-645.

[34] 王建国,许娟娟,张超鹏. 采空区回风侧埋管压注液态CO2的位置与流量参数优化[J]. 矿业研究与开发. 2023, 43(11): 68-71.

[35] 景巨栋,康新荣,李宁,等. 双巷直注液态二氧化碳防灭火技术[J]. 能源与环保. 2019, 41(12): 9-12.

[36] 景巨栋. 羊场湾煤矿液态二氧化碳防灭火技术研究[D]. 中国矿业大学, 2019.

[37] 王刚. 液态CO2灌注技术在矿井防灭火中的应用与分析[J]. 煤炭科学技术. 2017, 45(S1): 89-93.

[38] Balusu R, Humpries P, Harrington P, et al. Optimum inertisation strategies[J]. SAFE PRODUCTION SYSTEMS IN MONKLAND MINE Rowan Johnston General Manager Site Senior Executive. Clive Hausmann Human Resources Co-ordinator 1 Improving the SAFETY AND HEALTH PERFORMANCE OF COPPABELLA MINE Shane Stephan B. Bus MBA (AGSM) Australian Premium Coals Pty. Ltd. 7 An estimation of the exposure of Queensland. 2002: 7.

[39] 邵昊,蒋曙光,吴征艳,等. 二氧化碳和氮气对煤自燃性能影响的对比试验研究[J]. 煤炭学报. 2014, 39(11): 2244-2249.

[40] 邵昊,蒋曙光,吴征艳,等. 采空区注二氧化碳防灭火的数值模拟研究[J]. 采矿与安全工程学报. 2013, 30(01): 154-158.

[41] 邵昊,蒋曙光,王兰云,等. 尾巷对采空区煤自燃影响的数值模拟研究[J]. 采矿与安全工程学报. 2011, 28(01): 45-50.

[42] 于志金. 松散煤体内液态CO2相变传热与传质过程研究[D]. 西安科技大学, 2017.

[43] 马砺,范新丽,邢园园,等. 液态CO2管道输送注入端相变特性试验研究[J]. 安全与环境学报. 2022, 22(02): 763-769.

[44] Feng G, Wu Y, Zhang C, et al. Changes on the low-temperature oxidation characteristics of coal after CO2 adsorption: A case study[J]. Journal of Loss Prevention in the Process Industries. 2017, 49: 536-544.

[45] Yuan L, Smith A C. CFD modelling of nitrogen injection in a longwall gob area[J]. International journal of mining and mineral engineering. 2014, 5(2): 164-180.

[46] Liu M, Shi G, Guo Z, et al. 3-D simulation of gases transport under condition of inert gas injection into goaf[J]. Heat and Mass Transfer. 2016, 52(12): 2723-2734.

[47] Shi G, Ding P, Guo Z, et al. Modeling temperature distribution upon liquid-nitrogen injection into a self heating coal mine goaf[J]. Process Safety and Environmental Protection. 2019, 126: 278-286.

[48] Zhang J, Zhang H, Ren T, et al. Proactive inertisation in longwall goaf for coal spontaneous combustion control-A CFD approach[J]. Safety science. 2019, 113: 445-460.

[49] Battistutta E, Van Hemert P, Lutynski M, et al. Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal[J]. International Journal of Coal Geology. 2010, 84(1): 39-48.

[50] 于志金,徐勇,谷雨,等. 30℃下煤对不同比例CO2-N2混合气体吸附量差异性研究[J]. 中国安全生产科学技术. 2023, 19(05): 80-85.

[51] Zhu H, Wang W, Huo Y, et al. Molecular simulation study on adsorption and diffusion behaviors of CO2/N2 in lignite[J]. ACS omega. 2020, 5(45): 29416-29426.

[52] 杨涛. CO2对煤炭氧化自燃抑制作用的影响研究[J]. 煤炭与化工. 2015, 38(02): 53-56.

[53] Wang K, Du Y, Sun W, et al. Coal Secondary Oxidation Thermodynamic Behaviors Affected by Pre-Heating at Different Oxygen Concentrations[J]. Combustion Science and Technology. 2023: 1-13.

[54] Lei B, He B, Xiao B, et al. Comparative study of single inert gas in confined space inhibiting open flame coal combustion[J]. Fuel. 2020, 265: 116976.

[55] Liu Z, Wen H, Yu Z, et al. Control of spontaneous combustion of coal in goaf at high geotemperatureby injecting liquid carbon dioxide: inertand cooling characteristics of coal[C]. IOP Publishing, 2018.

[56] 马砺,邓军,王伟峰,等. CO2对煤低温氧化反应过程的影响实验研究[J]. 西安科技大学学报. 2014, 34(04): 379-383.

[57] Zhang Y, Xu J, Wang D. Experimental study on the inhibition effects of nitrogen and carbon dioxide on coal spontaneous combustion[J]. Energies. 2020, 13(20): 5256.

[58] 刘少南. CO2浓度对煤低温氧化影响的试验研究[J]. 煤炭科学技术. 2014, 42(S1): 149-151.

[59] Ma L, Yu W, Ren L, et al. Micro-characteristics of low-temperature coal oxidation in CO2/O2 and N2/O2 atmospheres[J]. Fuel. 2019, 246: 259-267.

[60] Zhou B, Yang S, Yang W, et al. Variation characteristics of active groups and macroscopic gas products during low-temperature oxidation of coal under the action of inert gases N2 and CO2[J]. Fuel. 2022, 307: 121893.

[61] Ren L, Li Q, Deng J, et al. Inhibiting effect of CO2 on the oxidative combustion thermodynamics of coal[J]. RSC advances. 2019, 9(70): 41126-41134.

[62] Deng J, Ren L, Ma L, et al. Low-temperature oxidation and reactivity of coal in O2/N2 and O2/CO2 atmospheres, a case of carboniferous–permian coal in Shaanxi, China[J]. Environmental earth sciences. 2019, 78: 1-12.

[63] 秦晓阳. 基于特征温度点CO2对煤的氧化微观结构影响的研究[D]. 西安科技大学, 2018.

[64] 张倩倩. N2/CO2混合气体抑制石港无烟煤自燃的实验研究[D]. 辽宁工程技术大学, 2023.

[65] Ni Z, Song Z, Bi H, et al. The effect of cellulose on the combustion characteristics of coal slime: TG-FTIR, principal component analysis, and 2D-COS[J]. Fuel. 2023, 333: 126310.

[66] Jin Y, Li D, Liu Y, et al. Study on Pyrolysis and Oxidation Characteristics of Coal Gangue Based on TGA-DSC[J]. ACS omega. 2024.

[67] Yan H, Nie B, Kong F, et al. Experimental investigation of coal particle size on the kinetic properties of coal oxidation and spontaneous combustion limit parameters[J]. Energy. 2023, 270: 126890.

[68] 贾海林,崔博,焦振营,等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报. 2022, 47(10): 3704-3714.

[69] 田富超,贾东旭,陈明义,等. 采空区复合灾害环境下含瓦斯煤自燃特征研究进展[J]. 煤炭学报. 2023.

[70] 张嬿妮,舒盼,刘春辉,等. 乙二胺四乙酸微胶囊阻化煤自燃性能研究[J]. 煤炭科学技术. 2022, 50(08): 108-117.

[71] Li Y, Ren X, Zhang Y, et al. Study on the thermal reaction characteristics and kinetics of coal and coal gangue coexisting spontaneous combustion[J]. Energy. 2024, 288: 129781.

[72] Zhu Z, Huang Y, Yu M, et al. Co-combustion of bituminous coal and industrious sludge under non-isothermal and isothermal conditions: Thermal behaviors, kinetic analyses, and heavy metals migration[J]. Journal of Cleaner Production. 2024, 434: 140167.

[73] 乔玲,邓存宝,张勋,等. 浸水对煤氧化活化能和热效应的影响[J]. 煤炭学报. 2018, 43(09): 2518-2524.

[74] Fan H, Wang K, Zhai X, et al. Combustion kinetics and mechanism of pre-oxidized coal with different oxygen concentrations[J]. ACS omega. 2021, 6(29): 19170-19182.

[75] 王巍. CO2/N2防治氧化煤复燃的机理及方法研究[D]. 中国矿业大学(北京), 2022.

[76] 王涌宇,邬剑明,王俊峰,等. 亚烟煤低温氧化元素迁移规律及原位红外实验[J]. 煤炭学报. 2017, 42(08): 2031-2036.

[77] 张玉涛,杨杰,李亚清,等.煤自燃特征温度与微观结构变化及关联性分析[J].煤炭科学技术,2023,51(04):80-87.

中图分类号:

 TD752.2    

开放日期:

 2024-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式