- 无标题文档
查看论文信息

论文中文题名:

 软硬互层岩体力学特性与 损伤本构模型研究    

姓名:

 赵松巍    

学号:

 19204209115    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 地下工程稳定性    

第一导师姓名:

 李金华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-05-30    

论文外文题名:

 Research on mechanical properties and damage constitutive model of soft and hard interbedded rock mass    

论文中文关键词:

 软硬互层 ; 相似材料 ; 核磁共振 ; 力学特性 ; 损伤本构模型    

论文外文关键词:

 Soft and hard interlayer ; Mass similar materials ; Nuclear magnetic resonance ; Mechanical properties ; Damage constitutive model    

论文中文摘要:

层状岩体是自然界中较为常见的岩体类型,相较于单一岩石来说,具有非均质性、各向异性等显著特点,其力学性质更为复杂。目前对于层状岩体的研究相对较少,理论尚不成熟。因此,开展软硬互层岩体的力学特性及损伤演化规律研究,对指导工程设计具有重要意义。本文主要采用室内试验与理论分析相结合的方法,利用相似材料制备软硬互层岩体,基于核磁共振技术对软硬互层岩体的孔隙结构进行分析,开展单轴压缩试验及三轴压缩试验,分析软硬互层岩体强度特征及破坏模式,基于Weibull分布统计强度理论,建立软硬互层岩体的损伤本构模型。本文的主要研究结果如下:

(1)采用水泥、石膏粉及石英砂材料,通过配比试验,制备不同力学性质的单一岩石。选取预期目标强度的配合比制备层状岩体,利用不同角度的垫块钻取不同节理倾角的标准试块。制备了两种组合形式(硬-软、硬-软-硬),五种节理倾角(0°、10°、30°、45°、60°)的层状岩体试样。采用核磁共振技术对层状岩体试样的T2谱分布、谱面积、孔隙度及孔径分布进行分析,孔隙结构主要以微小孔隙为主,试样孔隙分布较为均匀。

(2)对层状岩体试样开展单轴压缩试验,其强度规律随节理倾角0° 60°的变化呈现为先减小后增大的趋势,破坏特征由劈裂破坏转变为剪切破坏。并且在单轴压缩试验中辅以声发射技术,监测单轴压缩试验的声发射特征及试样裂隙扩展情况。对层状岩体试样开展三轴压缩试验,两层岩体强度规律随节理倾角的变化为先增大后减小,而三层岩体强度规律随节理倾角的变化为逐渐减小,受围压的影响,破坏特征主要以剪切破坏为主。通过对比两组试验,表明围压对层状岩体试样的强度及破坏特征的影响较为显著。

(3)通过引入Weibull统计强度理论建立损伤变量,并将损伤变量引入岩石本构方程中,构建统计损伤本构模型,对试验曲线的峰前阶段进行描述。通过理论曲线与试验曲线进行比较,验证了模型的合理性。通过分析节理倾角及厚度比对损伤变量的影响,揭示了节理倾角与厚度比对损伤变量影响的敏感程度,节理倾角对损伤变量的影响较大。

论文外文摘要:

Layered rock mass is a common type of rock mass in nature. Compared with single rock, it has significant characteristics such as heterogeneity and anisotropy, and its mechanical properties are more complex. At present, there are relatively few studies on layered rock mass, and the theory is still immature. Therefore, it is of great significance to study the mechanical properties and damage evolution law of soft and hard interbedded rock mass for evaluating the stability of rock mass engineering and guiding engineering design. This paper mainly adopts the method of combining laboratory test and theoretical analysis, using similar materials to prepare soft and hard interbedded rock mass, analyzes the pore structure of soft and hard interbedded rock mass based on nuclear magnetic resonance technology, and carries out uniaxial compression test and triaxial compression test. In the experiment, the strength characteristics and failure modes of the soft and hard interbedded rock mass were analyzed, and the damage constitutive model of the soft and hard interbedded rock mass was established based on the Weibull distribution statistical strength theory. The main findings of this paper are as follows:

Using cement, gypsum powder and quartz sand materials, single rocks with different mechanical properties were prepared through the ratio test. Select the mix ratio of expected target strength to prepare layered rock mass, and use different pads to drill standard test blocks with different joint inclination angles. There are two combinations of layered rock samples (hard-soft, hard-soft-hard), and each combination corresponds to five joint dip angles (0°, 10°, 30°, 45°, 60°) The T2 spectral distribution, spectral area and porosity of the layered rock samples were analyzed by nuclear magnetic resonance technology, which showed that the sample preparation effect was good, and the pore structure was mainly composed of tiny pores.

The uniaxial compression test was carried out on the layered rock samples, and the strength law with the change of the joint inclination angle was a "U"-shaped distribution that first decreased and then increased, and the failure characteristics changed from splitting failure to shearing failure. In addition, the acoustic emission technology is supplemented in the uniaxial compression test to monitor the acoustic emission characteristics of the uniaxial compression test and the crack expansion of the sample. The triaxial compression test was carried out on the layered rock mass sample. The strength law of the two-layer rock mass first increased and then decreased with the change of the joint inclination angle, while the strength law of the three-layer rock mass was gradually decreased with the change of the joint inclination angle. Due to the influence of confining pressure, the failure characteristics are mainly shear failure. By comparing the mechanical characteristics of the two groups of tests, it is shown that the confining pressure has a significant influence on the strength and failure characteristics of the layered rock samples.

The damage equation is established by introducing Weibull statistical strength theory, and the damage variable is introduced into the rock constitutive equation to construct a statistical damage constitutive model to describe the pre-peak stage of the test curve. The rationality of the model is verified by comparing the theoretical curve of the model with the experimental curve. By analyzing the effects of joint inclination and thickness ratio on damage variables, the sensitivity of joint inclination and thickness ratio to damage variables is revealed. The results show that the joint inclination has a great influence on the damage variables.

参考文献:

[1] Jaeger J C. Shear Failure of Anistropic Rocks [J]. Geological Magazine, 1960, 97(1):65.

[2] Jaeger J C. Friction of Rocks and Stability of Rock Slopes [J]. Géotechnique, 1971, 21(2):97-134.

[3] Wooster W A. Theory of elasticity of an anisotropic elastic body by S. G. Lekhnitskii [J]. Acta Cryst, 1964, 17(Pt 6):136-136.

[4] A. T, G. S L. A failure condition for layered rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1988, 25(5):299-305.

[5] 佘成学,罗继铣,张玉珍. 层状岩体的Cosserat介质理论中第二剪切模量G~c的研究 [J]. 岩土力学, 1996, (04): 62-69.

[6] 佘成学,熊文林,陈胜宏. 具有弯曲效应的层状结构岩体变形的Cosserat介质分析方法 [J]. 岩土力学, 1994, (04): 12-19.

[7] 佘成学,熊文林,陈胜宏. 层状岩体的弹粘塑性Cosserat介质理论及其工程应用 [J]. 水利学报, 1996, (04): 10-17+26.

[8] 谭学术,鲜学福. 复合岩体的三轴抗压强度 [J]. 桂林冶金地质学院学报, 1985, (04): 333-340.

[9] 谭学术,鲜学福. 复合层状岩体的变形及视在弹性模量 [J]. 河北煤炭, 1985, (01): 25-31.

[10] 刘立. 层状复合岩石损伤本构关系与断裂破坏准则及工程应用研究 [J]. 岩石力学与工程学报, 2000, (04): 407.

[11] 刘立,邱贤德,黄木坤,等. 复合岩石损伤本构方程与实验 [J]. 重庆大学学报(自然科学版), 2000, (03): 57-61.

[12] 李深圳,沙鹏,伍法权,等. 层状结构岩体变形的各向异性特征分析 [J]. 岩土力学, 2018, 39(S2): 366-373.

[13] Adhikary D P, Dyskin A V. Modelling the deformation of underground excavations in layered rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3-4):714-714.

[14] Vlasov A N, Merzlyakov V P, Ukhov S B. Determination of Deformation and Strength Properties of Layered Rock by Asymptotic Averaging [J]. Soil Mechanics and Foundation Engineering, 2003, 40(6):197-205.

[15] 袁小平,刘红岩,王志乔. 基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究 [J]. 岩土力学, 2012, 33(04): 1103-1108.

[16] 阳友奎,蒋为民. 复合岩石的破坏准则 [J]. 重庆大学学报(自然科学版), 1990, (06): 19-25.

[17] 赵平劳. 层状结构岩石抗剪强度各向异性试验研究 [J]. 兰州大学学报, 1990, (04): 135-139.

[18] 赵平劳. 层状岩石抗压强度围压效应各向异性研究 [J]. 兰州大学学报, 1993, (01): 105-109.

[19] 赵平劳,姚增. 层状结构岩体的复合材料本构模型 [J]. 兰州大学学报, 1990, (02): 114-118.

[20] 张慧梅,雷利娜,杨更社. 等围压条件下岩石本构模型及损伤特性 [J]. 中国矿业大学学报, 2015, 44(01): 59-63.

[21] 张慧梅,杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究 [J]. 岩石力学与工程学报, 2010, 29(03): 471-476.

[22] 康亚明,刘长武,贾延,等. 岩石的统计损伤本构模型及临界损伤度研究 [J]. 四川大学学报(工程科学版), 2009, 41(04): 42-47.

[23] 胡亚元,王超. 多节理岩体的非线性耦合损伤本构模型 [J]. 煤炭学报, 2019, 44(S1): 52-60.

[24] 曹文贵,赵明华,刘成学. 岩石损伤统计强度理论研究 [J]. 岩土工程学报, 2004, (06): 820-823.

[25] 徐磊,任青文. 岩体结构面新型本构模型研究 [J]. 岩土力学, 2011, 32(S1): 217-224.

[26] 刘红岩,吕淑然,张力民. 基于组合模型法的贯通节理岩体动态损伤本构模型 [J]. 岩土工程学报, 2014, 36(10): 1814-1821.

[27] 汪杰,李杨,宋卫东,等. 不同倾角节理岩体损伤演化特征分析 [J]. 哈尔滨工业大学学报, 2019, 51(08): 143-150.

[28] 王东,刘长武,王丁,等. 基于破坏类型的本溪灰岩本构关系研究 [J]. 四川大学学报(工程科学版), 2013, 45(02): 62-67.

[29] 李心睿,徐清,谢红强,等. 静动载耦合作用下裂隙岩石损伤本构及演化特征 [J]. 岩石力学与工程学报, 2015, 34(S1): 3029-3036.

[30] 张超, 雷勇, 曹文贵. 考虑软硬物质双变形特征的脆性岩石损伤本构模型研究 [J]. 应用力学学报, 2020, 37(03): 1166-1171+1397-1398.

[31] 高玮,胡承杰,贺天阳,等. 基于统计强度理论的破裂岩体本构模型研究 [J]. 岩土力学, 2020, 41(07): 2179-2188.

[32] 张桂民,李银平,施锡林,等. 一种交互层状岩体模型材料制备方法及初步试验研究 [J]. 岩土力学, 2011, 32(S2): 284-289.

[33] 裴建良,刘建锋,徐进. 层状大理岩卸荷力学特性试验研究 [J]. 岩石力学与工程学报, 2009, 28(12): 2496-2502.

[34] 程建龙,杨圣奇,杜立坤,等. 复合地层中双护盾TBM与围岩相互作用机制三维数值模拟研究 [J]. 岩石力学与工程学报, 2016, 35(03): 511-523.

[35] 程建龙,杨圣奇,殷鹏飞,等. 复合岩层变形及强度特性卸围压试验研究 [J]. 中国矿业大学学报, 2018, 47(06): 1233-1242.

[36] 徐鹏,杨圣奇. 复合岩层三轴压缩蠕变力学特性数值模拟研究 [J]. 采矿与安全工程学报, 2018, 35(01): 179-187.

[37] 余永强,褚怀保,杨小林,等. 层状复合岩石双轴压缩的相似模拟实验研究 [J]. 矿业工程, 2011, 9(03): 23-26.

[38] 余永强,胡明研,杨小林,等. 层状复合岩体相似模拟的试验研究 [J]. 金属矿山, 2009, (01): 21-24+91.

[39] 刘学伟,刘泉声,刘建平,等. 复杂应力条件下裂隙网络扩展机制试验研究 [J]. 岩石力学与工程学报, 2016, 35(S2): 3662-3670.

[40] 黄兴,刘泉声,康永水,等. 砂质泥岩三轴卸荷蠕变试验研究 [J]. 岩石力学与工程学报, 2016, 35(S1): 2653-2662.

[41] 邓华锋,王伟,李建林,等. 层状砂岩各向异性力学特性试验研究 [J]. 岩石力学与工程学报, 2018, 37(01): 112-120.

[42] 黄春,左双英,王嵩,等. 层状各向异性岩体的室内单轴压缩试验分析 [J]. 长江科学院院报, 2016, 33(05): 58-62.

[43] 刘晓云,叶义成,王其虎,等. 单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究 [J]. 岩土力学, 2017, 38(S2): 183-190.

[44] 史小萌,刘保国,肖杰. 水泥和石膏胶结相似材料配比的确定方法 [J]. 岩土力学, 2015, 36(05): 1357-1362.

[45] 林新. 复合岩石在三向受压状态下的应力—应变特性研究 [J]. 中国矿业学院学报, 1987, (02): 52-58.

[46] 左建平,谢和平,吴爱民,等. 深部煤岩单体及组合体的破坏机制与力学特性研究 [J]. 岩石力学与工程学报, 2011, 30(01): 84-92.

[47] 申建军,董瑞,任柏惠,等. 基于正交试验的岩层相似材料配比研究 [J]. 煤炭技术, 2020, 39(07): 148-151.

[48] 姜永东,谢英亮,沈平,等. 砂岩力学特性与本构方程 [J]. 中国煤炭, 2020, 46(10): 87-91.

[49] 马秋峰,秦跃平,周天白,等. 多孔隙岩石加卸载力学特性及本构模型研究 [J]. 岩土力学, 2019, 40(07): 2673-2685.

[50] Wasantha P L P, Ranjith P G, Shao S S. Energy monitoring and analysis during deformation of bedded-sandstone: Use of acoustic emission [J]. Ultrasonics, 2014, 54(1):217-226.

[51] Lu J, Huang G, Gao H, et al. Mechanical Properties of Layered Composite Coal–Rock Subjected to True Triaxial Stress [J]. Rock Mechanics and Rock Engineering, 2020, 53(9).

[52] Hu J, Wen G, Lin Q, et al. Mechanical properties and crack evolution of double-layer composite rock-like specimens with two parallel fissures under uniaxial compression [J]. Theoretical and Applied Fracture Mechanics, 2020, 108:102610-.

[53] Cheng J-L, Yang S-Q, Chen K, et al. Uniaxial experimental study of the acoustic emission and deformation behavior of composite rock based on 3D digital image correlation (DIC) [J]. Acta Mechanica Sinica, 2017, 33(6):999-1021.

[54] 赵星光,李鹏飞,马利科,等. 循环加、卸载条件下北山深部花岗岩损伤与扩容特性 [J]. 岩石力学与工程学报, 2014, 33(09): 1740-1748.

[55] 朱建明,徐秉业,岑章志. 岩石类材料峰后滑移剪膨变形特征研究 [J]. 力学与实践, 2001, (05): 19-22.

[56] Cho J-W, Kim H, Jeon S, et al. Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50:158-169.

[57] Tien Y M, Kuo M C, Juang C H. An experimental investigation of the failure mechanism of simulated transversely isotropic rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8):1163-1181.

[58] 左保成,陈从新,刘才华,等. 相似材料试验研究 [J]. 岩土力学, 2004, (11): 1805-1808.

[59] 殷鹏飞. 层状复合岩石试样力学特性单轴压缩试验与颗粒流模拟研究 [D]. 徐州:中国矿业大学, 2016.

[60] 邵光钦. 层状岩体变形破坏及裂纹扩展试验与数值模拟 [D]. 成都:成都理工大学, 2019.

[61] 左建平,宋洪强. 煤岩组合体的能量演化规律及差能失稳模型研究 [J]. 煤炭学报: 1-16.

[62] 汪铁楠,翟越,高欢,等. 静力压缩下煤岩组合体的裂前宏观弹性模型 [J]. 岩土力学, 2022, 43(04): 1031-1040.

[63] 杨科,刘文杰,马衍坤,等. 煤岩组合体冲击动力学特征试验研究 [J]. 煤炭学报: 1-16.

[64] 徐金海,张晓悟,刘智兵,等. 循环加卸载条件下煤岩组合体力学响应及能量演化规律 [J]. 长江科学院院报, 2022, 39(05): 89-94.

[65] 余伟健,潘豹,李可,等. 岩-煤-岩组合体力学特性及裂隙演化规律 [J]. 煤炭学报, 2022, 47(03): 1155-1167.

[66] 陈光波,张俊文,李谭,等. 水岩作用下煤岩组合体力学特性损伤劣化时效性研究 [J]. 煤炭学报: 1-13.

[67] 杨磊,高富强,王晓卿,等. 煤岩组合体的能量演化规律与破坏机制 [J]. 煤炭学报, 2019, 44(12): 3894-3902.

[68] 李成杰,徐颖,叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析 [J]. 岩土工程学报, 2020, 42(05): 981-988.

[69] 黄锋,周洋,李天勇,等. 软硬互层岩体力学特性及破坏形态的室内试验研究 [J]. 煤炭学报, 2020, 45(S1): 230-238.

[70] 李昂,邵国建,孙阳,等. 软硬互层状岩体局部区域的细观非均匀特性研究 [J]. 岩石力学与工程学报, 2017, 36(S2): 3852-3863.

[71] 吴渤,吴立,罗金泽,等. 软硬互层岩体模型单轴压缩破损规律研究 [J]. 水电能源科学, 2015, 33(04): 123-126+138.

[72] 郭志华,盛谦,梅松华,等. 层状复合岩体宏观力学参数的计算机模拟试验 [J]. 岩石力学与工程学报, 2004, (S2): 4902-4906.

[73] 韩昌瑞,张波,白世伟,等. 深埋隧道层状岩体弹塑性本构模型研究 [J]. 岩土力学, 2008, (09): 2404-2408+2414.

[74] 黄彦华,杨圣奇,刘相如. 类岩石材料力学特性的试验及数值模拟研究 [J]. 实验力学, 2014, 29(02): 239-249.

[75] 王其虎,王杰,叶义成,等. 复合岩样中单裂隙几何特征对其破坏模式及强度的影响 [J]. 金属矿山, 2020, (02): 134-140.

[76] 代树红,王召,马胜利,等. 裂纹在层状岩石中扩展特征的研究 [J]. 煤炭学报, 2014, 39(02): 315-321.

[77] Stahl M, Konietzky H. Discrete element simulation of ballast and gravel under special consideration of grain-shape, grain-size and relative density [J]. Granular Matter, 2011, 13(4):417-428.

[78] Camones L A M, Vargas E d A, Figueiredo R P d, et al. Application of the discrete element method for modeling of rock crack propagation and coalescence in the step-path failure mechanism [J]. Engineering Geology, 2013, 153:80-94.

[79] Li N, Ma Z, Gong P, et al. Simulation Research on the Load Transfer Mechanism of Anchoring System in Soft and Hard Composite Rock Strata under Tensile Loading Conditions [J]. Advances in Materials Science and Engineering, 2020, 2020:1-20.

[80] Yin Y C, Tan Y L, Lu Y W, et al. Numerical Research on Energy Evolution and Burst Behavior of Unloading Coal–Rock Composite Structures [J]. Geotechnical & Geological Engineering, 2018: 1-9.

[81] Chang X, Shan Y, Zhang Z, et al. Behavior of propagating fracture at bedding interface in layered rocks [J]. Engineering Geology, 2015, 197:33-41.

[82] Tan X, Konietzky H, Frühwirt T, et al. Brazilian Tests on Transversely Isotropic Rocks: Laboratory Testing and Numerical Simulations [J]. Rock Mechanics and Rock Engineering, 2015, 48(4):1341-1351.

[83] 姚艳斌,刘大锰. 基于核磁共振弛豫谱的煤储层岩石物理与流体表征 [J]. 煤炭科学技术, 2016, 44(06): 14-22.

[84] 彭俊,荣冠,蔡明,等. 基于一种脆性指标确定岩石残余强度 [J]. 岩土力学, 2015, 36(02): 403-408.

[85] 陈竑然,秦四清,薛雷,等. 岩石脆性破坏表征与Weibull分布适用范围 [J]. 地球物理学进展, 2017, 32(05): 2200-2206.

中图分类号:

 TU458    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式