- 无标题文档
查看论文信息

论文中文题名:

 沟谷区分层开采覆岩移动及矿压显现规律研究    

姓名:

 黄志明    

学号:

 21203226084    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 采矿工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 张丁丁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-21    

论文答辩日期:

 2024-06-08    

论文外文题名:

 Study on the movement of overlying strata and the behaviour of mining pressure during layered mining in valley areas    

论文中文关键词:

 沟谷区 ; 分层开采 ; 覆岩运移 ; 矿压显现 ; 光纤表征    

论文外文关键词:

 Gully area ; Layered mining ; Movement of overburden ; Mining pressure appears ; Optical fiber characterization    

论文中文摘要:

针对沟谷区工作面厚煤层分层开采过程中出现的应力集中、矿压显现强烈等问题,本文以白芨沟煤矿为研究对象,采用现场调研实测、相似模拟实验、数值计算和理论分析相结合的研究方法,深入研究了沟谷区工作面分层开采矿压显现规律、覆岩运移及光纤表征、应力演化规律和工作面强矿压显现机理。具体研究成果如下:

(1)掌握了沟谷区分层开采工作面重复采动覆岩运移特征。工作面上分层开采,背沟开采采动裂缝直通地表,岩块偏转和回转运动明显;山顶开采山体岩块会以山体稳定关键区煤体作为支点产生偏转运动;向沟开采覆岩弯曲下沉结构较为稳定。中、下分层重复采动影响下,采动裂隙呈周期性开裂—闭合,开裂程度逐层加剧,采动裂缝包裹的梯形岩块和山体岩块会周期性偏转和回转。岩层断裂角逐层增大,直至近乎“直角”。

(2)揭示了沟谷区分层开采工作面过地表山体的来压规律。工作面上分层来压特征呈明显的分阶段性,呈3段分布。背沟开采工作面平均来压步距最小,动载矿压严重;山顶开采来压步距次之,强矿压显现明显;向沟开采来压步距最大,来压强度较为缓和。工作面中、下分层开采受重复采动影响,来压步距和来压强度皆呈逐层减小趋势,来压分阶段性不明显,矿压显现较为缓和,呈现小周期来压特征。

(3)得到了沟谷区工作面原岩应力分布特征及支承应力演化规律。原岩应力分布形态与地表山体起伏相一致,呈山体中部应力大,两侧应力小,并随埋深的增加,原岩应力不断增大,应力梯度差越明显。随分层开采累计采厚的增加,上、中、下三分层应力分布呈逐层减小趋势,应力集中区呈“条带”分布。

(4)建立了地表山体静载力学模型,揭示了沟谷区工作面强矿压显现机理。工作面受地表山体影响,山顶部分区域处于工作面强矿压显现临界状态。当山体稳定关键区煤体被采出,山体岩块随固支点偏转,引起工作面强矿压显现。

论文外文摘要:

To address the problems of mine stress concentration and strong mine pressure appearing in the process of stratified mining of thick coal seams in the working face of the gully area, this paper takes Baijigou coal mine as the research object. Using a research methodology that combines actual measurements from on-site research, similar simulation experiments, numerical calculations, and theoretical analyses, in-depth research was conducted on the mining pressure manifestation law, overlying rock migration and fiber optic characterization, stress evolution law, and strong mining pressure manifestation mechanism of the working face in the valley area. Specific research findings are listed below:

(1) Mastered the overlying rock transport characteristics of the working face affected by repeated mining under the conditions of stratified mining in the valley area. During the layered mining on the working face, the mining-induced cracks generated during the back ditch mining have been directly connected to the surface, and the deviation and rotation movement of the rock blocks are obvious. During the mountaintop mining, the rock blocks on the mountain have deflected and moved with the coal seams in the stable key area of the mountain as the fulcrum. During the trench mining, the overlying rock has bent and sunk, and the overlying rock structure has remained relatively stable. Under the influence of repeated mining, the fractures in the middle and lower layers have periodically cracked and closed, and the degree of cracking has intensified layer by layer. Trapezoidal rock blocks and mountain rock blocks enclosed by mining cracks have periodically deflected and rotated. The fracture angle of the rock layer has increased layer by layer until it is almost at the right angle.

(2) The mining pressure manifestation law of the working face passing through surface mountains under the condition of stratified mining in the valley area has been obtained. The pressure characteristics of layered mining on the working face show a clear phased distribution with a three-stage distribution. During the back ditch mining stage, the average pressure step distance of the working face is the smallest, and the dynamic loading ore pressure is severe. The average pressure step distance of the working face during the mountaintop mining stage is second, and the strong mining pressure is evident. The average pressure step distance of the working face during the trench stage is the largest, and the pressure intensity is relatively gentle. The middle and lower layers are affected by repeated mining, and the step distance and intensity of the pressure decrease layer by layer. The staged pressure is not obvious, and the mining pressure is relatively gentle, showing a small periodic pressure characteristic.

(3) The stress distribution characteristics and stress evolution law of the original rock in the working face of the valley area have been obtained. The stress distribution pattern of the original rock is consistent with the undulation of the surface mountain. The stress of the original rock is higher in the middle of the mountain and lower on both sides. As the burial depth increases, the original rock stress continuously increases, and the difference in stress gradient becomes more obvious. As the cumulative thickness of layered mining increases, the stress distribution in the upper, middle, and lower layers shows a decreasing trend layer by layer, and the stress concentration area shows a "strip" distribution.

(4) A mechanical model of static compressive stress on surface mountains was constructed, revealing the mechanism of strong mining pressure manifestation in working faces in valley areas. The working face is affected by the surface mountains, causing some areas on the mountaintop to be in a critical state of strong mining pressure manifestation on the working face. When the coal seam in the stable key area of the mountain is mined out, the rock blocks of the mountain deflect with the fixed support point, causing strong mining pressure to appear on the working face.

参考文献:

[1] 王家臣, 刘云熹, 李杨, 等. 矿业系统工程60年发展与展望[J]. 煤炭学报, 2024, 49(01): 261-279.

[2] 钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采[J]. 煤炭学报, 2018, 43(01): 1-13.

[3] 王双明, 申艳军, 宋世杰, 等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报, 2023, 48(07): 2599-2612.

[4] 张志强, 许家林, 王晓振, 等. 沟谷地形下浅埋煤层工作面矿压规律研究[J]. 中国煤炭, 2011, 37(06): 55-58+76.

[5] 高建良, 蔡行行, 卢方超, 等. 特厚煤层分层开采下伏煤层应力分布及破坏特征研究[J]. 煤炭科学技术, 2021, 49(05): 19-26.

[6] 黄庆享. 浅埋煤层的矿压特征与浅埋煤层定义[J]. 岩石力学与工程学报, 2002, (08): 1174-1177.

[7] 钱鸣高, 缪协兴, 许家林. 岩层控制中的关键层理论研究[J]. 煤炭学报, 1996, 21(3): 225-230.

[8] 钱鸣高, 李鸿昌. 采场上覆岩层活动规律及其对矿山压力的影响[J]. 煤炭学报, 1982, (02): 1-12.

[9] Ming-Gao C. A study of the behaviour of overlying strata in longwall mining and its application to strata control[M]. Developments in geotechnical engineering. Elsevier, 1981, 32: 13-17.

[10] 钱鸣高. 采场上覆岩层岩体结构模型及其应用[J].中国矿业学院学报, 1982, (02): 6-16.

[11] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010. 84-97, 111-113.

[12] 宋振骐. 实用矿山压力与控制[M]. 徐州: 中国矿业大学出版社, 1995.

[13] 邹熹正. 对压力拱假说的新解释[J]. 矿山压力, 1989,(01): 67-68+93.

[14] 曹树刚. 采场围岩复合拱力学结构探讨[J]. 重庆大学学报(自然科学版), 1989, (01): 72-78.

[15] 赵善坤. 采动影响下逆冲断层“活化”特征试验研究[J]. 采矿与安全工程学报, 2016, 33(02): 354-360.

[16] 许家林, 秦伟, 轩大洋, 等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报, 2020, 45(01): 35-43.

[17] 许家林, 秦伟, 陈晓军, 等. 采动覆岩卸荷膨胀累积效应的影响因素[J]. 煤炭学报, 2022, 47(01): 115-127.

[18] Xu J L, Zhu W B, Lai W Q, et al. Green mining techniques in the coal mines of China[J]. Journal of Mines, Metals and Fuels, 2004, 52(12): 395-398.

[19] 朱卫兵. 浅埋近距离煤层重复采动关键层结构失稳机理研究[J]. 煤炭学报, 2011, 36(06): 1065-1066.

[20] 杨达明, 郭文兵, 于秋鸽, 等. 浅埋近水平煤层采场覆岩压力拱结构特性及演化机制分析[J]. 采矿与安全工程学报, 2019, 36(02): 323-330.

[21] 鞠金峰, 许家林, 刘阳军, 等. 关键层运动监测及岩移5阶段规律——以红庆河煤矿为例[J]. 煤炭学报, 2022, 47(02): 611-622.

[22] Singh R, Singh T N, Dhar B B. Coal pillar loading in shallow mining conditions[C]. International journal of rock mechanics and mining sciences & geomechanics abstracts. Pergamon, 1996, 33(8): 757-768.

[23] Holla L, Buizen M. Strata movement due to shallow longwall mining and the effect on ground permeability[C]. AusIMM Proceedings(Australia). 1990, 295(1).

[24] F. G. Bell, M. G. Culshaw, J. C. Cripps. etc. Engineering geology of underground movement[M]. London, The Geological Society, 1998.

[25] 张志强, 许家林, 王露, 等. 沟谷坡角对浅埋煤层工作面矿压影响的研究[J]. 采矿与安全工程学报, 2011, 28(04): 560-565.

[26] 张志强, 许家林, 刘洪林, 等. 沟深对浅埋煤层工作面矿压的影响规律研究[J]. 采矿与安全工程学报, 2013, 30(04): 501-505+511.

[27] 许家林, 朱卫兵, 王晓振, 等. 沟谷地形对浅埋煤层开采矿压显现的影响机理[J]. 煤炭学报, 2012, 37(02): 179-185.

[28] 赵杰, 刘长友, 李建伟. 沟谷区域浅埋煤层工作面覆岩破断及矿压显现特征[J]. 煤炭科学技术, 2017, 45(01): 34-40.

[29] 黄庆享, 王小军, 胡俭, 等. 峁梁区浅埋采空区下开采顶板活化结构与支架动载研究[J]. 采矿与安全工程学报, 2023, 40(5): 983.

[30] 李建伟, 刘长友, 赵杰, 等. 沟谷区域浅埋煤层采动矿压发生机理及控制研究[J]. 煤炭科学技术, 2018, 46(09): 104-110.

[31] 任艳芳. 地表山体载荷对浅埋深工作面开采矿压的影响[J]. 矿业安全与环保, 2020, 47(04): 77-81+87.

[32] 王旭锋, 张东升, 卢鑫, 等. 浅埋煤层沙土质冲沟坡体下开采矿压显现特征[J]. 煤炭科学技术, 2010, 38(06): 18-22.

[33] 张杰, 龙晶晶, 杨涛, 等. 浅埋煤层沟谷下开采动载机理研究[J]. 采矿与安全工程学报, 2019, 36(06): 1222-1227.

[34] 肖国刚, 姚文博. 麻地梁煤矿沟谷地形浅埋煤层矿压显现规律[J]. 采矿与岩层控制工程学报, 2021, 3(04): 96-103.

[35] Liu Y, Yang T, Zhao Y, et al. Characteristics of strata movement and method for runoff disaster management for shallow multiseam mining in gully regions: A case study[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 172: 105608.

[36] 卫帅. 上榆泉矿近距离煤层开采覆岩结构演变机理及矿压控制研究[D]. 中国矿业大学, 2022.

[37] 孙学阳, 程正, 姜钰泉, 等. 沟谷区浅埋煤层重复开采下地裂缝发育规律研究[J]. 煤炭技术, 2023, 42(10): 1-5.

[38] 刘一龙, 杨天鸿, 马凯, 等. 沟谷区多煤层开采覆岩破坏及径流水害防治研究[J]. 煤炭科学技术, 2023, 51(07): 243-254.

[39] 田延哲. 高陡山体下煤层重复采动诱发岩质斜坡变形破坏过程分析[J]. 煤矿安全, 2021, 52(03): 222-227.

[40] Horiguchi T, Tateda M. Optical-fiber-attenuation investigation using stimulated Brillouin scattering between a pulse and a continuous wave[J]. Optics letters, 1989, 14(8): 408-410.

[41] Horiguchi T, Shimizu K, Kurashima T, et al. Development of a distributed sensing technique using Brillouin scattering[J]. Journal of lightwave technology, 1995, 13(7): 1296-1302.

[42] Thevenaz L, Nikles M, Fellay A, et al. Applications of distributed Brillouin fiber sensing.[J] International Conference on Applied Optical Metrology. SPIE, 1998, 3407: 374-381.

[43] Song K Y, Chin S, Primerov N, et al. Time-domain distributed fiber sensor with 1 cm spatial resolution based on Brillouin dynamic grating[J]. Journal of Lightwave Technology, 2010, 28(14): 2062-2067.

[44] 柴敬, 王正帅, 袁强, 等. BOTDA在岩层移动相似材料模拟试验中的应用[J]. 煤炭科学技术, 2015, 43(01): 1-4.

[45] 柴敬, 刘永亮, 王梓旭, 等. 保护层开采下伏煤岩卸压效应及其光纤监测[J]. 煤炭学报, 2022, 47(08): 2896-2906.

[46] Cui H, Zhang D, Shi B, et al. BOTDA based water-filling and preloading test of spiral case structure[J]. Smart structures and systems, 2018, 21(1): 27-35.

[47] Zhang D, Huang Z, Ma Z, et al. Research on Similarity Simulation Experiment of Mine Pressure Appearance in Surface Gully Working Face Based on BOTDA[J]. Sensors, 2023, 23(22): 9063.

[48] 易贤龙, 唐辉明, 吴益平, 等. PPP-BOTDA分布式光纤技术在白水河滑坡监测中的应用[J]. 岩石力学与工程学报, 2016, 35(S1): 3084-3091.

[49] 刘云鹏, 李欢, 高树国, 等. 分布式光纤传感在大型变压器温度和绕组变形监测中的应用研究[J]. 中国电机工程学报, 2022, 42(16): 6126-6135+6186.

[50] Yan J, Shi B, Ansari F, et al. Analysis of the strain process of soil slope model during infiltration using BOTDA[J]. Bulletin of Engineering Geology and the Environment, 2017, 76: 947-959.

[51] Zhang D, Chen Q, Wang Z, et al. Optical fiber frequency shift characterization of overburden deformation in short-distance coal seam mining[J]. Geofluids, 2021, 2021: 1-16.

[52] Zhang D, Du W, Chai J, et al. Strain Test Performance of Brillouin Optical Time Domain Analysis and Fiber Bragg Grating Based on Calibration Test[J]. Sensors & Materials, 2021, 33.

[53] 柴敬, 霍晓斌, 钱云云, 等. 采场覆岩变形和来压判别的分布式光纤监测模型试验[J]. 煤炭学报, 2018, 43(S1): 36-43.

[54] 节茂科, 方延强, 周晓明. 永久损失煤柱穿巷开采巷道临界宽度的计算[J]. 煤炭科学技术, 2011, 39(02): 6-9+64.

[55] 张栋, 柏建彪, 闫帅, 等. 非均质复合岩巷围岩破坏机理及底鼓控制技术[J]. 岩土工程学报, 2022, 44(09): 1699-1709+9-10.

[56] 陈晓祥, 谢文兵. 采矿过程数值模拟模型左右边界的确定[J]. 煤炭科学技术, 2007, (04): 96-99+92.

[57] 朱斯陶, 姜福兴, 朱海洲, 等. 高应力区掘进工作面冲击地压事故发生机制研究[J]. 岩土力学, 2018, 39(S2): 337-343.

[58] 于斌, 高瑞, 孟祥斌, 等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报, 2018, 37(05): 1134-1145.

[59] 周超. 梯度载荷下煤层开采压转耦合诱冲机理与防治研究[D]. 北京科技大学, 2023.

[60] 康红普. 深部煤矿应力分布特征及巷道围岩控制技术[J]. 煤炭科学技术, 2013, 41(09): 12-17.

[61] 姜福兴, 成功, 冯宇, 等. 两侧不规则采空区孤岛工作面煤体整体冲击失稳研究[J]. 岩石力学与工程学报, 2015, 34(S2): 4164-4170.

[62] 徐芝纶. 弹性力学简明教程(第三版)[M]. 北京:高等教育出版社, 2001.

[63] 李延军. 沟壑区浅埋煤层开采覆岩运动演化致灾特征[J]. 采矿与安全工程学报, 2024, 41(02): 315-325.

中图分类号:

 TD325    

开放日期:

 2024-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式