- 无标题文档
查看论文信息

论文中文题名:

 304不锈钢、HT700合金在含Al缓蚀剂熔盐中腐蚀行为及力学性能研究    

姓名:

 马兰    

学号:

 22211025005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0805    

学科名称:

 工学 - 材料科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 熔盐储热    

第一导师姓名:

 朱明    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-05-29    

论文外文题名:

 Corrosion behavior and mechanical properties of 304 stainless steel and HT700 alloy in molten salt containing Al corrosion inhibitor were studied    

论文中文关键词:

 储热技术 ; 高温熔融氯盐 ; Al缓蚀剂 ; 腐蚀抑制 ; 力学性能    

论文外文关键词:

 Heat storage technology ; high temperature molten chloride ; Al corrosion inhibitor ; corrosion inhibition ; mechanical properties    

论文中文摘要:

随着对可持续能源需求的增加,熔盐储热技术的研究和应用不断深化,成为提升光热发电效率和经济性的关键因素。其中氯盐以种类繁多、价格低廉、相变潜热大、具备更优异的高温热稳定性被广泛应用于CSP电站中。但熔融氯盐在高温下对金属材料具有高腐蚀性,因此必须解决其在高温下的强腐蚀性问题。针对熔盐腐蚀控制技术问题,本文采用在氯化物熔盐中添加少量Al粉,以期在消耗熔盐中氧化性杂质的同时,在合金表面原位生成具有保护性的富Al层。

本文采用高温电化学法及浸泡腐蚀法研究了304不锈钢及HT700合金在添加0 wt.%、1 wt.%、2 wt.%、5 wt.% Al粉的700°C熔融NaCl-KCl-MgCl2中的腐蚀行为,测试了腐蚀前后HT700合金的力学性能。使用带能谱仪的扫描电子显微镜和X射线衍射仪测定了两种合金的表面及截面腐蚀形貌和腐蚀产物相组成。结合电化学阻抗谱和动电位极化曲线,分析并讨论了两种合金在不同含量Al缓蚀剂的高温熔融氯盐中的腐蚀行为,分析了高温熔盐腐蚀对HT700合金力学性能影响以及Al缓蚀剂的影响机制。主要结论如下:

(1)304不锈钢在高温熔融氯盐中的腐蚀主要是由于Fe、Cr元素向外扩散导致,而HT700合金则主要是由于Cr元素向外扩散导致;相较于304不锈钢,HT700合金中Fe含量下降41%、Ni含量提高35%、Cr含量提高3%,另外加入了0.3%含量的Mo、2.1%含量的Al,使其耐氯化物熔盐腐蚀性能提升。

(2)Al缓蚀剂的加入使得304不锈钢、HT700合金在高温熔融氯盐中表面形成Al2O3保护膜,或进一步形成渗Al层,有效抑制合金中活泼元素(如Cr、Fe元素)的向外扩散,从而延缓合金在氯化物熔盐中的腐蚀。且随着Al缓蚀剂含量的增多,耐蚀效果增强,腐蚀层厚度降低。

(3)在对高温熔融氯盐环境中腐蚀后的HT700合金进行力学拉伸试验时,断裂形式为韧断与脆断混合断裂。与腐蚀抑制效果不一样的是:不同含量Al缓蚀剂对HT700合金在高温熔融氯盐中腐蚀的力学性能影响,随着Al缓蚀剂含量的增多,外氧化腐蚀层厚度下降,总体上力学性能得到提高,如强度及塑性;但当Al缓蚀剂过量时,在韧窝处会伴随着夹杂氧化物Al2O3的存在,其在应力作用下可能会作为裂纹源,诱发局部脆性断裂,从而导致合金力学性能下降。

论文外文摘要:

With the increasing demand for sustainable energy, the research and application of molten salt heat storage technology are deepening, which has become a key factor to improve the efficiency and economy of photothermal power generation. Among them, chloride salts are widely used in CSP power plants due to their wide variety, low price, large latent heat of phase change and better high temperature thermal stability. However, molten chloride salt has high corrosion to metal materials at high temperature, so it is necessary to solve the problem of strong corrosion at high temperature. Aiming at the problem of molten salt corrosion control technology, a small amount of Al powder was added to the chloride molten salt in this paper, in order to generate a protective Al-rich layer in situ on the surface of the alloy while consuming the oxidizing impurities in the molten salt.

In this paper, the corrosion behavior of 304 stainless steel and HT700 alloy in molten NaCl-KCl-MgCl2 at 700°C with 0 wt.%, 1 wt.%, 2 wt.% and 5 wt.% Al powder was studied by high temperature electrochemical method and immersion corrosion method. The mechanical properties of HT700 alloy before and after corrosion were tested. The surface and cross-section corrosion morphology and corrosion product phase composition of the two alloys were measured by scanning electron microscopy with energy dispersive spectrometer and X-ray diffractometer. Combined with electrochemical impedance spectroscopy and potentiodynamic polarization curves, the corrosion behavior of the two alloys in high temperature molten chloride with different contents of Al corrosion inhibitor was analyzed and discussed. The effect of high temperature molten salt corrosion on the mechanical properties of HT700 alloy and the influence mechanism of Al corrosion inhibitor were analyzed. The main conclusions are as follows:

(1) The corrosion of 304 stainless steel in high temperature molten chloride salt is mainly caused by the outward diffusion of Fe and Cr elements, while the corrosion of HT700 alloy is mainly caused by the outward diffusion of Cr elements. Compared with 304 stainless steel, the content of Fe in HT700 alloy decreased by 41 %, the content of Ni increased by 35 %, and the content of Cr increased by 3 %. In addition, 0.3 % Mo and 2.1 % Al were added to improve the corrosion resistance of chloride molten salt.

(2) The addition of Al corrosion inhibitor can form Al2O3 protective film on the surface of 304 stainless steel and HT700 alloy in high temperature molten chloride salt, or further form Al layer, which can effectively inhibit the outward diffusion of active elements in the alloy, thus delaying the corrosion of the alloy in chloride molten salt. With the increase of Al corrosion inhibitor content, the corrosion resistance effect is enhanced and the thickness of the corrosion layer is reduced.

(3) In the mechanical tensile test of HT700 alloy corroded in high temperature molten chloride environment, the fracture form is ductile fracture and brittle fracture mixed fracture. Different from the effect of corrosion inhibition, the effect of different content of Al corrosion inhibitor on the mechanical properties of HT700 alloy in high temperature molten chloride salt is different. With the increase of Al corrosion inhibitor content, the thickness of external oxidation corrosion layer decreases, and the mechanical properties are improved, such as strength and plasticity. However, when the Al corrosion inhibitor is excessive, the dimples will be accompanied by the presence of oxide Al2O3, which may act as a crack source under stress and induce local brittle fracture, resulting in a decrease in the mechanical properties of the alloy.

参考文献:

[1]Ahmad T, Zhang D. A critical review of comparative global historical energy consumption and future demand: The story told so far[J]. Energy Reports, 2020, 6: 1973-1991.

[2]Cheng Z, Li L, Liu J, et al. Research on energy directed technical change in China's industry and its optimization of energy consumption pattern[J]. Journal of environmental management, 2019, 250: 109471-109482.

[3]Chel A, Kaushik G. Renewable energy technologies for sustainable development of energy efficient building[J]. Alexandria engineering journal, 2018, 57(2): 655-669.

[4]Destek M A, Sarkodie S A. Investigation of environmental Kuznets curve for ecological footprint: the role of energy and financial development[J]. Science of the total environment, 2019, 650: 2483-2489.

[5]Tan K M, Babu T S, Ramachandaramurthy V K, et al. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration[J]. Journal of Energy Storage, 2021, 39: 102591-102612.

[6]Faisal M, Hannan M A, Ker P J, et al. Review of energy storage system technologies in microgrid applications: Issues and challenges[J]. Ieee Access, 2018, 6: 35143-35164.

[7]Gür T M. Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage[J]. Energy & Environmental Science, 2018, 11(10): 2696-2767.

[8]Hannan M A, Wali S B, Ker P J, et al. Battery energy-storage system: A review of technologies, optimization objectives, constraints, approaches, and outstanding issues[J]. Journal of Energy Storage, 2021, 42: 103023-103044.

[9]Nadeem F, Hussain S M S, Tiwari P K, et al. Comparative review of energy storage systems, their roles, and impacts on future power systems[J]. IEEE access, 2018, 7: 4555-4585.

[10]Matos C R, Carneiro J F, Silva P P. Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification[J]. Journal of Energy Storage, 2019, 21: 241-258.

[11]Jouhara H, Żabnieńska-Góra A, Khordehgah N, et al. Latent thermal energy storage technologies and applications: A review[J]. International Journal of Thermofluids, 2020, 5: 100039-100062.

[12]Li Z, Lu Y, Huang R, et al. Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage[J]. Applied Energy, 2021, 283: 116277-116299.

[13]Alva G, Lin Y, Fang G. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378.

[14]刘兵. 熔盐储热技术在油田生产的探索与应用[J]. 工业加热, 2024, 53(6): 38-40+61.

[15]吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592.

[16]Patel N S, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts–a review[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(1): 83-97.

[17]Roper R, Harkema M, Sabharwall P, et al. Molten salt for advanced energy applications: A review[J]. Annals of Nuclear Energy, 2022, 169: 108924-108942.

[18]Zhang H L, Baeyens J, Degrève J, et al. Concentrated solar power plants: Review and design methodology[J]. Renewable and sustainable energy reviews, 2013, 22: 466-481.

[19]Khan M I, Asfand F, Al-Ghamdi S G. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power[J]. Journal of Energy Storage, 2022, 55: 105860-105894.

[20]Khan M I, Asfand F, Al-Ghamdi S G. Progress in research and development of phase change materials for thermal energy storage in concentrated solar power[J]. Applied Thermal Engineering, 2023, 219: 119546-119566.

[21]Islam M T, Huda N, Abdullah A B, et al. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 987-1018.

[22]Bauer T, Odenthal C, Bonk A. Molten salt storage for power generation[J]. Chemie Ingenieur Technik, 2021, 93(4): 534-546.

[23]Suman S. Hybrid nuclear-renewable energy systems: A review[J]. Journal of Cleaner Production, 2018, 181: 166-177.

[24]Bhatnagar P, Siddiqui S, Sreedhar I, et al. Molten salts: Potential candidates for thermal energy storage applications[J]. International Journal of Energy Research, 2022, 46(13): 17755-17785.

[25]Yong Q, Tian Y, Qian X, et al. Retrofitting coal-fired power plants for grid energy storage by coupling with thermal energy storage[J]. Applied Thermal Engineering, 2022, 215: 119048-119057.

[26]Li B, Cao Y, He T, et al. Thermodynamic analysis and operation strategy optimization of coupled molten salt energy storage system for coal-fired power plant[J]. Applied Thermal Engineering, 2024, 236: 121702-121723.

[27]Liu S, Ding L, Sun C, et al. Research on the application of nuclear power-molten salt heat storage integration system technology[C]//2024 3rd International Conference on Energy, Power and Electrical Technology (ICEPET). IEEE, 2024: 468-472.

[28]Zhang H, Wang H, Zhu X, et al. A review of waste heat recovery technologies towards molten slag in steel industry[J]. Applied Energy, 2013, 112(12): 956-966.

[29]Somasundaram S, Drost M K, Brown D R, et al. Integrating thermal energy storage in power plants: a system that stores thermal energy in a natural gas-fired cogeneration facility uses a gas turbine, a heat recovery salt heater, and a salt-heated steam generator[J]. Mechanical Engineering-CIME, 1993, 115(9): 84-91.

[30]路阳, 彭国伟, 王智平, 等. 熔融盐相变储热材料的研究现状及发展趋势[J]. 材料导报, 2011, 25(21): 38-42.

[31]张艳梅, 赵伟杰, 邓奥林. 低熔点硝酸熔盐储热材料的开发[J]. 机械制造, 2024, 62(9): 64-68+92.

[32]Olivares R I. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres[J]. Solar Energy, 2012, 86(9): 2576-2583.

[33]孙华, 苏兴治, 张鹏, 等. 聚焦太阳能热发电用熔盐腐蚀研究现状与展望[J]. 腐蚀科学与防护技术, 2017, 29(3): 282-290.

[34]Myers Jr P D, Goswami D Y. Thermal energy storage using chloride salts and their eutectics[J]. Applied thermal engineering, 2016, 109: 889-900.

[35]Xie W, Ding J, Pan G, et al. Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media[J]. Solar Energy Materials and Solar Cells, 2020, 209: 110415-110427.

[36]Ge Z, Ye F, Cao H, et al. Carbonate-salt-based composite materials for medium-and high-temperature thermal energy storage[J]. Particuology, 2014, 15: 77-81.

[37]Wu Y, Ren N, Wang T, et al. Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant[J]. Solar Energy, 2011, 85(9): 1957-1966.

[38]Shi Y. Advancements and Challenges in Molten Salt Energy Storage for Solar Thermal Power Generation[C]//MATEC Web of Conferences. EDP Sciences, 2024, 404: 1003-1010.

[39]吴玉庭, 任楠, 马重芳. 熔融盐显热蓄热技术的研究与应用进展[J]. 储能科学与技术, 2013, 2(6): 586-592.

[40]Bonk A, Sau S, Uranga N, et al. Advanced heat transfer fluids for direct molten salt line-focusing CSP plants[J]. Progress in Energy and Combustion Science, 2018, 67: 69-87.

[41]Khan M I, Asfand F, Al-Ghamdi S G. Progress in research and technological advancements of thermal energy storage systems for concentrated solar power[J]. Journal of Energy Storage, 2022, 55: 105860-105894.

[42]吴玉庭, 朱建坤, 张丽娜, 等. 高温熔盐的制备及实验研究[J]. 北京工业大学学报, 2007, 33(1): 62-66.

[43]Nishikata A, Numata H, Tsuru T. Electrochemistry of molten salt corrosion[J]. Materials Science and Engineering: A, 1991, 146(1-2): 15-31.

[44]Liu M, Tay N H S, Bell S, et al. Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies[J]. Renewable and Sustainable Energy Reviews, 2016, 53: 1411-1432.

[45]Kruizenga A M. Corrosion mechanisms in chloride and carbonate salts[R]. Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States), 2012: 1-34.

[46]Ding W, Gomez-Vidal J, Bonk A, et al. Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells, 2019, 199: 8-15.

[47]Ding W, Bonk A, Gussone J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage[J]. Journal of Energy Storage, 2018, 15: 408-414.

[48]Sun H, Zhang P, Wang J. Effects of alloying elements on the corrosion behavior of Ni-based alloys in molten NaCl-KCl-MgCl2 salt at different temperatures[J]. Corrosion science, 2018, 143: 187-199.

[49]Fernández Á G, Cabeza L F. Molten salt corrosion mechanisms of nitrate based thermal energy storage materials for concentrated solar power plants: A review[J]. Solar Energy Materials and Solar Cells, 2019, 194: 160-165.

[50]De Jong J M, Broers G H J. A reversible oxygen electrode in an equimolar KNO3 NaNO3 melt saturated with sodium peroxide—II. A voltammetric study[J]. Electrochimica Acta, 1976, 21(11): 893-900.

[51]Sridharan K, Allen T R. Corrosion in molten salts[M]//Molten salts chemistry. Elsevier, 2013: 241-267.

[52]Patel N S, Pavlík V, Boča M. High-temperature corrosion behavior of superalloys in molten salts–a review[J]. Critical Reviews in Solid State and Materials Sciences, 2017, 42(1): 83-97.

[53]Ma H Y, Yang C, Li G Y, et al. Influence of nitrate and chloride ions on the corrosion of iron[J]. Corrosion, 2003, 59(12): 1112-1119.

[54]Grégoire B, Oskay C, Meißner T M, et al. Corrosion performance of slurry aluminide coatings in molten NaCl–KCl[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110974-110993.

[55]Ding W, Shi H, Jianu A, et al. Molten chloride salts for next generation concentrated solar power plants: Mitigation strategies against corrosion of structural materials[J]. Solar Energy Materials and Solar Cells, 2019, 193: 298-313.

[56]Ong T C, Sarvghad M, Lippiatt K, et al. Review of the solubility, monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110006-110022.

[57]Raiman S S, Lee S. Aggregation and data analysis of corrosion studies in molten chloride and fluoride salts[J]. Journal of Nuclear Materials, 2018, 511: 523-535.

[58]Nikolaev A Y, Mullabaev A R, Suzdaltsev A V, et al. Purification of alkali-metal chlorides by zone recrystallization for use in pyrochemical processing of spent nuclear fuel[J]. Atomic Energy, 2022, 131(4): 195-201.

[59]Kurley J M, Halstenberg P W, McAlister A, et al. Enabling chloride salts for thermal energy storage: implications of salt purity[J]. RSC advances, 2019, 9(44): 25602-25608.

[60]Hanson K, Sankar K M, Weck P F, et al. Effect of excess Mg to control corrosion in molten MgCl2 and KCl eutectic salt mixture[J]. Corrosion Science, 2022, 194: 109914-109935.

[61]左勇, 曹明鹏, 申淼, 等. MgCl2-NaCl-KCl熔盐体系中金属Mg对316H不锈钢的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.

[62]Zhao Y, Vidal J. Potential scalability of a cost-effective purification method for MgCl2-Containing salts for next-generation concentrating solar power technologies[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110663-110673.

[63]Cho S H, Kim D Y, Kwon S, et al. High-temperature corrosion characteristics of yttria-stabilized zirconia material in molten salts of LiCl-Li2O and LiCl-Li2O-Li[J]. Journal of Nuclear Science and Technology, 2018, 55(1): 97-103.

[64]马宏芳. Inconel625合金在氯化物熔盐中腐蚀行为研究[D]. 西安: 西安科技大学, 2015.

[65]易寒. 合金材料在含铝缓蚀剂的熔融氯盐中的腐蚀研究[D]. 西安: 西安科技大学, 2022.

[66]Zhu M, Yi H, Lu J, et al. Corrosion of Ni–Fe based alloy in chloride molten salts for concentrating solar power containing aluminum as corrosion inhibitor[J]. Solar Energy Materials and Solar Cells, 2022, 241: 111737-111748.

[67]王军伟, 王智平, 路阳, 等. 合金元素对Fe基不锈钢耐熔融NaCl腐蚀性能的影响(英文)[J]. 稀有金属材料与工程, 2013, 42(S2): 513-516.

[68]Okonkwo B O, Kim C, An T, et al. Corrosion behaviour of Al-containing alloys in Cl-based molten salt environment[J]. Journal of Nuclear Materials, 2024: 155207-155216.

[69]李俊谊. 几种材料在氯化物储热熔盐中腐蚀行为研究[D]. 西安: 西安科技大学, 2018.

[70]解玉豪, 齐浩雄, 马瑞, 等. 铝化物涂层的高温氧化和腐蚀机理研究进展[J]. 材料保护, 2023, 56(10): 166-181.

[71]Audigié P, Encinas-Sánchez V, Juez-Lorenzo M, et al. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants[J]. Surface and Coatings Technology, 2018, 349: 1148-1157.

[72]Kumar N M S, Shashank T N, Dheeraj N U, et al. Coatings on reinforcements in aluminum metal matrix composites[J]. International Journal of Metalcasting, 2023, 17(2): 1049-1064.

[73]Grégoire B, Oskay C, Meißner T M, et al. Corrosion performance of slurry aluminide coatings in molten NaCl–KCl[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110974-110993.

[74]张凯荣, 徐毅, 刘梅军, 等. 热障涂层服役温度测试与隔热机理[J]. 材料保护, 2024, 57(3): 38-49.

[75]Azarbayjani K, Rizvi G, Foroutan F. Evaluating effects of immersion tests in molten copper chloride salts on corrosion resistant coatings[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8394-8400.

[76]Liang T, Guo H, Peng H, et al. Precipitation phases in the nickel-based superalloy DZ 125 with YSZ/CoCrAlY thermal barrier coating[J]. Journal of alloys and compounds, 2011, 509(34): 8542-8548.

[77]Alam M Z, Hazari N, Varma V K, et al. Effect of Cyclic Oxidation Exposure on Tensile Properties of a Pt-Aluminide Bond-Coated Ni-Base Superalloy[J]. Metallurgical & Materials Transactions A, 2011, 42(13): 4064-4074.

[78]Gomez-Vidal J C. Corrosion resistance of MCrAlX coatings in a molten chloride for thermal storage in concentrating solar power applications[J]. npj Materials Degradation, 2017, 1(1): 7-16.

[79]王盼航, 余竹焕, 张洋, 等. 预氧化对一种镍基单晶高温合金的热腐蚀影响[J]. 材料科学与工艺, 2018, 26(6): 36-42.

[80]Gomez-Vidal J C, Fernandez A G, Tirawat R, et al. Corrosion resistance of alumina-forming alloys against molten chlorides for energy production. I: Pre-oxidation treatment and isothermal corrosion tests[J]. Solar Energy Materials and Solar Cells, 2017, 166: 222-233.

[81]Gurrappa I, Yashwanth I V S, Mounika I. Cathodic protection technology for protection of naval structures against corrosion[J]. Proceedings of the national academy of sciences, India section A: Physical sciences, 2015, 85: 1-18.

[82]侯德龙, 敖宏, 何德山, 等. 阴极保护技术与牺牲阳极材料的进展[J]. 中国稀土学报, 2002, (S1): 207-210.

[83]Sadawy M, Saad S, Abdel-Karim R. Effect of Zn/Mg ratio on cathodic protection of carbon steel using Al-Zn-Mg sacrificial anodes[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(8): 2067-2078.

[84]Fernández A G, Cabeza L F. Anodic protection assessment using alumina-forming alloys in chloride molten salt for CSP plants[J]. Coatings, 2020, 10(2): 138-149.

[85]Fernández A G, Cabeza L F. Cathodic protection using aluminum metal in chloride molten salts as thermal energy storage material in concentrating solar power plants[J]. Applied Sciences, 2020, 10(11): 3724-3732.

[86]Gabelle C, Baraud F, Biree L, et al. The impact of aluminium sacrificial anodes on the marine environment: a case study[J]. Applied Geochemistry, 2012, 27(10): 2088-2095.

[87]Hartt W H, Lemieux E J, Lucas K E. A critical review of aluminum anode activation, dissolution mechanisms, and performance[J]. NACE corrosion, 2001: 1496-1509.

[88]Mehrabadi B A T, Weidner J W, Garcia-Diaz B, et al. Modeling the effect of cathodic protection on superalloys inside high temperature molten salt systems[J]. Journal of The Electrochemical Society, 2017, 164(4): 171-179.

[89]Ding W, Bonk A, Gussone J, et al. Cyclic voltammetry for monitoring corrosive impurities in molten chlorides for thermal energy storage[J]. Energy Procedia, 2017, 135: 82-91.

[90]Ding W, Bonk A, Gussone J, et al. Electrochemical measurement of corrosive impurities in molten chlorides for thermal energy storage[J]. Journal of Energy Storage, 2018, 15: 408-414.

[91]Ding W, Gomez-Vidal J, Bonk A, et al. Molten chloride salts for next generation CSP plants: Electrolytical salt purification for reducing corrosive impurity level[J]. Solar Energy Materials and Solar Cells, 2019, 199: 8-15.

[92]Rong Z, Ding J, Lu J, et al. Effect of metallic magnesium on enhanced specific heat capacity of chloride molten salts for solar thermal storage applications[J]. Solar Energy Materials and Solar Cells, 2022, 239: 111658-111668.

[93]Witteman L, Rippy K, Taylor P, et al. Continuous Purification of Molten Chloride Salt: Electrochemical Behavior of MgO-HCl Reduction[J]. Journal of The Electrochemical Society, 2023, 170(6): 63502-63516.

[94]Ding W, Yang F, Bonk A, et al. Molten chloride salts for high-temperature thermal energy storage: Continuous electrolytic salt purification with two Mg-electrodes and alternating voltage for corrosion control[J]. Solar Energy Materials and Solar Cells, 2021, 223: 110979-110988.

[95]Chen X, Xie Y, Wu Y, et al. Effect of high-temperature molten salt corrosion on the mechanical properties of stainless steel[J]. Corrosion Engineering, Science and Technology, 2024, 59(6): 401-416.

[96]Surenkov A I, Ignat’ev V V, Abalin S S, et al. Corrosion resistance and mechanical stability of nickel alloys in molten-salt nuclear reactors[J]. Atomic Energy, 2018, 124: 43-49.

[97]Lu J, Huang J, Yang Z, et al. Simulated fireside corrosion behavior of a wrought Ni-Fe-based superalloy for 700°C-class ultra-supercritical power plant applications[J]. Journal of Materials Engineering and Performance, 2019, 28: 7390-7397.

[98]Guan S, Cui C, Yuan Y, et al. The role of phosphorus in a newly developed Ni-Fe-Cr-based wrought superalloy[J]. Materials Science and Engineering: A, 2016, 662: 275-282.

[99]Zhang P, Yuan Y, Gu Y F, et al. Investigation on the tensile deformation mechanisms in a new Ni–Fe-base superalloy HT700T at 750°C[J]. Journal of Alloys and Compounds, 2020, 825: 154012-154019.

[100]Ding W J, Bauer T. Progress in Research and Development of Molten Chloride Salt Technology for Next Generation Concentrated Solar Power Plants[J]. Engineering, 2021, 7(3): 334-347.

[101]Ullah F, Ameen M, Hasrat K. Experimental study on optimization of heat storage and melting salts of solar energy[J]. Journal of Food Processing and Preservation, 2019, 43(1): 1-6.

[102]Xu X, Wang X, Li P, et al. Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems[J]. Journal of Solar Energy Engineering, 2018, 140(5): 51011-51019.

[103]Myers P D, Goswami D Y. Thermal energy storage using chloride salts and their eutectics[J]. Applied Thermal Engineering, 2016, 109: 889-900.

[104]Xu X, Dehghani G, Ning J, et al. Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA[J]. Solar Energy, 2018, 162: 431-441.

[105]Li Y, Xu X, Wang X, et al. Survey and evaluation of equations for thermophysical properties of binary/ternary eutectic salts from NaCl, KCl, MgCl2, CaCl2, ZnCl2 for heat transfer and thermal storage fluids in CSP[J]. Solar Energy, 2017, 152: 57-79.

[106]Sohal M S, Ebner M A, Sabharwall P, et al. Engineering database of liquid salt thermophysical and thermochemical properties[R]. Idaho National Lab. (INL), Idaho Falls, ID (United States), 2010: 1-70.

[107]Li H, Yang X, Yin X, et al. Effect of chloride impurity on corrosion kinetics of stainless steels in molten solar salt for CSP application: Experiments and modeling[J]. Oxidation of Metals, 2021, 95(3-4): 311-332

[108]Wang J, Zhang C, Li Z, et al. Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2 in atmosphere[J]. Solar Energy Materials and Solar Cells, 2017, 164: 146-155.

[109]Ding W J, Shi H, Xiu Y L, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere[J]. Solar Energy Materials and Solar Cells, 2018, 184: 22-30.

[110]Khan M I, Asfand F, Al-Ghamdi S G. Progress in research and development of phase change materials for thermal energy storage in concentrated solar power[J]. Applied Thermal Engineering, 2023, 219: 119546-119566.

[111]Islam M T, Huda N, Abdullah A B, et al. A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends[J]. Renewable and Sustainable Energy Reviews, 2018, 91: 987-1018.

[112]Ding W, Bauer T. Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants[J]. Engineering, 2021, 7(3): 334-347.

[113]Arias I, Cardemil J, Zarza E, et al. Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids[J]. Renewable and Sustainable Energy Reviews, 2022, 168: 112844-112871.

[114]Palacios A, Barreneche C, Navarro M E, et al. Thermal energy storage technologies for concentrated solar power–A review from a materials perspective[J]. Renewable Energy, 2020, 156: 1244-1265.

[115]Shahabuddin M, Alim M A, Alam T, et al. A critical review on the development and challenges of concentrated solar power technologies[J]. Sustainable Energy Technologies and Assessments, 2021, 47: 101434-101449.

[116]Wang X, Rincon J, Li P ,et al. Thermophysical properties experimentally tested for NaCl-KCl-MgCl2 eutectic molten salt as a next generation high temperature HTF in CSP systems[J]. Journal of Solar Energy Engineering, 2020, 143(4): 1-13.

[117]Lambrecht M, de Miguel M T, Lasanta M I, et al. Past research and future strategies for molten chlorides application in concentrated solar power technology[J]. Solar Energy Materials and Solar Cells, 2022, 237: 111557-111573.

[118]Ding W, Bonk A, Bauer T. Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review[J]. Frontiers of Chemical Science and Engineering, 2018, 12: 564-576.

[119]Gong Q, Shi H, Chai Y, et al. Molten chloride salt technology for next-generation CSP plants: compatibility of Fe-based alloys with purified molten MgCl2-KCl-NaCl salt at 700°C[J]. Applied Energy, 2022, 324: 119708-119721.

[120]Gomez-Vidal J C, Tirawat R. Corrosion of alloys in a chloride molten salt (NaCl-LiCl) for solar thermal technologies[J]. Solar energy materials and solar cells, 2016, 157: 234-244.

[121]Mortazavi A, Zhao Y, Esmaily M, et al. High-temperature corrosion of a nickel-based alloy in a molten chloride environment–The effect of thermal and chemical purifications[J]. Solar Energy Materials and Solar Cells, 2022, 236: 111542-111558.

[122]Liu B, Wei X, Wang W, et al. Corrosion behavior of Ni-based alloys in molten NaCl-CaCl2-MgCl2 eutectic salt for concentrating solar power[J]. Solar Energy Materials and Solar Cells, 2017, 170: 77-86.

[123]余竹焕, 刘蓓蕾, 王盼航, 等. 热腐蚀对高温合金力学性能的影响以及防护措施的研究进展[J]. 铸造, 2019, 68(6): 550-557.

[124]Bhaduri A. Mechanical properties and working of metals and alloys[M]. Singapore: Springer Singapore, 2018: 258-259.

[125]Gunasegaram D R, Venkatraman M S, Cole I S. Towards multiscale modelling of localised corrosion[J]. International materials reviews, 2014, 59(2): 84-114.

[126]Pineau A, Benzerga A A, Pardoen T. Failure of metals I: Brittle and ductile fracture[J]. Acta Materialia, 2016, 107: 424-483.

[127]Yavas D, Phan T, Xiong L, et al. Mechanical degradation due to vacancies produced by grain boundary corrosion of steel[J]. Acta Materialia, 2020, 200: 471-480.

[128]Garrison Jr W M, Moody N R. Ductile fracture[J]. Journal of Physics and Chemistry of Solids, 1987, 48(11): 1035-1074.

[129]Evans H E. Cracking and spalling of protective oxide layers[J]. Materials Science and Engineering: A, 1989, 120: 139-146.

[130]Zhang C H, Chen B, Jin Y, et al. First-principles modeling of layer-defect of Al2O3 surface eroded by H2O and Cl−[J]. Journal of Physics and Chemistry of Solids, 2017, 110: 129-135.

[131]Lajtai E Z. A theoretical and experimental evaluation of the Griffith theory of brittle fracture[J]. Tectonophysics, 1971, 11(2): 129-156.

[132]Jones R H. Stress-corrosion cracking[M]//Corrosion: fundamentals, testing, and protection. ASM international, 2003: 346-366.

[133]Ighodaro O L, Okoli O I. Fracture Toughness Enhancement for Alumina Systems: A review[J]. International Journal of Applied Ceramic Technology, 2008, 5(3): 313-323.

中图分类号:

 TG174    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式