- 无标题文档
查看论文信息

论文中文题名:

 稀土基紫外光稳定材料制备及荧光特性研究    

姓名:

 刘莹莹    

学号:

 19211203038    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085204    

学科名称:

 工学 - 工程 - 材料工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2019    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料工程    

研究方向:

 高分子化学    

第一导师姓名:

 陈进    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-16    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Preparation and Fluorescence Properties of Rare Earth-Based UV Light Stabilized Materials    

论文中文关键词:

 SLA-3D打印 ; 荧光粉 ; 光固化树脂 ; 高分子荧光材料    

论文外文关键词:

 SLA-3D printing ; Phosphor ; Photocurable resin ; Polymer fluorescent material    

论文中文摘要:

高分子材料长期暴露在外界环境中,在光与热的作用下链段容易发生降解,影响材料的机械性能和化学稳定性,从而降低了材料的使用寿命同时也限制其应用的广泛性。基于此,本文首先对制备得的荧光粉的光学性能进行优化,在此基础上,将荧光粉作为无机填料和稳定剂分别掺杂进光固化树脂与PVC中得到对应的高分子荧光材料,从而提高高分子材料机械性能与稳定性,并延长其使用寿命。本论文选用稀土荧光粉为研究基体,用其代替传统的无机填料,将不同含量的荧光粉掺杂进光固化树脂与PVC中分别通过SLA-3D打印与热加工的方式得到系列荧光树脂和PVC荧光管,深入研究其机械性能与稳定性。

首先利用共沉淀法制备LaP3O9:Eu3 +,改变Eu3 +的掺杂量,对比添加CDPVA前后以及改变荧光粉煅烧温度,通过荧光光谱分析、XRD、FT-IR、紫外光谱以及SEM表征,对所制备得的荧光粉性能进行系统分析发现:控制Eu3 +的添加量能提高荧光粉的发光性能;通过控制煅烧温度使得晶粒细化并均匀化分布在基体中也能有效提高荧光粉发光性能;加入CDPVA后的荧光粉,会发生5D0→7F1(橙光)磁偶极子的跃迁,且位于680 nm处5D0→7F2(红光)下对应峰的吸收强度升高,可见CDPVA的加入能提高荧光粉的发光性能。

将制备得的荧光粉以不同含量掺杂入光固化树脂体系中,经SLA-3D打印固化成型得到荧光树脂。荧光粉作为纳米颗粒,与光敏树脂体系形成交联结构,当材料受到外力作用时,应力通过交联点进行分散,使得材料机械强度得到提高;荧光粉对紫外线的吸收作用,抵抗了一部分紫外线对材料内部的破坏从而提高材料稳定性和寿命。当荧光粉添加量为3%时荧光树脂拉伸强度达到最大为42.43 MPa,材料冲击强度达到11.37 kJ/m2,硬度达到峰值90 HD,受光照后断裂伸长率变化量最低为1.01%,光照前后材料硬度变化量最小为2 HD,荧光粉添加量为3%时,荧光树脂各项性能达到最优。

将制备得的荧光粉按照不同比例作为光稳定剂和填料加入PVC中,通过热加工得到PVC荧光管。添加荧光粉后,PVC原料的热稳定性有了明显提高,PVC荧光管的力学性能与稳定性能也有明显改善;当荧光粉添加量达到3%时,断裂伸长率达到最高为156%,同时维卡值最高达到了83.6℃,拉伸强度达到峰值52.1 MPa;添加3%含量荧光粉的PVC荧光管室经过3个月的光照后,其室内外断裂伸长率变化值达到最低为13%,与未添加荧光粉的PVC管相比,维卡值高了4.1℃,同时拉伸强度对应提高了8.2 MPa。

论文外文摘要:

Polymer materials exposed to the external environment for a long time, under the action of light and heat, the chain segment is easy to degrade, which affects the mechanical properties and chemical stability of the material, thus reducing the service life of the material and limiting its application. Based on this, this paper firstly optimized the optical properties of the phosphors prepared. On this basis, the phosphors were doped into the photocurable resin and PVC as inorganic filler and stabilizer respectively to obtain the corresponding polymer fluorescent material, so as to improve the mechanical properties and stability of the polymer material, and extend its service life. In this paper, rare earth phosphors are selected as the research matrix, which replaces the traditional inorganic filler, and different contents of phosphors are doped into the photocurable resin and PVC to obtain a series of fluorescent resins and PVC fluorescent tubes through SLA-3D printing and thermal processing respectively, so as to further study their mechanical properties and stability.

Firstly, LaP3O9:Eu3+ was prepared by co-precipitation method, the doping amount of Eu3+ was changed, and the calcination temperature of phosphor powder was compared before and after adding CDPVA.The properties of the obtained phosphors were systematically analyzed and it was found that: Controlling the addition amount of Eu3+ can improve the luminescent properties of the phosphors; Controlling the calcination temperature to refine the grains and uniformly distribute them in the matrix can also effectively improve the luminescent properties of the phosphors; Adding the phosphor powder after CDPVA will undergo the transition of 5D0→7F1 (orange light) magnetic dipole, and the absorption intensity of the corresponding peak under 5D0→7F1 (red light) at 680 nm will increase. It can be seen that the addition of CDPVA can improve the fluorescence. The luminous properties of the powder.

The prepared phosphors were doped into the photocurable resin system with different contents, and the fluorescent resin was obtained by curing and molding by SLA-3D printing. As nanoparticles, phosphor powder forms a cross-linked structure with the photosensitive resin system. When the material is subjected to external force, the stress is dispersed through the cross-linking points, so that the mechanical strength of the material is improved; Destruction within the material thus increases material stability and longevity. When the amount of phosphor added is 3%, the tensile strength of the fluorescent resin reaches a maximum of 42.43 MPa, the impact strength of the material reaches 11.37 kJ/m2, and the hardness reaches a peak value of 90 HD. The minimum change in hardness of the front and rear materials is 2 HD, and when the amount of phosphor added is 3%, the properties of the fluorescent resin are optimal.

The prepared fluorescent powder is added into PVC as a light stabilizer and a filler according to different proportions, and a PVC fluorescent tube is obtained by thermal processing. After adding phosphor, the thermal stability of PVC raw materials has been significantly improved, and the mechanical properties and stability of PVC fluorescent tubes have also been significantly improved; when the amount of phosphor added reaches 3%, the elongation at break reaches a maximum of 156%, and at the same time the highest Vicat value reached 83.6℃, and the tensile strength reached a peak value of 52.1 MPa; after 3 months of illumination in the PVC fluorescent tube chamber with 3% phosphor content, the change in indoor and outdoor elongation at break reached the lowest 13% , compared with the PVC pipe without phosphor powder, the Vicat value is 4.1℃ higher, and the tensile strength is correspondingly increased by 8.2 MPa.

参考文献:

[1] 张秀菊, 陈鸣才, 冯嘉春, 等. 稀土高分子光致发光材料的研究进展[J]. 中国塑料, 2002(05): 18-22.

[2] Li Z Q, Li X D, Liu Q Q, et al. Core/shell structured Na YF4:Yb3+/Er3+/Gd3+ nanorods with aunanoparticles or shells for flexible amorphous silicon solar cells[J]. Nanotechnology, 2012, 23(2): 025402.

[3] Yu D C, Ye S, Peng M Y, et al. Sequential three-step three-photon near-infrared quantumsplitting in β-Na YF4: Tm3+[J]. Applied Physics Letters, 2012, 100(19): 191911.

[4] Zhou S, Deng K, Wei X, et al. Upconversion luminescence of Na YF4:Yb3+, Er3+ for temperature sensing[J]. Optics Communications, 2013, 291(15): 138-142.

[5] Liu Q, Sun Y, Yang T, et al. Sub-10nm hexagonal lanthanide-doped Na Lu F4 upconversionnanocrystals for sensitive bioimaging in vivo[J]. Journal of the American Chemical Society, 2011, 133(43): 17122-17125.

[6] Shen J, Sun L D, Yan C H. Luminescent rare earth nanomaterials for bioprobe applications[J]. Dalton Transactions, 2008, 42: 5687-5697.

[7] Mitchell G P, Mirkin C A, Letsinger R L. Programmed assembly of DNA functionalizedquantum dots[J]. Journal of the American Chemical Society, 1999, 121(35): 8122-8123.

[8] Liu W H, Howarth M, Greytak A B, et al. Compact biocompatible quantum dots functionalized for cellular imaging[J]. Journal of the American Chemical Society, 2008, 130(4): 1274-1284.

[9] Austin M D, Warren C W C, Sangeeta N B. Probing the cytotoxicity of semiconductorquantum dots[J]. Nano Letters, 2003, 4(1): 11-18.

[10] Seeta R R G, YU J S. Novel orange and reddish-orange color emitting Ba Gd2O4:Sm3+ nanophosphors bysolvothermal reaction for LED and FED applications [J]. Spectrochimica acta Part A, Molecular and biomolecularspectroscopy, 2014, 124(38): 3-8.

[11] ABTMEYER S, PAZIK R, WIGLUSZ R J, et al. Lanthanum molybdate nanoparticles from the Bradley reaction: factors influencing their composition, structure, and functional characteristics as potential matrixes for luminescentphosphors[J]. Inorganic chemistry, 2014, 53(2): 943-951.

[12] RAJU G S, PAVITRA E, NAGARAJU G, et al. Versatile properties of Ca Gd2Zn O5: Eu3+ nanophosphor: itscompatibility for lighting and optical display applications[J]. Dalton transactions, 2015, 44(4): 1790-1799.

[13] 陈占恒. 稀土原材料价格上涨对稀土新材料生产成本的影响[J]. 稀土信息, 2013(03): 20-23.

[14] 黄海平. 稀土发光性能研究及其应用[J]. 有色金属科学与工程, 2011, 2(03): 9-12.

[15] 张中太, 张俊英. 无机光致发光材料及应用[M]. 化学工业出版社, 2005(20).

[16] 薛报. 固体发光[J]. 中国科学技术大学学报, 1977(01): 143-144.

[17] 肖志国, 罗音贤. 蓄光型发光材料及其制品[M]. 化学工业出版化, 2005(32).

[18] 洪广言. 稀土发光材料[M]. 科学出版社, 2010(11).

[19] YILDIZ E, SACMACI S, KARTAL S, et al. A new chelating reagent and application for coprecipitation of some metals in food samples by FAAS[J]. Food chemistry, 2016, 194(14): 3-8.

[20] Zeng L, Wang Y, Zhou J. Spectral analysis on origination of the bands at 437 nm and 475.5 nm of chlorophyll fluorescence excitation spectrum in arabidopsis chloroplasts[J]. Luminescence: the Journal of Biological And Chemical Luminescence, 2015, 132(14): 13-18.

[21] Smith M C, Ting W L, Chang C H, et al. UV absorption spectrum of the C2 Criegee intermediate CH3CHOO[J]. The Journal of Chemical Physics, 2014, 141(7): 074302.

[22] Toba R, Gotoh H, Sakakibara K. Scavenging and characterization of short-lived radicals using a novel stable nitroxide radical with a characteristic UV-vis absorption spectrum[J]. Organic Letters, 2014, 16(15): 3868-3871.

[23] Xu G T, Liang P, Wang L, et al. Progress in the research on silicon-nitrogen based phosphor for white LED[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 2907-2912.

[24] 戴洁. 稀土磷酸镧荧光粉的形貌控制合成及发光性能研究[D]. 青岛: 青岛科技大学, 2015.

[25] Tong H N, Zhang H, Cheng W D, et al. Synthesis, Structure and optical properties of cerium(iii) triphosphate CeP3O9[J]. Chinese Journal of Structure and Chemistry, 2007, 26(3): 338-346.

[26] Amami J, Ferid M, Trabelsi-ayedi M. Crystal structure and spectroscopic studies of Na Gd(PO3)4[J]. Materials Research Bulletin, 2005, 40(12): 2144-2152.

[27] Zhu J, Chen H, Wang R D, et al. An orthorhombic polymorph of lanthanum ultraphosphate LaP5O14: Synthesis, Structure and Density Functional Study[J]. Chinese Journal of Structure and Chemistry, 2011, 30(05): 648-653.

[28] 王彦照. 稀土掺杂的正(多)磷酸盐在UV和VUV下的发光和猝灭性质研究[D]. 甘肃: 兰州大学, 2013.

[29] 辛成荣. 稀土掺杂 Ba Ti O3介电陶瓷的溶胶凝胶的制备及其性能研究[D]. 杭州: 浙江大学, 2013.

[30] 李兴民. 共沉淀法合成长余辉材料及其特性研究[D]. 保定: 河北大学, 2006.

[31] 王焆, 李晨, 徐博. 溶胶-凝胶法的基本原理、发展及应用现状[J]. 化学工业与工程, 2009, 26(3): 273-277.

[32] 任书霞, 杨丹. 溶胶-凝胶法在纳米粉体制备中的应用[J]. 中国粉末技术, 2006, (1): 48-50.

[33] 施尔畏, 夏长泰, 王步国, 等. 水热法的应用与发展[J]. 无机材料学报, 1996, 11(2): 193-206.

[34] 张昌龙, 左艳彬, 何小玲, 等. 水热法生长晶体新进展[J]. 人工晶体学报, 2012, 41(S1): 242-246.

[35] 张学军, 唐思熠, 肇恒跃, 等. 3D打印技术研究现状和关键技术[J]. 材料工程, 2016, 44(02): 122-128.

[36] 杜宇雷, 孙菲菲, 原光, 等. 3D打印材料的发展现状[J].徐州工程学院学报(自然科学版), 2014, 29(1): 20-24.

[37] Yue J, Zhao P, Gerasimov J Y, et al. 3D‐printable antimicrobial composite resins[J]. Advanced Functional Materials, 2015, 25(43): 6756-6767.

[38] 刘莹莹, 陈进, 宁蕾, 等. 纳米氧化铝改性3D打印光敏材料的制备及性能研究[J]. 塑料工业, 2021, 49(10): 18-22.

[39] 曹嘉欣. SLA-3D打印光敏树脂的改性及其性能研究[D]. 西安: 西安科技大学, 2020.

[40] Ma X L. Research on Application of SLA technology in the 3D printing technology[J]. Applied Mechanics and Materials, 2013, 401-403: 938-941.

[41] 王广春, 袁圆, 刘东旭. 光固化快速成型技术的应用及其进展[J]. 航空制造技术, 2011(06): 26-29.

[42] 丁安心, 王继辉, 倪爱清, 等. 热固性树脂基复合材料固化变形解析预测研究进展[J]. 复合材料学报, 2018, 35(06): 1361-1376.

[43] 马思源, 郭 强, 张 荻. 纳米Al2O3增强金属基复合材料的研究进展[J]. 中国材料进展, 2019, 38(6): 577-587.

[44] 孙跃军, 荀冬雪, 刘 民. 纳米氧化铝粉体制备方法与工艺的研究进展[J]. 中国材料进展, 2017, 36(06): 455-460.

[45] A J S, A Q G, A Q O, et al. Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al–Zn–Mg–Cu composites-ScienceDirect[J]. Materials Science & Engineering A, 2015, 644(644): 79-84.

[46] Zhang L, Feng J, Li Z, et al. Interface structure and strength of brazed joints between TiC ceramic and iron[J]. Science and Technology of Welding & Joining, 2004, 9(3): 280-282.

[47] Yan Y, Chen L. Processing of B4C particulate-reinforced magnesium-matrix composites by metal-assisted melt infiltration technique[J]. Journal of Materials Science & Technology, 2014, 30(07): 661-665.

[48] Li H, Liu Y, Liu Y, et al. Influence of sintering temperature and CVI time on mechanical properties of 3D-printed alumina ceramics[J]. Materials Letters, 2021, 285: 129096.

[49] Cardoso P, Oliveira M, Oliveira M, et al. 3D printed parts of polylactic acid reinforced with carbon black and alumina nanofillers for tribological applications[J]. Macromolecular Symposia, 2020, 394(1): 2000155.

[50] Akimov A S, Akimov Al S, Sviridenko N N, et al. Synthesis and application of cobalt and polyoxomolybdate-containing alumina systems[J]. Journal of Physics: Conference Series, 2020, 1611(1): 012027.

[51] Kadhim W A, Khalaf A L, Azeez R A , et al. Effect of doping alumina by nano Mn on the sensing applications[J]. Materials Science Forum, 2020, 1002: 273-281.

[52] Silva M D N, Kassab E, Pandoli O G, et al. Corrosion behaviour of an epoxy paint reinforced with carbon nanoparticles[J]. Corrosion Engineering Science and Technology, 2020(3): 1-6.

[53] 庞维强, 樊学忠, 张教强. 纳米颗粒在制备过程中团聚现象的研究进展[J]. 化学工业与工程技术, 2008(03): 19-23.

[54] Solangi K H, Kazi S N, Luhur M R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids[J]. Energy, 2015, 89(sep.): 1065-1086.

[55] Liu K, Shi Y, Li C, et al. Indirect selective laser sintering of epoxy resin-Al2O3 ceramic powders combined with cold isostatic pressing[J]. Ceramics International, 2014, 40(5): 7099-7106.

[56] 刘凯. 陶瓷粉末激光烧结/冷等静压复合成形技术研究[D]. 武汉: 华中科技大学, 2014.

[57] 宁会峰, 阎相忠, 朱悦, 等. 水基光固化陶瓷浆料的粘度与分散性研究[J]. 硅酸盐通报, 2017, 36(11): 3944-3949.

[58] Qiao, Yu, Sun, et al. Thermal degradation of PVC: A review[J]. Waste Management, 2016, 48(2): 300-314.

[59] Hasan N. Molecular dynamic simulation of the density and mechanical properties of polyvinyl chloride(PVC)/high density polyethylene (HDPE) composites based on materials studio[J]. Journal of Physics: Conference Series, 2019, 1294: 052062.

[60] Liu Y, Zhou C, Li F, et al. Stocks and flows of polyvinyl chloride (PVC) in China: 1980-2050[J]. Resources Conservation and Recycling, 2020, 154: 104584.

[61] C. Wang, H. Liu, J. Zhang, et al. Thermal degradation of flflame-retarded high-voltage cable sheath and insulation via TG-FTIR[J]. Anal. Appl. Pyrol, 2018, 134(06): 167-175.

[62] Wang C, Liu H, Zhang J, et al. Thermal degradation of flame-retarded high-voltage cable sheath and insulation via TG-ftir[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134(Sep.): 167-175.

[63] Horsfield B, Schenk H J, Mills N, et al. An investigation of the in-reservoir conversion of oil to gas: compositional and kinetic findings from closed-system programmed-temperature pyrolysis[J]. Organic Geochemistry, 2019, 19(1992): 191-204.

[64] Huang X, Nakamura Y. A Review of Fundamental Combustion Phenomena in Wire Fires[J]. Fire Technology, 2020, 56(1): 315-360.

[65] Wang Z, Wei R C, Wang X H, et al. Pyrolysis and Combustion of Polyvinyl Chloride (PVC) Sheath for New and Aged Cables via Thermogravimetric Analysis-Fourier Transform Infrared (TG-FTIR) and Calorimeter[J]. Materials, 2018, 11(10): 1997-2012.

[66] Mcneill I C, Memetea L, Cole W J. A study of the products of PVC thermal degradation[J]. Polymer Degradation and Stability, 1995, 49: 181-191.

[67] Zhu H M, Jiang X G, Yan J H, et al. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. Journal of Analytical & Applied Pyrolysis, 2008, 82: 1-9.

[68] Fu, Q. The pyrolysis of inorganic fire retardant polyolefin cable materials[J]. Procedia Engineering, 2016, 135: 293-298.

[69] Witkowski A, Girardin B, Foersth M, et al. Development of an anaerobic pyrolysis model for fire retardant cable sheathing materials[J]. Polymer Degradation & Stability, 2015, 113(mar.): 208-217.

[70] Kameda T, Fukushima S, Grause G, et al. Metal recovery from wire scrap via a chloride volatilization process: poly(vinyl chloride) derived chlorine as volatilization agent[J]. Thermochim. Acta, 2013, 562: 65-69.

[71] Zhang B, Yan X Y, Shibata K, et al. Thermogravimetric-mass spectrometric analysis of the reactions between oxide (ZnO, Fe2O3 or ZnFe2O4) and polyvinyl chloride under inert atmosphere[J]. Materials Transactions, 2007, 41(10): 1342-1350.

[72] Purmova J, Pauwels K, Zoelen W V, et al. New insight into the formation of structural defects in poly(vinyl chloride)[J]. Macromolecules, 2005, 38(15): 6352-6366.

[73] Starnes W H. Structural defects in poly(vinyl chloride)[J]. Journal of Polymer Science Part A Polymer Chemistry, 2005, 43(12): 2451-2467.

[74] 付勰, 皮红, 郭少云. PVC材料抗紫外老化研究进展[J]. 聚氯乙烯, 2008(10): 1-5.

[75] 石巍. 聚氯乙烯紫外光稳定性研究进展[J]. 塑料科技, 2007, 35(2): 88-95.

[76] 刘庆艳, 杨占红, 易师. 复合水滑石热稳定剂对PVC热稳定性能的影响[J]. 中国有色金属学报, 2010, 20(2): 363-370.

[77] 李振宇, 李德龙, 李克, 等. 稀土热稳定剂在PVC配方设计中的应用研究[J]. 塑料科技, 2013, 41(4): 111-114.

[78] 张宁. 月桂酸稀土复合热稳定剂对PVC热稳定作用的研究[J]. 中国稀土学报, 2014, 32(3): 363-369.

[79] 王冲, 南辉, 王刚. 纳米 TiO2包覆改性研究及其对PVC性能影响[J]. 工程塑料应用, 2015, 41(1): 108-111.

[80] 申雄军, 周忠诚, 舒万艮. 甘油锌对PVC的光稳定作用[J]. 塑料科技, 2008, 36( 4): 84-87.

[81] 李影, 刘建中, 张洋, 等. PVC基木塑复合材料抗老化性能研究[J]. 工程塑料应用, 2014, 42(6): 79-82.

[82] Fahmi M M, Mohamed N A. N-(Substituted phenyl) itaconimides as organic stabilizers for plasticized poly(vinyl chloride) against photo-degradation[J]. Polymer Degradation and Stability, 2007, 92(4): 733-740.

[83] Mohamed N A, Fahmi M M. N-(Substituted phenyl) itaconimide-phenyl salicylate blends as organic stabilizersfor plasticized poly(vinyl chloride)against photo-degradation[J]. Polymer Degradation and Stability, 2007, 92(6): 1003-1008.

[84] 刘海军. PVC用有机稳定剂 N-取代基苯基衣康酰亚胺的光稳定作用[J]. 塑料助剂, 2010(6): 11-14.

[85] Chai R, Chen S, Zhang J. Combined effect of hindered amine light stabilizer and ultraviolet absorbers on photodegradation of poly(vinyl chloride). Journal of Vinyl & Additive technology, 2012, 18(1): 17-25.

[86] Chai R D, Chen S J, Zhang J. Combined effect of hindered amine light stabilizer and antioxidants on photodegradation of poly(vinyl chloride)[J]. Journal of Thermoplastic Composite Materials, 2012, 25(7): 879-894.

中图分类号:

 TB324    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式