- 无标题文档
查看论文信息

论文中文题名:

 井下照度对矿工抑制控制能力影响的ERPs研究    

姓名:

 陈彦霖    

学号:

 21202098056    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 1202    

学科名称:

 管理学 - 工商管理    

学生类型:

 硕士    

学位级别:

 管理学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 管理学院    

专业:

 工商管理    

研究方向:

 安全与应急管理    

第一导师姓名:

 李红霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-07    

论文外文题名:

 An ERPs Study on the Impact of Underground Illumination on Miners’ Inhibitory Control Ability    

论文中文关键词:

 矿工 ; 抑制控制 ; 照度条件 ; 习惯性违章 ; 事件相关电位(ERPs)    

论文外文关键词:

 Miner ; Inhibitory Control ; Illumination Condition ; Habitual Violations ; Event-Related Potentials (ERPs)    

论文中文摘要:

在当前技术快速发展的背景下,虽然我国煤矿生产取得了较好的发展,但总体安全形势仍不容乐观。研究显示,违章行为,尤其是习惯性违章,在人因事故中占较大比例,这类行为通常因抑制控制能力的下降而产生。因此,防止工人抑制控制能力衰退,减少习惯性违章行为,是降低事故率的关键。煤矿井下的低照度状况对个体的生理和心理有着不同程度的影响,但目前关于照度条件如何影响抑制控制能力的研究尚存在分歧,尚无利用脑电和行为数据预测个体抑制控制水平方面的研究。本文专注于不同照度环境下,个体在执行抑制控制任务时的抑制控制水平差异,旨在明确照度对个体抑制控制能力的影响,并开发预测个体抑制控制水平的机器学习模型,以降低习惯性违章行为,提升煤矿安全水平。

本文探讨了照度变化对个体抑制控制能力的影响机理,基于环境应激与行为心理学的理论,构建了照度对矿工抑制控制能力的影响机制模型。通过事件相关电位(ERP)技术,设计了模拟井下照度环境的Go/No-go任务,以收集个体的行为和生理数据。最后,通过对脑电活动特征及行为数据进行数据预处理和特征选择,开发了一个基于逻辑回归算法的预测模型,以预测不同照度条件下矿工的抑制控制水平。结果显示:(1)300Lux的照度诱发了更强的N200和P300波幅,表明高照度环境相比于低照度能够提高个体的警觉状态和注意力;(2)对照组与实验组被试的反应时与正确率均存在显著差异,进一步验证了井下环境中的低照度对矿工抑制控制能力具有显著影响,进而在抑制控制任务中引发更敏锐的认知抑制反应;(3)基于逻辑回归的抑制控制水平预测模型表现出高达90%的整体准确率,并在交叉验证中平均准确率达到85.70%,证明了其出色的预测能力和泛化性能;(4)不同预测特征的SHAP值散点图显示,C4电极点Go刺激诱发的N100波幅对预测高抑制控制水平最为重要,其波幅越大,对预测个体高水平抑制控制能力的贡献越大。此外,位于大脑的右侧额顶区域的C4电极的脑电活动成分(N100和P300),在Go/No-go任务中显示出对预测抑制控制水平具有重要作用。

综上所述,本文分析了井下照度对煤矿工人抑制控制能力的心理及神经机制,开发了基于逻辑回归算法的个体抑制控制水平预测模型,利用SHAP值解释了不同脑电特征对预测目标的重要性程度,为控制习惯性违章行为提供了新的研究视角和方法论。

论文外文摘要:

In the context of rapid technological advancements, despite significant progress in China's coal mining production, the overall safety situation remains concerning. Research indicates that violations, especially habitual violations, account for a substantial proportion of human-factor accidents, often stemming from a decline in inhibitory control abilities. Therefore, preventing the decline in workers' inhibitory control capabilities and reducing habitual violations are key to lowering accident rates. The low illumination conditions in coal mines affect individuals' physiological and psychological states to varying degrees. However, current research on how illumination affects inhibitory control is inconclusive, and there is a lack of studies using electroencephalography (EEG) and behavioral data to predict levels of inhibitory control. This thesis focuses on the differences in inhibitory control levels under various illumination conditions during inhibitory control tasks, aiming to clarify the impact of illumination on individual inhibitory control abilities and to develop a machine learning model to predict these levels, thereby reducing habitual violations and enhancing mine safety.

This study explores the mechanisms by which illumination variations affect individual inhibitory control capabilities. Based on theories of environmental stress and behavioral psychology, a model of the impact of illumination on miners' inhibitory control capabilities was constructed. Using event-related potentials (ERPs) technology, a Go/No-go task simulating underground illumination conditions was designed to collect individual behavioral and physiological data. Subsequently, through data preprocessing and feature selection of EEG activity and behavioral data, a prediction model based on logistic regression was developed to predict miners' inhibitory control levels under different illumination conditions. The results indicate: (1) Illumination of 300 Lux induced stronger N200 and P300 amplitudes, suggesting that higher illumination improves individuals' alertness and attention compared to lower illumination; (2) Significant differences in reaction times and accuracy rates between control and experimental groups further validate the significant impact of low illumination in underground environments on miners' inhibitory control capabilities, leading to more acute cognitive inhibitory responses during inhibitory control tasks; (3) The inhibitory control level prediction model based on logistic regression demonstrated an overall accuracy of up to 90%, with an average accuracy of 85.70% in cross-validation, proving its excellent predictive capability and generalizability; (4) Scatter plots of SHAP values of different predictive features showed that the N100 amplitude induced by Go stimuli at the C4 electrode is most crucial for predicting high levels of inhibitory control, with larger amplitudes contributing more significantly to predicting high levels of individual inhibitory control. Additionally, the EEG components (N100 and P300) at the C4 electrode, located in the right frontal-parietal region of the brain, played an important role in predicting inhibitory control levels during the Go/No-go task.

In summary, this thesis analyzed the psychological and neural mechanisms of underground illumination on the inhibitory control abilities of coal miners, developed a logistic regression-based model for predicting individual inhibitory control levels, and utilized SHAP values to elucidate the importance of different EEG features in predicting the target, providing new perspectives and methodologies for controlling habitual violations.

参考文献:

[1] 张玉峰. 关于我国煤炭可持续发展的探讨 [J]. 中国煤炭地质, 2018, 30(S1): 56-59.

[2] 中华人民共和国2023年国民经济和社会发展统计公报 [N]. 人民日报2024-03-01.

[3] 郝玉双. 2003—2021年中国煤矿安全生产事故统计及研究热点分析 [J]. 能源技术与管理, 2023, 48(01): 192-196.

[4] 徐保财. 我国煤矿深部开采现状及灾害防治分析 [J]. 中国石油和化工标准与质量, 2020, 40(16): 192-193.

[5] 李磊, 曹礼荣, 李世银, 等. 非正式组织视角下领导行为对煤矿工人不安全行为博弈分析 [J]. 西安科技大学学报, 2022, 42(06): 1088-1095.

[6] 陈伟珂, 武晓燕. 基于突变理论的建筑工人不安全行为研究 [J]. 安全与环境学报, 2017, 17(05): 1838-1843.

[7] 王文轲, 张燕, 赵源怡, 等. 基于社会网络的民航飞行不安全行为影响因素关系研究 [J]. 科技导报, 2020, 38(12): 149-158.

[8] 夏润禾, 乔晓延, 吴洪群. 地铁车站施工工人不安全行为致因分析及防范研究 [J]. 隧道建设(中英文), 2021, 41(06): 1024-1031.

[9] 李磊, 李睿涵, 支梅, 等. 基于非正式组织视角的煤矿工人不安全行为致因研究 [J]. 煤矿安全, 2022, 53(01): 252-256.

[10] 马小勇, 刘成, 王永杰, 等. 自我控制与环境暗示对矿工不安全行为的影响 [J]. 技术与创新管理, 2022, 43(05): 589-596.

[11] ALROOMI A S, MOHAMED S. Occupational Stressors and Safety Behaviour among Oil and Gas Workers in Kuwait: The Mediating Role of Mental Health and Fatigue [J]. International Journal of Environmental Research and Public Health, 2021, 18(21).

[12] TONG R, WANG X, WANG L, et al. A dual perspective on work stress and its effect on unsafe behaviors: The mediating role of fatigue and the moderating role of safety climate [J]. Process Safety and Environmental Protection, 2022, 165: 929-940.

[13] YOU X-D, ZHU L, LIU Z-G, et al. Experimental Study on the Relationship between Fatigue and Unsafe Behavior of Urban Rail Transit Drivers [J]. Transportation Research Record, 2021, 2675(10): 1151-1160.

[14] 田水承, 赵钊颖, 范彬彬, 等. 矿工疲劳与不安全行为的SEM研究 [J]. 煤矿安全, 2022, 53(06): 247-251.

[15] 周建亮, 胡飞翔, 邢艳冬, 等. 工作压力、职业倦怠对建筑工人不安全行为的影响 [J]. 中国安全科学学报, 2022, 32(11): 14-22.

[16] KOLTAI J, SCHIEMAN S. Job Pressure and SES-contingent Buffering: Resource Reinforcement, Substitution, or the Stress of Higher Status? [J]. Journal of Health and Social Behavior, 2015, 56(2): 180-198.

[17] 王政, 李延军, 严曲, 等. 监控作业脑力疲劳综合评定方法研究 [J]. 航天医学与医学工程, 2010, 23(01): 20-24.

[18] 叶贵, 王妍, 任梦雪, 等. 体力疲劳对建筑工人不安全行为的影响效应研究 [J]. 中国安全生产科学技术, 2023, 19(01): 122-127.

[19] 江典在. 大学生长时认知脑疲劳对抑制控制能力的影响及运动干预 [J]. 通化师范学院学报, 2015, 36(10): 114-116+123.

[20] BRYDGES C R, CLUNIES-ROSS K, CLOHESSY M, et al. Dissociable components of cognitive control: An event-related potential (ERP) study of response inhibition and interference suppression [J]. PLoS ONE, 2012, 7(3).

[21] BURKE W W. Organization change: Theory and practice [M]. Thousand Oaks, CA, US: Sage Publications, Inc, 2002.

[22] BECKMAN C M, BURTON M D. Founding the Future: Path Dependence in the Evolution of Top Management Teams from Founding to IPO [J]. Organization Science, 2008, 19(1): 3-24.

[23] 赵浩, 毛开江, 曲业明, 等. 我国露天煤矿无人驾驶及新能源卡车发展现状与关键技术 [J]. 中国煤炭, 2021, 47(04): 45-50.

[24] 吴金刚, 高建良, 支光辉. 井下环境因素对人为失误的影响 [J]. 煤炭工程, 2005, (09): 40-41.

[25] LI B, WANG E, SHANG Z, et al. Quantification study of working fatigue state affected by coal mine noise exposure based on fuzzy comprehensive evaluation [J]. Safety Science, 2022, 146.

[26] 任大伟, 徐小华, 梁亚敏, 等. 煤矿井下作业疲劳影响因素及对策研究 [J]. 煤矿安全, 2019, 50(03): 231-234.

[27] BAUERLE T J, SAMMARCO J J, DUGDALE Z J, et al. The human factors of mineworker fatigue: An overview on prevalence, mitigation, and what's next [J]. American Journal of Industrial Medicine, 2022, 65(11): 832-839.

[28] 孔群, 陆刚, 史德强, 等. 煤矿井下照明与电钻打眼工工作效率研究 [J]. 煤炭工程, 2015, 47(05): 122-124.

[29] 蒋方, 姜蒙生, 李波. 矿灯照度对人生理心理及视觉表现的影响 [J]. 安全与环境学报, 2022, 22(02): 851-858.

[30] FANG Y, LIU C, ZHAO C, et al. A Study of the Effects of Different Indoor Lighting Environments on Computer Work Fatigue [J]. International Journal of Environmental Research and Public Health, 2022, 19(11).

[31] 姚庆国, 郭秀菊, 张学睦. 基于SEM理论的沟通满意度对煤矿矿工不安全行为的影响研究 [J]. 安全与环境工程, 2017, 24(06): 101-106.

[32] 贺莹鸽, 连民杰, 江松, 等. 矿工习惯性违章行为风险态势评估 [J]. 中国安全科学学报, 2020, 30(12): 62-69.

[33] CHU C-H, ALDERMAN B, WEI W, et al. Effects of acute aerobic exercise on motor response inhibition: An ERP study using the stop-signal task [J]. Journal of Sport and Health Science, 2015, 32.

[34] YUAN J J, YANG J M, MENG X X, et al. The valence strength of negative stimuli modulates visual novelty processing: Electrophysiological evidence from an event-related potential study [J]. Neuroscience, 2008, 157(3): 524-531.

[35] FRIEDMAN N, MIYAKE A. The Relations Among Inhibition and Interference Control Functions: A Latent-Variable Analysis [J]. Journal of experimental psychology General, 2004, 133: 101-135.

[36] LOGAN G D, COWAN W B. On the ability to inhibit thought and action: A theory of an act of control [J]. Psychological Review, 1984, 91(3): 295-327.

[37] HARNISHFEGER K K. 6 - The development of cognitive inhibition: Theories, definitions, and research evidence [M]. DEMPSTER F N, BRAINERD C J, BRAINERD C J. Interference and Inhibition in Cognition. San Diego; Academic Press. 1995: 175-204.

[38] SMITH E E, JONIDES J. Storage and executive processes in the frontal lobes [J]. Science, 1999, 283(5408): 1657-1661.

[39] NIGG J T. On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy [J]. Psychological Bulletin, 2000, 126(2): 220-246.

[40] 殷恒婵, 潘家礼, 刘敏, 等. 运动干预对学习困难、普通小学生执行功能影响的时程效益比较 [J]. 中国特殊教育, 2017, (06): 55-62.

[41] 王雪珂, 冯廷勇. “冷”/“热”执行功能缺陷影响ADHD儿童核心症状的作用机制 [J]. 心理科学进展: 1-23.

[42] 李凡, 郑力瑾, 肖永涛. 自闭症儿童的抑制控制特征研究进展 [J]. 中国医药科学, 2023, 13(16): 45-48.

[43] 高淑青, 王肖, 刘洁, 等. 急性有氧运动影响抑制控制:手动任务与眼动任务敏感性的差异 [J]. 中国运动医学杂志, 2023, 42(02): 102-108.

[44] 李美华, 沈德立, 白学军. 不同年级学生抑制控制研究 [J]. 心理与行为研究, 2007, (03): 188-193.

[45] 文萍, 李红. 6~11岁儿童执行功能发展研究 [J]. 心理学探新, 2007, (03): 38-43.

[46] TUN P A, O'KANE G, WINGFIELD A. Distraction by competing speech in young and older adult listeners [J]. Psychology and aging, 2002, 17(3): 453-467.

[47] 江大雷, 曾从周. 8周中等强度足球运动游戏对学龄前儿童执行功能发展的影响 [J]. 中国体育科技, 2015, 51(02): 43-50.

[48] 王天宇, 王明怡. 睡眠对儿童执行功能的影响 [J]. 心理科学进展, 2015, 23(09): 1560-1567.

[49] 张桃娟, 刘爱书. 儿童期虐待对抑制控制功能的影响及其脑机制 [J]. 中国特殊教育, 2016, (03): 83-88.

[50] HILLMAN C H, BUCK S M, THEMANSON J R, et al. Aerobic fitness and cognitive development: Event-related brain potential and task performance indices of executive control in preadolescent children [J]. Developmental psychology, 2009, 45(1): 114-129.

[51] VOELCKER-REHAGE C, GODDE B, STAUDINGER U. Cardiovascular and Coordination Training Differentially Improve Cognitive Performance and Neural Processing in Older Adults [J]. Frontiers in human neuroscience, 2011, 5: 26.

[52] CHANG Y-K, CHI L, ETNIER J L, et al. Effect of acute aerobic exercise on cognitive performance: Role of cardiovascular fitness [J]. Psychology of Sport and Exercise, 2014, 15(5): 464-470.

[53] 张阔, 冯金奎, 鄂立军. 照度测量不确定度研究 [J]. 中国特种设备安全, 2022, 38(10): 22-25+41.

[54] 袁樵. 国际照明委员会照明标准——室内工作场所照明 [J]. 照明工程学报, 2002, (04): 55-60.

[55] 郭燕, 施喜书, 周瑜. 煤矿井下照明的分析与研究 [J]. 煤炭工程, 2013, 45(S2): 128-129.

[56] 中煤科工集团武汉设计研究院有限公司, 中煤科工集团北京华宇工程有限公司. 煤矿井下供配电设计规范 [Z]. 中华人民共和国住房和城乡建设部;中华人民共和国国家质量监督检验检疫总局. 2017: 57

[57] 中煤科工集团上海研究院, 中煤科工集团沈阳研究院, 中煤科工集团重庆研究院, 等. 瓦斯环境用矿灯结构、性能和防爆试验通用要求 [Z]. 中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会. 2017: 20

[58] 矿灯用LED及LED光源组技术条件 [Z]. 煤炭行业标准. 2009: 12p:A14

[59] BRAINARD G C, HANIFIN J P. Photons, clocks, and consciousness [J]. Journal of biological rhythms, 2005, 20(4): 314-325.

[60] BERSON D M, DUNN F A, TAKAO M. Phototransduction by retinal ganglion cells that set the circadian clock [J]. Science (New York, NY), 2002, 295(5557): 1070-1073.

[61] 曾强, 何士刚. 视网膜中的自主感光神经节细胞 [J]. 生物物理学报, 2011, 27(05): 387-394.

[62] 毛天欣, 熊晓, 李静华, 等. 光照的警觉性作用 [J]. 心理科学进展, 2018, 26(07): 1213-1222.

[63] 李芸, 汝涛涛, 李丝雨, 等. 环境光照对情绪的影响及其作用机制 [J]. 心理科学进展, 2022, 30(02): 389-405.

[64] CAJOCHEN C, ZEITZER J M, CZEISLER C A, et al. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness [J]. Behavioural brain research, 2000, 115(1): 75-83.

[65] GOLDEN R N, GAYNES B N, EKSTROM R D, et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence [J]. The American journal of psychiatry, 2005, 162(4): 656-662.

[66] KURLANSIK S L, IBAY A D. Seasonal affective disorder [J]. American family physician, 2012, 86(11): 1037-1041.

[67] MEESTERS Y, DUIJZER W B, HOMMES V. The effects of low-intensity narrow-band blue-light treatment compared to bright white-light treatment in seasonal affective disorder [J]. Journal of Affective Disorders, 2018, 232: 48-51.

[68] ZHANG J, DAI W. Research on Night Light Comfort of Pedestrian Space in Urban Park [J]. Computational and Mathematical Methods in Medicine, 2021, 2021: 1-14.

[69] YUE L, TANG Y, KANG Q, et al. Deficits in response inhibition on varied levels of demand load in anorexia nervosa: an event-related potentials study [J]. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 2020, 25(1): 231-240.

[70] LUIJTEN M, KLEINJAN M, FRANKEN I H A. Event-related potentials reflecting smoking cue reactivity and cognitive control as predictors of smoking relapse and resumption [J]. Psychopharmacology, 2016, 233(15): 2857-2868.

[71] YAN W-S, LIU M-M, LIU S-J. A Behavioral and Event-Related Potentials Study of Food-Related Inhibitory Control in Probable Binge Eating Disorder [J]. Psychology Research and Behavior Management, 2023: 4737-4748.

[72] CHIKARA R K, KOMAROV O, KO L-W. Neural signature of event-related N200 and P300 modulation in parietal lobe during human response inhibition [J]. International Journal of Computational Biology and Drug Design, 2018, 11(1-2): 171-182.

[73] TRUJILLO-ORREGO N. [N200: an electrophysiological signal associated with inhibitory control, as an endophenotype candidate in attention deficit hyperactivity disorder] [J]. Revista de neurologia, 2011, 53(1): 35-43.

[74] SHI H. Inhibition modulated by self-efficacy: An event-related potential study [J]. Frontiers in Psychology, 2022, 13: 904132.

[75] D’AGATI E, HOEGL T, DIPPEL G, et al. Motor cortical inhibition in ADHD: modulation of the transcranial magnetic stimulation-evoked N100 in a response control task [J]. Journal of Neural Transmission, 2014, 121(3): 315-325.

[76] TERRASA J L, MONTOYA P, GONZáLEZ-ROLDáN A M, et al. Inhibitory Control Impairment on Somatosensory Gating Due to Aging: An Event-Related Potential Study [J]. Frontiers in Human Neuroscience, 2018, 12.

[77] ASSARI S. Parental Education and Youth Inhibitory Control in the Adolescent Brain Cognitive Development (ABCD) Study: Blacks’ Diminished Returns [J]. Brain Science, 2020, 10(5): 312.

[78] SCHAUM M, PINZUTI E, SEBASTIAN A, et al. Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans [J]. eLife, 2021, 10: e61679.

[79] BAUM A S, SINGER J E, BAUM C S. Stress and the Environment [J]. Journal of Social Issues, 1981, 37: 4-35.

[80] BAUM A, POSLUSZNY D M. Health psychology: mapping biobehavioral contributions to health and illness [J]. Annual review of psychology, 1999, 50: 137-163.

[81] PRYCE C R, FUCHS E. Chronic psychosocial stressors in adulthood: Studies in mice, rats and tree shrews [J]. Neurobiology of Stress, 2016, 6: 94 - 103.

[82] HAUGHTON MCNEILL L, WYRWICH K, BROWNSON R C, et al. Individual, social environmental, and physical environmental influences on physical activity among black and white Adults: A Structural Equation Analysis [J]. Annals of Behavioral Medicine, 2006, 31: 36-44.

[83] HOCHMAN S, HENIK A, KALANTHROFF E. Stopping at a red light: Recruitment of inhibitory control by environmental cues [J]. PLoS ONE, 2018, 13.

[84] STEIDLE A, WERTH L. In the spotlight: Brightness increases self-awareness and reflective self-regulation [J]. Journal of Environmental Psychology, 2014, 39: 40-50.

[85] DIJK D-J, ARCHER S N. Light, Sleep, and Circadian Rhythms: Together Again [J]. PLoS Biology, 2009, 7.

[86] FIGUEIRO M G, STEVERSON B, HEERWAGEN J, et al. The impact of daytime light exposures on sleep and mood in office workers [J]. Sleep Health, 2017, 3: 204–215.

[87] BEDROSIAN T A, NELSON R J. Timing of light exposure affects mood and brain circuits [J]. Translational Psychiatry, 2017, 7.

[88] NEAL D, WOOD W, QUINN J. Habits—A Repeat Performance [J]. Current Directions in Psychological Science, 2006, 15: 198-202.

[89] JUDAH G, GARDNER B, KENWARD M G, et al. Exploratory study of the impact of perceived reward on habit formation [J]. BMC Psychology, 2018, 6.

[90] GARDNER B, REBAR A L. Habit formation and behavior change [M]. Oxford research encyclopedia of psychology. 2019.

[91] MAZAR A, WOOD W. Defining habit in psychology [J]. The psychology of habit: Theory, mechanisms, change, contexts, 2018: 13-29.

[92] RANKIN C H, ABRAMS T, BARRY R J, et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation [J]. Neurobiology of learning memory, 2009, 92(2): 135-138.

[93] CUCCHIELLA F, ROTILIO M, ANNIBALDI V, et al. A decision-making tool for transition towards efficient lighting in a context of safeguarding of cultural heritage in support of the 2030 agenda [J]. Journal of Cleaner Production, 2021, 317: 128468.

[94] HOVORUSHCHENKO T, ALEKSOV S, ISHTVAN E, et al. Recognizing the Situations and Supporting the Decision-Making in the Residential Luminosity Control Subsystem of «Smart House» Cyber-Physical System [Z]. 2023: 566-588

[95] CARLI R, DOTOLI M, PELLEGRINO R. A decision-making tool for energy efficiency optimization of street lighting [J]. Computers & Operations Research, 2018, 96: 223-235.

[96] CRISTEA M, ADRIAN TîRNOVAN R, CRISTEA C, et al. A multi-criteria decision making approach in lighting technology selection for a production hall [J]. MATEC Web Conf, 2018, 184: 04007.

[97] JI H, WU X. A Novel Method of Combining Decision Making and Optimization for LiFi Resource Allocation; proceedings of the 2022 IEEE Globecom Workshops (GC Wkshps), F 4-8 Dec. 2022, 2022 [C].

[98] 松竹 貴, 夏原 隆, 小井土 正, 等. 競技力が高いサッカー選手の状況判断時における脳内情報処理過程 −事象関連電位と筋電図反応時間を指標として− [J]. 体力科学, 2018, 67(1): 107-123.

[99] MEDINA J M, DíAZ J A, NORWICH K H. A theory of power laws in human reaction times: insights from an information-processing approach [J]. Frontiers in Human Neuroscience, 2014, 8.

[100] MOUELHI GUIZANI S, TENENBAUM G, BOUZAOUACH I, et al. Information-processing under incremental levels of physical loads: comparing racquet to combat sports [J]. Sports Med Phys Fitness, 2006, 46(2): 335-343.

[101] LO Y-H, CHIU A, TSENG P. Driving Frequency Modulates Correlations Between Executive Functions and Driving Performance: A Driving Simulator Study [J]. Perceptual and Motor Skills, 2023, 130(6): 2410-2429.

[102] KASHIHARA K. Automatic Discrimination of Task Difficulty Predicted by Frontal EEG Activity During Working Memory Tasks in Young and Elderly Drivers [J]. International Journal of Information Technology & Decision Making, 2022, 21(04): 1189-1231.

[103] HUANG Y-Y, MENOZZI M. Evaluation of Risky Driving Performance in Lighting Transition Zones Near Tunnel Portals; proceedings of the Proceedings of the Institute of Industrial Engineers Asian Conference 2013, Singapore, F 2013//, 2013 [C]. Springer Singapore.

[104] FERENCOVA N, VISNOVCOVA Z, OLEXOVA L B, et al. Eye pupil–a window into central autonomic regulation via emotional/cognitive processing [J]. Physiological Research, 2021, 70(Suppl 4): S669.

[105] LI N, FU D, GUO C, et al. Study on the influence of different color temperature and illumination environment on cognitive processing depth [J]. Evolutionary Intelligence, 2024, 17(1): 21-30.

[106] DE RUYTER B, VAN DANTZIG S. Ambient Lighting Atmospheres for Influencing Emotional Expressiveness and Cognitive Performance; proceedings of the Ambient Intelligence, Cham, F 2019//, 2019 [C]. Springer International Publishing.

[107] ANDERSSON M, KANWAL S, KHAN F. Cognitive-inspired Post-processing of optical character recognition for Swedish addresses; proceedings of the 2022 IEEE 21st International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), F 8-10 Dec. 2022, 2022 [C].

[108] XIE S, SUN Z, DING S, et al. Effects of Interior Lighting in Confined Space on Cognition and Performance; proceedings of the 2023 15th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), F 26-27 Aug. 2023, 2023 [C].

[109] ASADAMRAJI M, SAFFARZADEH M, ROSS V, et al. A novel driver hazard perception sensitivity model based on drivers’ characteristics: A simulator study [J]. Traffic Injury Prevention, 2019, 20(5): 492-497.

[110] ASSARI S. Parental Education and Youth Inhibitory Control in the Adolescent Brain Cognitive Development (ABCD) Study: Blacks’ Diminished Returns [J/OL] 2020, 10(5):

[111] PERUYERO F, ZAPATA J, PASTOR D, et al. The Acute Effects of Exercise Intensity on Inhibitory Cognitive Control in Adolescents [J]. Frontiers in Psychology, 2017, 8.

[112] JORET M-E, GERMEYS F, GIDRON Y. Cognitive inhibitory control in children following early childhood music education [J]. Musicae Scientiae, 2016, 21(3): 303-315.

[113] GRECO E, SPEZZANO G. Human-Centered Reinforcement Learning for Lighting and Blind Control in Cognitive Buildings [M]. CICIRELLI F, GUERRIERI A, VINCI A, et al. IoT Edge Solutions for Cognitive Buildings. Cham; Springer International Publishing. 2023: 285-303.

[114] AKDAL G, TANRıVERDIZADE T, KOçOĞLU K, et al. Menière’s disease with migraine, Menière’s disease without migraine and Vestibular migraine: clinical differences [J]. Journal of Neurology, 2023, 270(11): 5635-5638.

[115] ALTAMURA M, PORCELLI P, BALZOTTI A, et al. Influence of DCPR Syndromes in the Psychosocial Functioning of Patients with Major Depressive and Bipolar Disorders [J]. Psychotherapy and Psychosomatics, 2015, 84(6): 387-388.

[116] ZARE F, SEDIGHI P, DELROBAEI M. Evaluating Attentional Impulsivity: A Biomechatronic Approach [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-8.

[117] HARRIS A C, MADDEN G J. Delay Discounting and Performance on the Prisoner’s Dilemma Game [J]. The Psychological Record, 2002, 52(4): 429-440.

[118] NANDAM L. Neurochemical and neurophysiological bases of executive control [D]. The University of Queensland, 2015.

[119] GHAHRAMANI M H, SOHRABI M, BESHARAT M A. The effects of physical activity on impulse control, attention, decision-making and motor functions in students with high and low impulsivity [J]. Biosciences Biotechnology Research Asia, 2016, 13(3): 1689-1696.

[120] TRAN D M D, NICHOLSON W G, HARRIS J A, et al. Working memory load reduces corticospinal suppression to former go and trained no-go cues [J]. Scientific Reports, 2021, 11(1): 11544.

[121] VANDEWALLE G, MAQUET P, DIJK D-J. Light as a modulator of cognitive brain function [J]. Trends in cognitive sciences, 2009, 13(10): 429-438.

[122] LEGAULT G. Sleep and heat related changes in the cognitive performance of underground miners: a possible health and safety concern [J]. Minerals, 2011, 1(1): 49-72.

[123] YAN L, LONSTEIN J S, NúñEZ A A. Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent [J]. Hormones Behavior, 2019, 111: 78-86.

[124] SOLER J E, ROBISON A J, NúñEZ A A, et al. Light modulates hippocampal function and spatial learning in a diurnal rodent species: A study using male nile grass rat (Arvicanthis niloticus) [J]. Hippocampus, 2018, 28: 189 - 200.

[125] FRYER D V, STRUMKE I, NGUYEN H. Model independent feature attributions: Shapley values that uncover non-linear dependencies [J]. PeerJ Computer Science, 2021, 7: e582.

[126] NING Y, LIU M, LIU N. Shapley variable importance cloud for machine learning models [J]. arXiv preprint arXiv:08370, 2022.

[127] LUNDBERG S M, LEE S-I. A unified approach to interpreting model predictions [J]. Advances in neural information processing systems, 2017, 30.

[128] HARRIS C, PYMAR R, ROWAT C. Joint Shapley values: a measure of joint feature importance [J]. arXiv preprint arXiv:11357, 2021.

[129] HESKES T, SIJBEN E, BUCUR I G, et al. Causal shapley values: Exploiting causal knowledge to explain individual predictions of complex models [J]. Advances in neural information processing systems, 2020, 33: 4778-4789.

中图分类号:

 TD79    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式