- 无标题文档
查看论文信息

论文中文题名:

 桑树坪煤矿开采沉陷对地表及植被 的损伤模拟研究    

姓名:

 袁官思龙    

学号:

 20209226095    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 开采沉陷    

第一导师姓名:

 孙学阳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-07    

论文外文题名:

 Simulation Study on Surface and Vegetation Damage Caused by Mining Subsidence in Sangshuping Coal Mine    

论文中文关键词:

 植被损伤 ; 覆岩及地表移动变形 ; 相似材料模拟 ; 数值模拟 ; FISH语言    

论文外文关键词:

 Vegetation damage ; Movement and deformation of overlying rock and surface ; Similar material simulation ; Numerical simulation ; FISH Language    

论文中文摘要:

目前,矿山生态保护修复迫在眉睫,大规模的开采遗留下了土地损毁、地下水系统破坏等诸多生态环境问题。为了给生态保护修复提供可行的建议,本文以韩城矿区桑树坪煤矿为例,运用相似材料模拟物理实验、三维地质建模及数值模拟分析等研究手段,对覆岩移动破坏特征、开采沉陷对地表的损伤效应和“覆岩破坏—地表沉陷—土体破坏”传导驱动机制进行了综合分析探究,得到了以下主要结果:

(1)覆岩破坏特征表现形式为开采条件下,水平方向和垂直方向的拉应力共同作用于采空区上覆岩体,移动变形从下至上传导,先以离层形式体现出来,纵向离层发育较多,横向裂隙发育较少。而后伴随垮落体的产生,破碎岩体以非紧密接触形式堆积,其周围覆岩持续性压实。覆岩破坏沿着上行裂隙依次传递,岩体内应力得以释放,为下沉盆地的形成提供了条件,同时引发了裂隙的开闭现象。

(2)覆岩破坏是地表沉陷的基础,起伏地形中变化的坡体产状和黄土垂直节理是地表沉陷的影响因素。三者共同作用下,加剧地表沉陷现象的发生。土体在拉伸作用和剪切作用下,超过对应的临界值发生破坏,地表受到损伤,研究区地表发生拉伸变形的水平变形临界值为1.4mm/m。最大剪应力随着开采的进行,从0.19MPa增大到0.3MPa,剪切破坏主要分布于采空区上方地表低山丘陵区及黄土台塬区。拉伸破坏产生地裂缝,这些破坏形式使植物根系受到错断、拉出、皮裂等损伤,根系固土能力减弱,短期内损伤不明显,后期植被损伤显著。形成了“覆岩破坏—地表沉陷—土体破坏”的传导驱动机制。

(3)裂缝发育最明显位置处的水平应变与温度的拟合相关系数的平方(P0点的R2=0.647、P1点的R2=0.672、P5点的R2=0.634)表明裂缝与水分赋存情况存在相关性。开采过程中产生的裂缝会改变表层土壤水分的赋存情况,裂缝形成初期会对水分起到汇集的作用,导致土壤营养物质随着裂缝发生渗流,裂缝经过“开闭”之后,处于稳定期时,对水分起到加速蒸发的作用,增大了蒸发面积。最大下沉量所处位置位于切眼与沉陷区中央之间,比较植被生长形态的分形维数,切眼处从开采前1.587下降到1.288下降了0.299;沉陷区中央从1.515下降到1.413,下降了0.102;停采线从1.419下降到1.32,下降了0.099。由此可以看出,裂缝较发育周围的植被生长状况比其它位置的较差。植被在开采过程中受影响较小,在开采结束后随着时间的推移受影响程度大。开采初期的物理损伤将直接影响到地裂缝周围植物,后期土壤理化性质的改变会间接影响整个植被,且影响程度大大增加。因此生态修复应该先处理地裂缝,防止其引发土壤理化性质的改变。

论文外文摘要:

At present, the ecological protection and restoration of mines are urgent, and large-scale mining has left many ecological and environmental problems such as land damage and groundwater system damage. In order to provide feasible suggestions for ecological protection and restoration, this article takes the Sangshuping coal mine in Hancheng mining area as an example, and uses research methods such as similar material simulation physical experiments, three-dimensional geological modeling, and numerical simulation analysis to comprehensively analyze and explore the characteristics of overlying rock movement and damage, the damage effect of mining subsidence on the surface, and the transmission driving mechanism of 'Overburden failure - surface subsidence - soil failure'. The following main results are obtained:

(1) The characteristic manifestation of overlying rock failure is that under mining conditions, the horizontal and vertical tensile stresses jointly act on the overlying rock mass in the goaf, and the movement and deformation are transmitted from bottom to top, first manifested in the form of separation layers. Longitudinal separation layers are more developed, and transverse fractures are less developed. Subsequently, accompanied by the occurrence of collapse, the fractured rock mass accumulates in a non close contact form, and the surrounding overlying rock is continuously compacted. The failure of the overlying rock is transmitted sequentially along the upward cracks, and the stress inside the rock mass is released, providing conditions for the formation of a sinking basin and triggering the opening and closing of cracks.

(2) The failure of overlying strata is the foundation of surface subsidence, and the changing slope occurrence and vertical joints of loess in undulating terrain are the influencing factors of surface subsidence. Under the joint action of the three, the occurrence of surface subsidence is exacerbated. Under the action of tension and shear, the soil fails beyond the corresponding critical value, causing damage to the surface. The critical horizontal deformation value for tensile deformation on the surface of the study area is 1.4mm/m. The maximum shear stress increases from 0.19MPa to 0.3MPa as mining proceeds, and shear failure is mainly distributed in the surface low mountain and hilly areas above the goaf and the loess plateau area. Tensile damage produces ground fissures, which cause damage to plant roots such as dislocation, pulling out, and skin cracking. The soil fixation ability of the roots is weakened, and the short-term damage is not significant, while the later vegetation damage is significant. A conduction driving mechanism of "overburden failure surface subsidence soil failure" has been formed.

(3) The square of the fitting correlation coefficient between horizontal strain and temperature at the most obvious location of crack development (R2=0.647 at point P0, R2=0.672 at point P1, and R2=0.634 at point P5) indicates a correlation between cracks and water occurrence. The cracks generated during the mining process will change the occurrence of surface soil moisture. In the early stage of crack formation, they will play a role in collecting water, causing soil nutrients to seep along with the cracks. After the cracks pass through the "opening and closing" process and are in a stable period, they will accelerate the evaporation of water and increase the evaporation area. The maximum subsidence is located between the cut hole and the center of the subsidence area. Comparing the fractal dimensions of vegetation growth morphology, the cut hole decreased by 0.299 from 1.587 before mining to 1.288; The central subsidence area decreased from 1.515 to 1.413, a decrease of 0.102; The stopping line decreased from 1.419 to 1.32, a decrease of 0.099. From this, it can be seen that the vegetation growth around the well-developed cracks is worse than that in other locations. Vegetation is less affected during the mining process and is more affected over time after the mining is completed. The physical damage in the early stage of mining will directly affect the plants around the ground fissures, and the changes in soil physicochemical properties in the later stage will indirectly affect the entire vegetation, and the degree of impact will greatly increase. Therefore, ecological restoration should first deal with ground fissures to prevent them from causing changes in soil physical and chemical properties.

参考文献:

[1] 国家统计局中国能源统计年鉴2020[M]. 北京: 中国统计出版社, 2021.

[2] 王双明, 杜麟, 宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报, 2021, 46(9): 3027-3038.

[3] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报, 2017, 42(1): 17-26.

[4] 彭苏萍, 毕银丽. 黄河流域煤矿区生态环境修复关键技术与战略思考[J]. 煤炭学报, 2020, 45(4): 1211-1221.

[5] 范立民, 孙强, 马立强, 等. 论保水采煤技术体系[J]. 煤田地质与勘探, 2023, 51(1): 196-204.

[6] 王双明, 魏江波, 宋世杰, 等. 黄土沟谷区浅埋煤层开采覆岩破坏与地表损伤特征研究[J]. 煤炭科学技术, 2022, 50(5): 1-9.

[7] 侯恩科, 陈育, 车晓阳, 等. 浅埋煤层过沟开采覆岩破坏特征及裂隙演化规律研究[J].煤炭科学技术, 2021, 49(10): 185-192.

[8] Sun X, Lu M, Li C. Optimization of staggered distance of coal pillars in multiseam mining: Theoretical analysis and numerical simulation[J]. Energy Science & Engineering, 2021, 9(3): 357-74.

[9] 杨伟强, 郭文兵, 赵高博, 等. 基于岩层挠曲变形的“竖三带”理论判别方法及工程应用[J]. 煤炭科学技术, 2022, 50(10): 42-50.

[10] Zhao K, Xu N, Mei G, et al. Predicting the distribution of ground fissures and water-conducted fissures induced by coal mining: a case study [J]. Springerplus, 2016, 5.

[11] Lu W, He C, Zhang X. Height of overburden fracture based on key strata theory in longwall face[J]. PLOS ONE, 2020, 15(1): e0228264.

[12] 王新丰, 陆明远. 深部变面长采场顶板破断演化的力学机制分析[J]. 煤田地质与勘探, 2022, 50(10): 1-15.

[13] Lian X, Zhang Y, Yuan H, et al. Law of Movement of Discontinuous Deformation of Strata and Ground with a Thick Loess Layer and Thin Bedrock in Long Wall Mining[J]. Appl. Sci. 2020, 10, 2874.

[14] 李浩, 唐世斌, 马立强, 等. 采动覆岩渐进破坏的连续-离散耦合模拟研究[J]. 岩石力学与工程学报, 2022, 41(11): 2299-2310.

[15] 靖洪文, 吴疆宇, 孟波, 等. 深部矩形底煤巷围岩破坏失稳全过程宏细观演化特征研究[J]. 采矿与安全工程学报, 2022, 39(1): 82-93.

[16] Ren F, Zhang D, Cao J, et al. Study on the Rock Mass Caving and Surface Subsidence Mechanism Based on an In Situ Geological Investigation and Numerical Analysis[J]. Mathematical Problems in Engineering, 2018, 2018(PT.9): 1-18.

[17] Xia K, Chen C, Deng Y, et al. In situ monitoring and analysis of the mining-induced deep ground movement in a metal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109: 32-51.

[18] Zhang D, Chen Q, Wang Z, et al. Optical Fiber Frequency Shift Characterization of Overburden Deformation in Short-Distance Coal Seam Mining[J]. Geofluids, 2021, 2021: 1751256.

[19] 朱庆伟, 李航, 杨小虎, 等. 采动覆岩结构演化特征及对地表沉陷的影响分析[J]. 煤炭学报, 2019, 44(S1): 9-17.

[20] 李晓斌, 李全生, 韩鹏华, 等. 高强度开采地表损伤程度分类判别与控制研究[J]. 采矿与岩层控制工程学报, 2022, 4(3): 90-99.

[21] 李全生, 张村. 基于采动空间守恒的西部矿区高强度开采损伤传导模型及应用[J].采矿与安全工程学报, 2021, 38(1): 1-8.

[22] 郭文兵, 赵高博, 白二虎, 等. 中部矿粮复合区采煤沉陷及耕地损毁研究现状与展望[J]. 煤炭学报, 2023, 48(1): 388-401.

[23] 邓喀中, 郑美楠, 张宏贞, 等. 关闭矿井次生沉陷研究现状及展望[J]. 煤炭科学技术, 2022, 50(5): 10-20.

[24] Liu Q, Lin B, Zhou Y, et al. Porosity model of the goaf based on overlying strata movement and deformation[J]. Environmental Earth Sciences, 2022, 81(7): 214.

[25] HAN H, XU J, WANG X, et al. Surface Subsidence Prediction Method for Coal Mines with Ultrathick and Hard Stratum[J]. Adv Civ Eng, 2019, 2019: 3714381.

[26] 谢和平, 周宏伟, 王金安, 等. FLAC在煤矿开采沉陷预测中的应用及对比分析[J].岩石力学与工程学报, 1999(4): 29-33.

[27] Sun D, Wu Q, Li X, et al. Sensitivity Analysis and Numerical Simulation Study on Main Controlling Factors of Surface Movement and Deformation in Strip Filling Mining under Thick Unconsolidated Layers[J]. Geofluids, 2021, 2021: 6615937.

[28] Parmar H, Bafghi A Y, Najafi M. Impact of ground surface subsidence due to underground mining on surface infrastructure: the case of the Anomaly No. 12 Sechahun, Iran[J]. Environmental Geology, 2019, 78(14): 409.1-409.14.

[29] 刘辉, 左建宇, 苏丽娟, 等. 巨厚含水松散层下开采地表移动变形规律研究[J]. 煤炭科学技术, 2022, 50(5): 49-56.

[30] 李晶, 韩颖, 杨震, 等. 基于温度植被干旱指数的兖州煤田煤炭开采影响边界遥感提取[J]. 农业工程学报, 2018, 34(19): 258-265.

[31] 赵毅鑫, 许多, 孙波, 等. 基于无人机红外遥感和边缘检测技术的采动地裂缝辨识[J]. 煤炭学报, 2021, 46(2): 624-637.

[32] 袁涛, 倪璇, 周伟. 煤炭开发区植被扰动时空效应及影响范围界定: 以宁东矿区为例[J]. 地学前缘, 2021, 28(4): 110-117.

[33] Li J, Li X, Liu C, et al. Dynamic Changes in Surface Damage Induced by High-Intensity Mining of Shallow, Thick Coal Seams in Gully Areas[J]. Adv Civ Eng, 2020, 2020: 5151246.

[34] Zhang X, Yu H, Dong J, et al. A physical and numerical model-based research on the subsidence features of overlying strata caused by coal mining in Henan, China[J]. Environmental earth sciences, 2017, 76(20): 705.1-705.11.

[35] 刘一龙, 杨天鸿, 叶强, 等. 山区多煤层重复采动下地表变形特征[J]. 采矿与安全工程学报, 2022, 39(3): 507-516.

[36] Li L, Wu K, Hu Z, et al. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area[J]. Environmental Earth Sciences, 2017, 76(3): 135.

[37] 崔希民, 车宇航, 赵玉玲, 等. 采动地表移动变形与建筑物损坏程度评价的再认识[J]. 煤炭学报, 2021, 46(1): 145-153.

[38] 戴华阳. 岩层与地表移动变形量的时空关系及描述方法[J]. 煤炭学报, 2018, 43(S2): 450-459.

[39] 杜华栋, 曹祎晨, 聂文杰, 等. 黄土沟壑区采煤塌陷地人工与自然植被恢复下土壤性质演变特征[J]. 煤炭学报, 2021, 46(5): 1641-1649.

[40] Ren J, Kang X, Tang M, et al. Coal Mining Surface Damage Characteristics and Restoration Technology[J]. Sustainability. 2022; 14(15): 9745.

[41] 王双明, 杜麟, 宋世杰. 黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J]. 煤炭学报, 2021, 46(9): 3027-3038.

[42] 王双明, 侯恩科, 谢晓深, 等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术, 2021, 49(1): 19-31.

[43] 雷少刚, 肖浩宇, 郄晨龙, 等. 开采沉陷对关键土壤物理性质影响的相似模拟实验研究[J]. 煤炭学报, 2017, 42(2): 300-307.

[44] 王强民, 董书宁, 王皓, 等. 西部风沙区采煤塌陷地裂缝影响下的土壤水分运移规律及调控方法[J]. 煤炭学报, 2021, 46(5): 1532-1540.

[45] 谢放放, 李保莲, 焦俊党, 等. 开采沉陷区土壤特性空间变化及其作物响应[J]. 河南理工大学学报(自然科学版), 2021, 40(4): 89-97.

[46] 王新静, 胡振琪, 胡青峰, 等. 风沙区超大工作面开采土地损伤的演变与自修复特征[J]. 煤炭学报, 2015, 40(9): 2166-2172.

[47] 王常建, 徐祝贺, 赵伟, 等. 浅埋高强度开采矿区生态损伤特征与减损实践[J]. 煤炭工程, 2022, 54(4): 176-181.

[48] 许传阳, 马守臣, 张合兵, 等. 煤矿沉陷区沉陷裂缝对土壤特性和作物生长的影响[J]. 中国生态农业学报, 2015, 23(5): 597-604.

[49] 吴群英, 冯泽伟, 胡振琪, 等. 生态脆弱矿区地表裂缝动态变化对土壤含水量的影响[J]. 煤炭科学技术, 2020, 48(4): 148-155.

[50] Howladar MF. Environmental impacts of subsidence around the Barapukuria Coal Mining area in Bangladesh[J]. Energy, Ecology and Environment, 2016, 1: 370-385.

[51] Zhang K, Yang K, Wu X, et al. Effects of Underground Coal Mining on Soil Spatial Water Content Distribution and Plant Growth Type in Northwest China[J]. ACS Omega, 2022, 7(22): 18688-98.

[52] 聂小军, 高爽, 陈永亮, 等. 西北风积沙区采煤扰动下土壤侵蚀与养分演变特征[J].农业工程学报, 2018, 34(2): 127-134.

[53] 孟红旗, 郭晓明, 杨英, 等. 采煤沉陷坡面土壤氮磷钾养分有效性的空间变异性[J].土壤学报, 2020, 57(4): 844-854.

[54] Gao Xiaomei, Xie Yunhu, Gao Wenbang, et al. Ruiping.Comprehensive Evaluation of Soil Quality: a Case Study from a Semi-Arid Area Experiencing Coal Mine Related Subsidence in China[J]. Polish Journal of Environmental Studies, 2022, 30(5 Pt.2): 4531-4544

[55] 苗霖田, 夏玉成, 段中会, 等. 黄河中游榆神府矿区煤-岩-水-环特征及智能-体化技术[J]. 煤炭学报, 2021, 46(5): 1521-1531.

[56] 蒙仲举, 任晓萌, 陈晓燕, 等. 采煤塌陷对沙柳根系损伤机理研究[J]. 北方园艺, 2014(1): 66-68.

[57] 潘东江, 张农, 赵一鸣, 等. 西部矿区植被根系采动损伤特征及细观力学机制[J]. 煤炭学报, 2017, 42(2): 373-380.

[58] 高岩, 党晓宏, 汪季, 等. 采煤沉陷区不同裂缝处小叶杨根系损伤特性[J]. 水土保持通报, 2022, 42(1): 34-41.

[59] 李海欣, 雷少刚, 申艳琴. 煤矿开采沉陷地裂缝对植被覆盖的影响[J]. 生态与农村环境学报, 2016, 32(2): 195-199.

[60] 嵇晓雷, 杨平. 应用分形维数研究狗牙根根系边坡固坡效应[J]. 林业工程学报, 2016, 1(4): 129-133.

[61] 丁玉龙, 雷少刚, 卞正富, 等. 开采沉陷区四合木根系抗变形能力分析[J]. 中国矿业大学学报, 2013, 42(6): 970-974.

[62] 马雄德, 范立民, 张晓团, 等. 基于植被地下水关系的保水采煤研究[J]. 煤炭学报, 2017, 42(5): 1277-1283.

[63] Fan G, Zhang S, Chen M, et al. Impacts of Underground Coal Mining on the Roots of Xeromorphic Plant: A Case Study[J]. Environmental Engineering Science, 2020, 38(6).

[64] Bi Y, Zhang J, Song Z, et al. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures[J]. Science of The Total Environment, 2019, 652: 398-405.

[65] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J].煤炭学报, 2017, 42(1): 17-26.

[66] Liu Y, Lei S G, Chen X Y, et al. Disturbance mechanism of coal mining subsidence to typical plants in a semiarid area using O-J-I-P chlorophyll a fluorescence analysis[J]. Photosynthetica, 2020, 58(5): 1178-87.

[67] 王永辉, 冯园, 李兰兰. 巨厚松散层下开采沉陷岩土体移动变形规律[J]. 成都理工大学学报(自然科学版), 2020, 47(6): 733-741.

[68] 戴华阳. 岩层与地表移动变形量的时空关系及描述方法[J]. 煤炭学报, 2018, 43(S2): 450-459.

[69] 阎跃观, 师晓波, 刘吉波, 等. 矿区地表与建(构)筑物移动变形关系实测研究[J]. 煤炭科学技术, 2020, 48(10): 158-165.

[70] 黄敏, 崔年生, 危剑林, 等. 地下采空区对地表建(构)筑物的影响分析[J]. 中国矿业, 2019, 28(10): 102-108.

[71] 赵兵朝, 孙浩, 郭亚欣, 等. 湿陷性黄土覆盖区煤层开采地表裂缝发育规律研究[J]. 矿业研究与开发, 2021, 41(6): 105-110.

[72] 岳辉. 采煤沉陷区受损根系菌根修复机理及其生态效应研究[D]. 北京: 中国矿业大学, 2013.

[73] 杨明莉, 徐龙君, 鲜学福. 煤开采中的环境保护途径[J]. 煤炭学报, 2003, 28(2): 199-204.

[74] 吕海波, 曾召田, 葛若东, 等. 胀缩性土抗拉强度试验研究[J]. 岩土力学, 2013, 34(3): 615-620.

[75] Vogel H J, Kretzschmar A. Topological characterization of pore space in soil-sample preparation and digital image-processing[J]. Geoderma, 1996, 73(1): 23-38.

[76] 高岩, 党晓宏, 蒙仲举, 等. 采煤沉陷区植物根系损伤及修复研究进展[J]. 内蒙古林业科技, 2020, 46(4): 50-55.

[77] Liu C, Tang C-S, Shi B, et al. Automatic quantification of crack patterns by image processing[J]. Computers & Geosciences, 2013, 57: 77-80.

[78] Liu C, Shi B, Zhou J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials[J]. Applied Clay Science, 2011, 54(1): 97-106.

[79] 米家鑫. 半干旱区井工矿山地表形变对植被的长期影响研究[D]. 徐州: 中国矿业大学, 2021.

中图分类号:

 P642.5    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式