- 无标题文档
查看论文信息

论文中文题名:

 二氧化碳突出煤体吸附特性及突出致灾实验规律研究    

姓名:

 牛润杰    

学号:

 21203226061    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 煤岩瓦斯动力灾害    

第一导师姓名:

 董国伟    

第一导师单位:

 西安科技大学    

第二导师姓名:

 龚选平    

论文提交日期:

 2024-06-24    

论文答辩日期:

 2024-06-02    

论文外文题名:

 Study on the adsorption characteristics of carbon dioxide outburst coal and the experimental law of outburst disaster    

论文中文关键词:

 二氧化碳突出 ; 孔隙结构 ; 混合气体 ; 吸附特性 ; 突出致灾    

论文外文关键词:

 Carbon dioxide prominent ; Pore structure ; Mixed gas ; Adsorption characteristics ; Prominent disaster    

论文中文摘要:

CO2突出灾害在我国部分矿区存在,但其鉴定、预测技术尚未解决,矿井安全生产深受其困扰。因此,本文以甘肃窑街矿区金河煤矿作为研究背景,采用理论分析、实验室研究、物理模拟实验相结合的手段,对金河煤矿CO2突出问题开展了系统分析,研究了CO2突出煤体的孔隙结构特征、吸附特性以及突出致灾规律,研究成果将进一步充实CO2突出灾害预防基础理论,指导CO2突出灾害防控。主要结论如下:

(1)通过低温液氮吸附和低场核磁共振实验,分析了CO2突出煤体的孔隙结构,得出金河煤样的孔隙发育特征,其中微孔最为发育,构成了瓦斯吸附容积;孔隙类型为圆筒形孔、墨水瓶孔以及平板狭缝型孔;吸附孔连通性较差,渗流孔连通性较好;高压的CO2赋存使煤层具有CO2突出危险性;结合分形理论,对实验煤样的孔隙结构进行分形表征,表面分形维数D1介于2.614~2.691之间,孔隙表面粗糙,对CO2具有较强的吸附性,结构分形维数D2介于2.333~2.474之间,孔隙结构简单,非均质性程度较低;煤样孔径段中孔、大孔的分形维数相关性较高,小孔分形维数相关性较差,微孔对分形维数的影响最大。

(2)开展了5种不同比例CH4/CO2混合气体在煤中的等温吸附实验,得出煤样对CO2的吸附能力强,CO2在竞争吸附中占据优势;CO2突出矿区采用CH4的压缩因子计算的混合气体的吸附常数a偏大,瓦斯含量计算不准;采用实际的压缩因子计算混合气体的吸附常数a相对准确;Langmuir模型不能准确描述CO2在煤中的吸附行为,基于微孔填充的D-A模型对于CO2的拟合效果最好;在CO2摩尔分数增多的情况下,考虑表面非均质性的扩展L-F模型对混合气体吸附量展现出很好的预测趋势。

(3)开展了不同瓦斯压力下的CO2突出动力效应模拟实验,从突出腔体及巷道参数演化规律、突出冲击波传播规律、突出煤粉的运移及分布特征以及CO2突出过程中的能量转化四方面分析了CO2突出过程中的致灾规律,得出CO2突出的临界瓦斯压力为0.542MPa,采用幂函数P=a*ti能够较好地描述瓦斯压力随时间的变化关系;瓦斯压力与浓度呈正相关,不同瓦斯压力下进风巷均出现瓦斯逆流现象,突出腔体内温度出现“温升区”和“温降区”;CO2压力越大,冲击波超压峰值越高,主巷道均处于危害区,进风巷和回风巷危害随突出距离增加逐渐减小。

(4)冲击波阵面传播速度、冲击力衰减系数、平均衰减系数随瓦斯压力的增大而增大,且都呈衰减趋势;两相流以悬浮流、栓流、沙丘流、分层流的不稳定流动形式在巷道内传播;相对突出强度与瓦斯压力呈正相关,主巷道中煤粉质量分布基本呈现“中部高,两端低”的现象,回风巷突出煤粉质量大于进风巷突出煤粉质量;模拟实验煤粉只有加速和减速阶段,造成了实验室和现场突出分选性的矛盾,煤体在突出过程中发生不同程度的破碎,巷道煤粉粒径分布为5mm以下>5mm>10mm>20mm>30mm以上;瓦斯内能是突出发生的主要能量来源,其形式主要是吸附瓦斯解吸膨胀能与游离瓦斯膨胀能;瓦斯内能大部分用于煤体的破碎,且瓦斯压力越大,破碎程度越大,少部分用于煤的抛出。

论文外文摘要:

CO2 outburst disaster exists in some mining areas in China, but its identification and prediction technology has not been solved, and mine safety production is deeply troubled by it. Therefore, this paper takes Jinhe Coal Mine in Yaojie mining area of Gansu Province as the research background, and systematically analyzes the CO2 outburst problem in Jinhe Coal Mine by means of theoretical analysis, laboratory research and physical simulation experiment. The pore structure characteristics, adsorption characteristics and outburst disaster-causing law of CO2 outburst coal body are studied. The research results will further enrich the basic theory of CO2 outburst disaster prevention and guide the prevention and control of CO2 outburst disaster. The main conclusions are as follows:

(1) Through the low temperature liquid nitrogen adsorption and low field nuclear magnetic resonance experiments, the pore structure of CO2 outburst coal was analyzed, and the pore development characteristics of Jinhe coal sample were obtained. Among them, the micropores were the most developed, which constituted the gas adsorption volume. The pore types are cylindrical pores, ink bottle pores and flat slit pores; the connectivity of adsorption pores is poor, and the connectivity of seepage pores is good. The occurrence of high pressure CO2 makes the coal seam have the risk of CO2 outburst. Combined with fractal theory, the pore structure of the experimental coal samples was characterized by fractal. The surface fractal dimension D1 is between 2.614 and 2.691, the pore surface is rough, and it has strong adsorption to CO2. The structure fractal dimension D2 is between 2.333 and 2.474, the pore structure is simple and the degree of heterogeneity is low. The fractal dimension of mesopores and macropores in the pore size section of the coal sample is highly correlated, the correlation of the fractal dimension of the small pores is poor, and the micropores have the greatest influence on the fractal dimension.

(2) The isothermal adsorption experiments of five different proportions of CH4 / CO2 mixed gas in coal were carried out. It was concluded that the adsorption capacity of coal samples to CO2 was strong, and CO2 occupied the advantage in competitive adsorption. The adsorption constant a of the mixed gas calculated by the compression factor of CH4 in the CO2 outburst mining area is too large, and the calculation of gas content is not accurate. It is relatively accurate to calculate the adsorption constant a of the mixed gas by using the actual compression factor. The Langmuir model cannot accurately describe the adsorption behavior of CO2 in coal, and the D-A model based on micropore filling has the best fitting effect on CO2. In the case of increasing CO2 mole fraction, the extended L-F model considering surface heterogeneity shows a good prediction trend for mixed gas adsorption.

(3) The simulation experiment of dynamic effect of CO2 outburst under different gas pressure is carried out. The disaster-causing law of CO2 outburst is analyzed from four aspects: the evolution law of outburst cavity and roadway parameters, the propagation law of outburst shock wave, the migration and distribution characteristics of outburst pulverized coal and the energy conversion in the process of CO2 outburst. It is concluded that the critical gas pressure of CO2 outburst is 0.542 MPa, and the power function P = a * ti can better describe the relationship between gas pressure and time. The gas pressure is positively correlated with the concentration. Under different gas pressures, the gas countercurrent phenomenon occurs in the air inlet roadway, and the temperature in the outburst cavity appears "temperature rise zone" and "temperature drop zone". The higher the CO2 pressure is, the higher the peak value of shock wave overpressure is. The main roadway is in the hazard area, and the hazard of air inlet and return roadway decreases with the increase of outburst distance.

(4) The propagation velocity of impact wave front, the attenuation coefficient of impact force and the average attenuation coefficient increase with the increase of gas pressure, and all show an attenuation trend. The two-phase flow propagates in the roadway in the form of unstable flow of suspended flow, plug flow, dune flow and stratified flow. The relative outburst intensity is positively correlated with the gas pressure. The mass distribution of pulverized coal in the main roadway basically shows the phenomenon of " high in the middle and low at both ends ". The quality of outburst pulverized coal in the return air roadway is greater than that in the intake air roadway. The simulation experiment of pulverized coal only has the acceleration and deceleration stages, which causes the contradiction between the laboratory and the field outburst separation. The coal body is broken to varying degrees in the process of outburst. The particle size distribution of pulverized coal in the roadway is below 5mm > 5mm > 10mm > 20mm > 30mm ; gas internal energy is the main energy source of outburst, which is mainly in the form of adsorption gas desorption expansion energy and free gas expansion energy. Most of the gas internal energy is used for the crushing of coal, and the greater the gas pressure, the greater the degree of fragmentation, and a small part is used for the throwing of coal.

参考文献:

[1]国家统计局能源统计司. 中国能源统计年鉴 [M]. 中国统计出版社, 2013.

[2]钱鸣高, 许家林, 王家臣. 再论煤炭的科学开采 [J]. 煤炭学报, 2018, 43(01): 1-13.

[3]袁亮. 煤及共伴生资源精准开采科学问题与对策 [J]. 煤炭学报, 2019, 44(01): 1-9.

[4]Wang K, Zhou A, Zhang J, et al. Real-time numerical simulations and experimental research for the propagation characteristics of shock waves and gas flow during coal and gas outburst [J]. Safety science, 2012, 50(4): 835-841.

[5]Litwiniszyn J. Model for the initiation of coal-gas outbursts [J]. Int. J. Rock Mech.Min. Sci. Geomech. Abstr; (United States), 1985, 22(1).

[6]陶明信, 徐永昌, 马玉贞. 煤矿二氧化碳突出与研究 [J]. 地球科学进展, 1992, 7( 5) .

[7]高小明, 沈建林. 甘肃窑街矿区CO2气体突出灾害的成因及防治研究 [J]. 中国煤炭地质, 2017, 29(10): 18-22+29.

[8]李有东, 高小明, 沈建林. 窑街矿区CO2气体生储运特征研究 [J]. 甘肃地质, 2014, 23(02): 65-69.

[9]于不凡. 国外煤和瓦斯突出研究综述 [A]. 国外煤和瓦斯突出资料汇编 [C]. 重庆: 科学技术文献出版社重庆分社, 1978.

[10]于不凡. 煤矿瓦斯灾害防治及利用技术手册(修订版) [M]. 北京: 煤炭工业出版社, 2005.

[11]俞启香. 矿井瓦斯防治 [M]. 徐州: 中国矿业大学出版社, 1992.

[12]于不凡. 谈谈煤和瓦斯突出的机理 [J]. 煤炭科学技术, 1979.

[13]霍中刚, 薛文涛, 舒龙勇. 我国煤矿岩石与CO2突出机制探讨 [J]. 煤炭科学技术, 2021, 49(01): 155-161.

[14]李树刚, 常心坦, 徐精彩. 煤岩与CO2突出特征及其预防技术研究 [J]. 西安科技学院学报, 2000, (01): 1-4+8.

[15]李伟, 程远平, 杨云峰, 等. 窑街煤田CO2成因及成藏模式研究 [J]. 中国矿业大学学报, 2011, 40(02): 190-195.

[16]马伟, 郑万成. CO2-ECBM项目中潜在煤(岩)与CO2突出隐患分析 [J]. 煤矿安全, 2010, 41(11): 80-82.

[17]周汇超, 王海东, 曲晓明. 煤层中CO2对突出危险性影响研究 [C]//Northeastern University(东北大学). Proceedings of 2010(Shenyang) International Colloquium on Safety Science and Technology. 辽宁工程技术大学安全科学与工程学院; 煤炭科学研究总院沈阳研究院, 2010: 4.

[18]Liang Y, Wang F, Luo Y, et al. Desorption characterization of methane and carbon dioxide in coal and its influence on outburst prediction [J]. Adsorption Science & Technology, 2018, 36(7-8).

[19]Xu L, Jiang C, et al. Initial desorption characterization of methane and carbon dioxide in coal and its influence on coal and gas outburst risk [J]. Fuel, 2017, 203.

[20]卢守青. 大宁煤矿高阶原生煤与构造煤吸附解吸特性与敏感指标研究 [D]. 中国矿业大学, 2013.

[21]Wu H, Yao Y B, Zhou Y F, et al. Analyses of representative elementary volume for coal using X-ray mu-CT and FIB-SEM and its application in permeability predication model [J]. Fuel, 2019, 254: 1-9.

[22]Guan M, Liu X P, Jin Z J, et al. The heterogeneity of pore structure in lacustrine shales: insights from multifractal analysis using N2 adsorption and mercury intrusion [J]. Marine and Petroleum Geology, 2020, 114: 1-14.

[23]张慧. 煤孔隙的成因类型及其研究 [J]. 煤炭学报, 2001(01): 40-44.

[24]苏现波, 林晓英. 煤层气地质学 [M]. 北京: 煤炭工业出版社, 2009.

[25]Kaneko H, Oda M, Yokomori H, et al. Immunohistochemical microscopic analysis of bile duct destruction in primary biliary cirrhosis: Involvement of intercellular adhesion molecules [J]. International Hepatology Communications, 1994, 2(5): 271-276.

[26]Androsov V, Bar’Yakhtar V, Bulyak E, et al. Synchrotron radiation complex ISI-800 [J]. Journal of Electron Spectroscopy and Related Phenomena, 1994, 68: 747-755.

[27]刘彦伟, 张鑫淼, 苗健. 中高阶煤孔隙结构的演化规律研究 [J]. 煤矿安全, 2020, 51(11): 7-13.

[28]刘纪坤, 任棒, 王翠霞. 考虑煤基质压缩效应的煤全孔径分布特征研究 [J]. 工矿自动化, 2022, 48(02): 125-130.

[29]Liu H H, Sang S X, Shang J H. Synthetical study on the difference and reason for the pore structure of the No.3 coal reservoir from the southern Qinshui Basin, China, using mercury intrusion porosimetry, low-temperature N2 adsorption, low field nuclear magnetic resonance, and nuclear magnetic resonance cryoporometry [J]. Energy Reports, 2020, 06: 1876-1887.

[30]Jiang J Y, Yang W H, Cheng Y P, et al. Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: Effect of coalification on nanopores evolution [J]. Power Technology, 2019, 354: 136-148.

[31]赵兴龙, 汤达祯, 许浩等. 煤变质作用对煤储层孔隙系统发育的影响 [J]. 煤炭学报, 2010, 35(9): 6.

[32]Wen Z H, Qi W, Yang Y P, et al. Pore Structure Characteristicsand Evolution Law of Different- Rank Coal Samples [J]. Geofluids, 2021, 2021: 1505306.

[33]Nie B, Liu X, Yang L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy [J]. Fuel, 2015, 158.

[34]王振洋. 构造煤微观结构演化及对瓦斯吸附解吸动力学特性的影响 [D]. 中国矿业大学, 2020.

[35]辜敏, 鲜学福. 煤层气变压吸附分离理论与技术: [M]. 科学出版社, 2015: 25-29.

[36]于洪观, 范维唐, 孙茂远等. 煤对CH4/CO2二元气体等温吸附特性及其预测 [J]. 煤炭学报, 2005, 30(5): 618-622.

[37]周军平. CH4、CO2、N2及其多元气体在煤层中吸附-运移机理研究 [D]. 重庆:重庆大学, 2011.

[38]李树刚, 李泽帆, 刘鹏等. 煤对N2/CH4/CO2混合气体竞争吸附特征与机理研究 [J]. 中国矿业大学学报, 2023, 52(3): 446-456.

[39]王满, 姜永东, 王英伟等. 煤吸附CH4/CO2混合气体的试验研究 [J]. 煤矿安全, 2022, 53(5): 1-6,12.

[40]Wu S, Deng C, Wang X. Molecular simulation of flue gas and CH4 competitive adsorption in dry and wet coal [J]. Journal of Natural Gas Science and Engineering, 2019, 71.

[41]You J, Tian L, Zhang C, et al. Adsorption behavior of carbon dioxide and methane in bituminous coal: A molecular simulation study [J]. Chinese Journal of Chemical Engineering, 2016, 24(9).

[42]Zhang J, Liu K, Clennell M B, et al. Molecular simulation of CO2–CH4 competitive adsorption and induced coal swelling [J]. Fuel, 2015, 160(nov.15): 309-317.

[43]P. Dutta, S. Harpalani, B. Prusty. Modeling of CO2 sorption on coal [J]. Fule. 2008, 87(10-11): 2023-2036.

[44]Skochinski A A. Communication of the initiation of a sudden outburst of gas and coal in the model in outburst laboratory of the Institute of Mining of AN SSSR [J]. Ugol, 1953( 10): 39.

[45]Patching T H, Botham J C. Occurrence, Research and Control of Sudden Outbursts of Coal and Gas in Canada [M]. Ottawa: Queen's Printer and Controller of Stationery, 1967: 30.

[46]Alekseev A D, Nedodayev N V, Starikov G P. Destruction of coal saturated with gas under triaxial stress field on destressing: Modeling of outbursts of coal and gas [J]. Institute Problem Mekhaniki AN USSR( Preprint), 1980( 139): 30.

[47]许江, 魏仁忠, 程亮等. 煤与瓦斯突出流体多物理参数动态响应试验研究 [J]. 煤炭科学技术, 2022, 50(01): 159-168.

[48]王磊, 邹鹏, 范浩等. 煤与瓦斯突出层裂演化特征及致灾机理探究 [J/OL]. 煤炭科学技术, 1-12[2024-01-14].

[49]程亮, 许江, 周斌等. 不同瓦斯压力对煤与瓦斯突出两相流传播规律的影响研究 [J]. 岩土力学, 2020, 41(08): 2619-2626.

[50]杨雪林, 文光才, 孙海涛等. 煤与瓦斯突出冲击动力效应及致灾特征模拟实验系统研制与应用 [J]. 煤炭学报, 2023, 48(10): 3731-3749.

[51]周斌, 许江, 彭守建等. 突出过程中煤层及巷道多物理场参数动态响应 [J]. 煤炭学报, 2020, 45(04): 1385-1397.

[52]王凯, 周爱桃, 张建方等. 直角拐弯巷道中瓦斯突出冲击气流传播特征研究 [J]. 中国矿业大学学报, 2011, 40(06): 858-862.

[53]孙东玲, 曹偈, 苗法田等. 突出煤-瓦斯在巷道内的运移规律 [J]. 煤炭学报, 2018, 43(10): 2773-2779.

[54]SUN H T, CAO J, LI M H. Experimental research on the impactive dynamic effect of gas-pulverized coal of coal and gas outburst [J]. Energies, 2018, 11(4): 1-15.

[55]WANG K, ZHOU A T, ZHANG J F, et al. Real-time numerical simulations and experimental research for the propagation characteristics of shock waves and gas flow during coal and gas outburst [J]. Safety Science, 2012, 50(4): 835-841.

[56]JIN K, CHENG Y P, REN T, et al. Experimental investigation on the formation and transport mechanism of outburst coal-gas flow: implications for the role of gas desorption in the development stage of outburst [J]. International Journal of Coal Geology, 2018, 194: 45-58.

[57]胡彪. 煤中多尺度孔隙结构的甲烷吸附行为特征及其微观影响机制 [D]. 中国矿业大学, 2022.

[58]B. B. 霍多特著, 宋士钊, 王佑安. 煤与瓦斯突出 [M]. 中国工业出版社, 1966.

[59]范茂琳. CH4和CO2在页岩上的竞争吸附特性及影响因素研究 [D]. 重庆大学, 2022.

[60]刘木晗. 页岩组分与孔隙结构表征及其对吸附特性的影响研究 [D]. 重庆大学, 2020.

[61]Hu B, Cheng Y, He X, et al. New insights into the CH4 adsorption capacity of coal based on microscopic pore properties [J]. Fuel, 2020, 262.

[62]王翠霞, 李树刚. 低阶煤孔隙结构特征及其对瓦斯吸附的影响 [J]. 中国安全科学学报, 2015, 25(10): 133-138.

[63]孙杨沙, 刘红岐, 刘诗琼等. 致密砂砾岩储层孔隙结构及分形特征 [J]. 地球科学前沿(汉斯), 2022, 12(2): 13.

[64]Guo H, Cheng Y, Wang L, et al. Experimental study on the effect of moisture on low-rank coal adsorption characteristics [J]. Journal of Natural Gas Science and Engineering, 2015, 24: 245-251.

[65]降文萍, 宋孝忠, 钟玲文. 基于低温液氮实验的不同煤体结构煤的孔隙特征及其对瓦斯突出影响 [J]. 煤炭学报, 2011, 36(04): 609-614.

[66]熊益华, 周尚文, 焦鹏飞等. 基于低温CO2吸附的煤和页岩微孔结构分形分析 [J]. 天然气地球科学, 2020, 31(07): 1028-1040.

[67]Mahnke M, Mogel H. Fractal analysis of physical adsorption on material surfaces [J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2003, 216(01): 215-228.

[68]武静, 赵立鹏. 基于高压压汞实验研究六盘水龙潭组煤储层孔隙分形特征 [J]. 四川化工, 2017, 20(01): 28-30.

[69] 王小垚, 曾联波, 周三栋等. 低阶煤储层微观孔隙结构的分形模型评价 [J]. 天然气地球科学, 2018, 29(02): 277-288.

[70]王福生, 王建涛, 顾亮等. 基于灰靶决策模型的煤自燃程度判定方法 [J]. 中国科技论文, 2019, 14(09): 980-984+1044.

[71]张昆, 孟召平, 金毅等. 不同煤体结构煤的孔隙结构分形特征及其研究意义 [J]. 煤炭科学技术, 2023, 51(10): 198-206.

[72]严敏, 张彬彬, 李锦良等. 低透气性煤孔隙结构连通率对煤层渗透性的影响规律研究 [J]. 煤矿安全, 2021, 52(04): 31-38.

[73]谢松彬. 低场核磁共振技术在煤储层物性及吸附性分析中的应用 [D]. 中国地质大学(北京), 2015.

[74]张军. 工业气体流量计工况标况下精确计量研究 [D]. 宁波大学, 2017.

[75]周尚文, 王红岩, 薛华庆等. 页岩过剩吸附量与绝对吸附量的差异及页岩气储量计算新方法 [J]. 天然气工业, 2016, 36(11): 12-20.

[76]杜华明, 宁正福, 苏朋辉. 考虑多组分吸附的页岩气储量计算方法 [J]. 地质科技情报, 2017, 36(02): 141-145.

[77]熊健, 刘向君, 梁利喜. 页岩中甲烷虚拟饱和蒸汽压的计算方法研究 [J]. 西南石油大学学报, 2015, 37(4): 90-100.

[78]辜敏, 鲜学福. 模拟的煤层气在活性炭吸附柱上穿透曲线的研究 [J]. 天然气化工, 2003, 28(2): 23-25, 41.

[79]Sudibandriyo M, Pan Z, Fitzgerald J E, et al. Adsorption of methane, nitrogen, carbon dioxide, and their binary mixtures on dry activated carbon at 318.2 K and pressures up to 13.6 MPa [J]. Langmuir, 2003, 19(13): 5323-5331.

[80]Landa H O R, Flockerzi D, Seidel‐Morgenstern A. A method for efficiently solving the IAST equations with an application to adsorber dynamics [J]. AIChE Journal, 2013, 59(4): 1263-1277.

[81]Wu C, Sircar S. Comments on binary and ternary gas adsorption selectivity [J]. Separation and Purification Technology, 2016, 170.

[82]隋宏光, 姚军. CO2/CH4在干酪根中竞争吸附规律的分子模拟 [J]. 中国石油大学学报(自然科学版), 2016, 40(02): 147-154.

[83]江守一郎. 模型实验的理论和应用 [M]. 科学出版社, 1984.

[84]王亮. 突出煤粉-瓦斯固气两相流动力学演化规律研究 [D]. 中国矿业大学(北京), 2020.

[85]胡千庭, 周世宁, 周心权. 煤与瓦斯突出过程的力学作用机理 [J]. 煤炭学报, 2008, 33(12): 1368-1372.

[86]胡千庭, 文光才. 煤与瓦斯突出的力学作用机理 [M]. 科学出版社, 2013: 291-294.

[87]赵博. 应力主导的煤与瓦斯突出模拟实验研究 [D]. 重庆大学, 2020.

[88]耿加波. 煤与瓦斯突出灾变时空演化及其煤—瓦斯两相流运移特性物理模拟试验研究 [D]. 重庆大学, 2018.

[89]程邦勤编著. 一维不定常流与冲击波 [M]. 北京: 国防工业出版社, 2009.

[90]John D. Anderson J. Fundamentals of Aerodynamics [M]. 5. Maryland: University of Maryland, 2009.

[91]杨雪林, 文光才, 孙海涛等. 基于激波管理论的突出冲击波超压预测模型及实验验证 [J/OL]. 煤炭学报, 1-20[2024-03-24].

[92]傅智敏, 黄金印, 臧娜. 爆炸冲击波伤害破坏作用定量分析 [J]. 消防科学与技术, 2009, 28(06): 390-395.

[93]周爱桃. 瓦斯突出冲击气流传播及诱导矿井风流灾变规律研究 [D]. 中国矿业大学(北京), 2012.

[94]王凯, 周爱桃, 魏高举等. 巷道截面变化对突出冲击波传播的影响[J]. 煤炭学报, 2012, 37(06): 989-993.

[95]周西方. 煤与瓦斯突出两相流运移规律试验研究 [D]. 中国矿业大学, 2021.

[96]金侃. 煤与瓦斯突出过程中高压粉煤—瓦斯两相流形成机制及致灾特征研究 [D]. 中国矿业大学, 2017.

[97]雷杨. 煤与瓦斯突出的次声响应特征与级联破裂发展机制研究 [D]. 中国矿业大学, 2023.

[98]涂庆毅. 构造煤表观物理结构及煤与瓦斯突出层裂发展机制研究 [D]. 徐州: 中国矿业大学, 2019.

[99]王刚, 武猛猛, 程卫民等. 煤与瓦斯突出能量条件及突出强度影响因素分析 [J]. 岩土力学, 2015, 36(10): 2974-2982.

中图分类号:

 TD712    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式