论文中文题名: |
空调用新型固体除湿材料的制备及性能研究
|
姓名: |
何晨晨
|
学号: |
18203057002
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081404
|
学科名称: |
工学 - 土木工程 - 供热、供燃气、通风及空调工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
能源学院
|
专业: |
供热 ; 供燃气 ; 通风及空调工程
|
研究方向: |
制冷、空调系统的节能技术
|
第一导师姓名: |
陈柳
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-21
|
论文答辩日期: |
2021-06-03
|
论文外文题名: |
Study on Preparation and Properties of New Solid Dehumidification Materials for Air Conditioning
|
论文中文关键词: |
固体除湿 ; 除湿性能 ; 空调 ; 硅胶 ; 金属有机框架材料
|
论文外文关键词: |
Solid dehumidification ; Dehumidification performance ; Air-conditioning ; Silica gel ; Metal-Organic Frameworks
|
论文中文摘要: |
︿
固体除湿空调系统可由低品位能源驱动且无污染,吸附剂是固体除湿空调系统的核心。为解决传统固体除湿材料除湿效率低,除湿能耗高等问题,本文制备了具有高水蒸气吸附量、吸附/脱附速度快并且水热稳定性好的负载型改性硅胶复合除湿材料和金属有机框架材料/陶瓷纤维纸除湿材料两种除湿材料。采用氮气吸附-解吸法(BET)、扫描电镜(SEM)、X射线衍射(PXRD)和热重分析(TG)对除湿材料进行了表征和分析。研究了两种除湿材料的动态除湿性能和除湿再生循环性能;并将金属有机框架材料/陶瓷纤维纸除湿材料制备成蜂窝固体除湿器,通过自主搭建试验台对除湿器进行性能研究。
实验研究了负载型改性硅胶复合除湿材料在中高湿度下的除湿性能。结果表明:当制备条件为50 ml水、30 ml硅溶胶、浸渍时间为10 min时,所制备的Mg-B-Ca(25%)除湿性能最好,相比传统硅胶除湿量提高了3.2倍,且具有良好的再生性能。吸附动力学显示:水蒸气在Mg-B-Ca(25%)上的扩散系数为31.45~45.1×10-10 cm2/s(温度条件为20~40 ℃),吸附活化能为13.72 kJ/mol,对水蒸气的吸附遵循伪一级动力模型。
实验研究了金属有机框架材料/陶瓷纤维纸(MIL-101/CFP)除湿材料在中高湿度下的除湿性能。结果表明:当涂覆率C为70%时,金属有机框架材料/陶瓷纤维纸除湿材料(MIL-101/CFP-70)具有高的平衡除湿能力且能实现高的除湿率;和吸附量比传统硅胶吸附材料高100 mg/g,且具有很好的水热稳定性。吸附动力学显示:水蒸气在MIL-101/CFP-70上的扩散系数为1.71~2.41×10-10 cm2/s(温度条件为20~50 ℃),其吸附活化能为9.71 kJ/mol,且水蒸气的吸附遵循伪一级动力模型。
应用金属有机框架材料/陶瓷纤维纸(MIL-101/CFP-70)制备了蜂窝固体除湿器,并在不同实验工况下进行了性能测试。结果表明:蜂窝固体除湿器最佳吸附-脱附时间为8min时,除湿效率和除湿量最大;当相对湿度处于70~90%时,再生温度在50~70 ℃时,除湿性能系数为0.83~0.95,且具有很高的除湿效率和除湿量;采取预冷的方式降低处理空气的进口温度可以提高除湿系统的DCOP。当吸附-脱附时间为8 min、处理风速为2 m/s、再生风速为2 m/s且再生温度为70 ℃时,除湿器具有最佳的综合性能表现,其除湿效率为44.70%,单位质量除湿量为4.90 kg/(kg·h),除湿性能系数为0.95。
﹀
|
论文外文摘要: |
︿
~Solid dehumidification air conditioning system can be driven by low grade energy and no pollution. Adsorbent is the core of solid dehumidification air conditioning system. In order to solve the problems of low dehumidification efficiency and high dehumidification energy consumption of traditional solid dehumidification materials, a loaded modified silica gel composite dehumidifier material with high water vapor adsorption capacity, fast adsorption/desorption speed and good hydrothermal stability and a metal organic frame material/ceramic fiber paper dehumidification material two dehumidifying materials were prepared. Nitrogen adsorption-desorption (BET), scanning electron microscopy (SEM), x-ray diffraction (PXRD) and thermogravimetric analysis (TG) were used to characterize and analyze the dehumidifying materials. The two dehumidifying materials dynamic dehumidification performance and the recycling performance of dehumidification were studied, and the metal organic frame material/ceramic fiber paper dehumidifier was prepared into honeycomb solid dehumidifier, and the performance of dehumidifier is studied by self-built test bed.
The dehumidification performance of loaded modified silica gel composite dehumidifier under medium and high humidity was studied experimentally. The results show that when the preparation condition is 50 ml of water, 30 ml silicone sol and impregnation time is 10 min, the prepared Mg-B-Ca(25%) has the best dehumidification performance, which is 3.2 times higher than the amount of traditional silicone dehumidification, and has good regeneration performance. The adsorption kinetics show that the diffusion coefficient of water vapor on Mg-B-Ca(25%) is 31.45~45.1×10-10 cm2/s (Temperature conditions 20~40 ℃), and the adsorption activation energy can be 13.72 kJ/mol, and the adsorption of water vapor follows a pseudo-first-stage dynamic model.
Dehumidification properties of metal organic skeleton material/ceramic fiber paper (MIL-101/CFP) dehumidification material at medium and high humidity are studied experimentally. The results show that when the coating rate is 70, the metal organic frame material/ceramic fiber paper dehumidification material (MIL-101/CFP-70) has high equilibrium dehumidification ability and can achieve high dehumidification rate. The saturated adsorption capacity is 100 mg/g, higher than that of traditional silica gel adsorption material and has good hydrothermal stability. The adsorption kinetics showed that the diffusion coefficient of water vapor on the MIL-101/CFP-70 was 1.71~2.41×10-10 cm2/s(Temperature conditions 20~50 ℃), the adsorption activation energy was 9.71 kJ/mol, and the adsorption of water vapor followed the pseudo-first-order dynamic model.
Honeycomb solid dehumidifier was prepared using metal organic frame material/ceramic fiber paper (MIL-101/CFP-70) and its performance was tested under different experimental conditions. As a result, when the optimum adsorption-desorption time of honeycomb solid dehumidifier is 8 min, the dehumidification efficiency and dehumidification capacity are maximum; When the relative humidity is 70~90%, the regeneration temperature is 50~70 ℃, DCOP values range from 0.83~0.95, and it has high dehumidification efficiency and dehumidification capacity; Decreasing the inlet temperature of air treated by precooling can increase the DCOP. When the adsorption-desorption time is 8 min, the treatment wind speed is 2 m/s, the regeneration wind speed is 2 m/s and the regeneration temperature is 70 ℃, the dehumidifier have the best comprehensive performance, The dehumidification efficiency is 44.7% and the unit mass dehumidification is 4.90 kg/(kg·h) and DCOP is 0.95.
﹀
|
参考文献: |
︿
[1]罗良. 热泵型溶液除湿新风系统优化研究[D]. 安徽工业大学, 2019. [2]陈思豪,陈柳. 低温驱动双转轮除湿空调系统研究[J]. 建筑科学, 2019,035(008):89-94,117. [3]雷燕子. 新型吸附材料除湿转轮传递过程性能研究[D]. 西安科技大学,2020. [4]吴超. 辐射用热管新风除湿机的性能研究[D]. 南京师范大学,2020. [5]刘继磊. 固体吸附式室内空气除湿材料性能实验研究[D]. 北京建筑大学,2020. [6]李玉夺,王海峰,张守兵,等. 一种新型太阳能液体除湿装置的设计[J]. 节能技术,2016,34(03):254-257+261. [7]汪行,柳建华,赵永杰,等. 液体除湿空调除湿器性能研究[J]. 制冷学报, 2017,038(002):45-50. [8]彭春发,柳建华,王学东,等. 液体除湿空调系统对室内颗粒物除尘效率实验研究[J].能源工程, 2018,000(001):38-42. [9]李杜鹃. 电解质膜除湿系统性能研究与调控[D]. 华南理工大学, 2019. [10]张佩兰,郭宪民,郭晓辉. 膜除湿空气制冷系统性能的试验研究[C]// 第七届中国冷冻冷藏新技术新设备研讨会论文集. 2015. [11]宋文前,李维,葛杨慧,等. 固体吸附除湿固定床结构实验研究[J]. 建筑节能, 2014,000(008):21-24. [12]杨丽君,李维,陈立楠,等. 固定吸附床结构对再生和除湿效果的影响[J]. 制冷学报, 2015(02):101-105. [13]许梦玫. 多能源驱动再生的固定除湿床性能研究及其在数据中心空调中的应用[D]. 上海交通大学, 2019. [14]郑旭,王如竹,葛天舒. 硅藻-氯化锂复合除湿剂制备及吸附性能[J]. 化工学报,2016,67(07):2874-2879. [15]Sendek M E , Virji M A , White D A , et al. Water sorption properties of modified clinoptilolite[J]. Separation and Purification Technology, 1997, 11(2): 137-141. [16]赵朝晖,朱冬生,郑成. 氯化钙-13X分子筛复合吸附剂的实验研究[J]. 广州化工, 2005(03):59-61. [17]方玉堂,蒋赣,匡胜严,等. 硅胶/分子筛复合物的制备及吸附性能[J]. 硅酸盐学报, 2007,35(006):746-749. [18]Kumar S R , Pillai P K , Warrier K . Synthesis of high surface area silica by solvent exchange in alkoxy derived silica gels[J]. Polyhedron, 1998,17(10):1699-1703. [19]Chung T W , Yeh T S , Yang C K . Influence of manufacturing variables on surface properties and dynamic adsorption properties of silica gels[J]. Journal of Non-Crystalline Solids, 2001,279(2-3):145-153. [20]代咪咪,邹同华,严雷,等. 不同干燥剂转轮的除湿性能[J]. 化工进展,2015,34(07):1841-1845. [21]Aristov Y I , Restuccia G , Cacciola G , et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied Thermal Engineering. 2002,22(2): 191-204. [22]常烜宇,李勇,何海斌,等. 硅胶及硅胶-氯化锂复合材料蓄能特性实验与分析[J]. 太阳能学报, 2017,38(007):1767-1772. [23]杨启荣. 复合型除湿材料的制备及性能研究[D]. 华南理工大学, 2015. [24]胡雷鸣,葛天舒,江宇,等. 金属基复合吸附剂的吸湿性能测试[J]. 制冷学报, 2014,35(2):69-75. [25]姚文凡. 有机高分子/硅胶复合吸湿剂的制备和表征[D]. 华南理工大学, 2013. [26]郭敬花. 改性硅胶/分子筛复合物除湿性能研究[D]. 华南理工大学, 2011. [27]刘海勇. 新型负载型除湿材料性能的研究[D]. 华南理工大学, 2013. [28]郑旭,王如竹,王丽伟,等. 复合除湿剂导热系数及动态除湿性能研究[J]. 工程热物理学报, 2014,35(10):2009-2014. [29]赵友星. 镁硅复合材料的制备及吸附性能的研究[D]. 中国海洋大学, 2011. [30]朱培怡. 含镁多孔性材料的制备与性能研究. 中国海洋大学, 2009. [31]赵惠忠,闫坦坦,贾少龙,等. 新型复合吸附剂硅胶/氧化石墨烯在开式吸附下的吸附性能研究[J]. 离子交换与吸附,2018,34(06):500-509. [32]方玉堂,蒋赣. 转轮除湿机吸附材料的研究进展[J]. 化工进展, 2005(10):65-69. [33]Huang Y F, Liu M, Wang YQ, et al. Hydrothermal synthesis of functionalized magnetic MIL-101 for magnetic enrichment of estrogens in environmental water samples[J]. RSC Advances, 2016,6(19):15362-15369. [34]Cheng, Jian-Wen, Yang, et al. Hydrothermal Synthesis of Lanthanide and Lanthanide-Transition-Metal Cluster Organic Frameworks via Synergistic Coordination Strategy[J]. Structure and Bonding, 2017,173:97-119. [35]Singh N K , Gupta S , Pecharsky V K , et al. Solvent-free mechanochemical synthesis and magnetic properties of rare-earth based metal-organic frameworks[J]. Journal of Alloys & Compounds, 2016,696:118-122. [36]Masoomi M Y, Morsali A, Junck P C. Rapid mechanochemical synthesis of two new Cd(II)-based metal–organic frameworks with high removal efficiency of Congo red[J]. Journal of Biological Rhythms, 2014,17(3):686-692. [37]Kim J , Lee Y R , Ahn W S . Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding: high surface area and high yield synthesis with minimum purification[J]. Chemical Communications, 2013,49(69):7647-7649. [38]Lu N , Zhou F , Jia H , et al. Dry-Gel Conversion Synthesis of Zr-Based Metal-Organic Frameworks[J]. Industrial & Engineering Chemistry Research, 2017:acs.iecr.7b04010. [39]Furukawa H , Cordova K E , M OâKeeffe, et al. The chemistry and applications of metal-organic frameworks.[J]. Science, 2013,341(6149):974. [40]Jérme Canivet, Fateeva A , Guo Y , et al. Water adsorption in MOFs: fundamentals and applications[J]. Chemical Society Reviews, 2014,43(16): 5594-5617. [41]Kitagawa S , Kitaura R , Noro S I . Functional Porous Coordination Polymers[J]. Angewandte Chemie, 2004,43(18):2334–2375. [42]Ferey G , Mellot-Draznieks C , Serre C , et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005,309(5743):p.2040-2042. [43]Schoenecker P M , Carson C G , Jasuja H , et al. Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks[J]. Industrial & Engineering Chemistry Research, 2012,51(18):6513–6519. [44]Burtch N C , Jasuja H , Walton K S . Water stability and adsorption in metal-organic frameworks.[J]. Chemical Reviews, 2014,114(20): 10575-10612. [45]颜健. 两种MOF/氧化石墨复合材料的制备及其水蒸汽,乙醇吸附性能[D]. 华南理工大学, 2016. [46]P Küsgens, Rose M , Senkovska I , et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous & Mesoporous Materials, 2009,120(3):325-330. [47]Low J J , Benin A I , Jakubczak P , et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration.[J]. Journal of the American Chemical Society, 2009,131(43):15834-15842. [48]李倩文,赵惠忠,王朝阳,等. MIL-101(Cr)开式吸附性能实验[J]. 化工进展, 2019,038(008):3788-3794. [49]Low J J , Benin A I , Jakubczak P , et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration.[J]. Journal of the American Chemical Society, 2009,131(43):15834-15842. [50]Kim S I , Yoon T U , Kim M B , et al. Metal-Organic Frameworks with High Working Capacities and Cyclic Hydrothermal Stabilities for Fresh Water Production[J]. Chemical Engineering Journal, 2015,286:467-475. [51]Ehrenmann J , Henninger S K , Janiak C . Water Adsorption Characteristics of MIL‐101 for Heat‐Transformation Applications of MOFs[J]. European Journal of Inorganic Chemistry, 2011,2011(4):471-474. [52]Khutia A , Rammelberg H U , Schmidt T , et al. Water Sorption Cycle Measurements on Functionalized MIL-101Cr for Heat Transformation Application[J]. Chemistry of Materials, 2013,25(5):790-798. [53]Bareschino P , Diglio G , Pepe F , et al. Numerical Study of a MIL101 Metal Organic Framework Based Desiccant Cooling System for Air Conditioning Applications[J]. Applied Thermal Engineering, 2017,124:641-651. [54]DominikFrhlich, Kaihenninger S , ChristophJaniak. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H[J]. Dalton Transactions, 2014,43(41):15300-15304. [55]Bon V , Senkovska I , Weiss M S , et al. Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs[J]. Crystengcomm, 2013,15(45):9572-9577. [56]Seo Y K , Ji W Y , Ji S L , et al. Porous Materials: Energy-Efficient Dehumidification over Hierachically Porous Metal-Organic Frameworks as Advanced Water Adsorbents (Adv. Mater. 6/2012)[J]. Advanced Materials, 2012,24(6):806-810. [57]Furukawa H , Gandara F , Zhang Y B , et al. Water adsorption in porous metal-organic frameworks and related materials.[J]. Journal of the American Chemical Society, 2014,136(11):4369-4381. [58]Ferey G , Mellot-Draznieks C , Serre C , et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science, 2005, 309(5743):p.2040-2042. [59]Shen D, Bülow M, Siperstein F , et al. Comparison of Experimental Techniques for Measuring Isosteric Heat of Adsorption[J]. Adsorption, 2000,6(4):275-286. [60]A Ansón, Callejas M A , Benito A M , et al. Hydrogen adsorption studies on single wall carbon nanotubes[J]. Carbon, 2004,42(7):1243-1248. [61]Lazaridis N K , Karapantsios T D , Georgantas D . Kinetic analysis for the removal of a reactive dye from aqueous solution onto hydrotalcite by adsorption[J]. Water Research, 2003,37(12):3023-3033. [62]Ho Y S , Mckay G . Pseudo-second order model for sorption processes[J]. Process Biochemistry, 1999,34(5):451-465. [63]Zhijuan, Zhang, Sisi, et al. Adsorption Equilibrium and Kinetics of CO2 on Chromium Terephthalate MIL-101[J]. Energy & Fuels, 2011, 25(2):835-842. [64]MIYOSHI, HIROFUMI. Donnan Dialysis with Ion-Exchange Membranes. III. Diffusion Coefficients Using Ions of Different Valence[J]. Separation Science and Technology, 1999,34(2)(2):231-241. [65]赵祯霞. 金属有机骨架MOF-5膜的制备及其CO2气体渗透分离性能[D]. 华南理工大学,2009. [66]Hauer A . Evaluation of adsorbent materials for heat pump and thermal energy storage applications in open systems[J]. Adsorption-journal of the International Adsorption Society, 2007,13(3-4):399-405. [67]Henninger S K , Habib H A , Janiak C . MOFs as Adsorbents for Low Temperature Heating and Cooling Applications[J]. Journal of the American Chemical Society, 2009, 131(8):2776. [68]Henninger S K , Schmidt F P , Henning H M . Water adsorption characteristics of novel materials for heat transformation applications[J]. Applied Thermal Engineering, 2010, 30(13):1692-1702. [69]Ying, Zhong, Xiao, et al. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity[J]. Applied thermal engineering: Design, processes, equipment, economics, 2015,84:118-125. [70]P Küsgens, Rose M , Senkovska I , et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous & Mesoporous Materials, 2009, 120(3):325-330. [71]Gargiulo N , Imperatore M , Aprea P , et al. Synthesis and characterization of a microporous copper triazolate as a water vapor adsorbent[J]. Microporous and Mesoporous Materials, 2011,145(1–3):74-79. [72]Wu X N , TS Ge, Dai Y J , et al. Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix[J]. Energy, 2019,176(JUN.1):493-504. [73]Yadav A , Yadav L . Comparative performance of desiccant wheel with effective and ordinary regeneration sector using mathematical model[J]. Heat & Mass Transfer, 2014, 50(10):1465-1478. [74]Yeboah S K , Darkwa J . A critical review of thermal enhancement of packed beds for water vapour adsorption[J]. Renewable & Sustainable Energy Reviews, 2016, 58:1500-1520. [75]余卓雷. 除湿转轮的传热传质特性研究[D]. 西安科技大学.
﹀
|
中图分类号: |
TU834.9
|
开放日期: |
2021-06-21
|