论文中文题名: |
基于电磁超表面的波束调控 及应用研究
|
姓名: |
马雄伟
|
学号: |
21207223072
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085400
|
学科名称: |
工学 - 电子信息
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2024
|
培养单位: |
西安科技大学
|
院系: |
通信与信息工程学院
|
专业: |
电子与通信工程
|
研究方向: |
电磁波束调控
|
第一导师姓名: |
黄晓俊
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2024-06-12
|
论文答辩日期: |
2024-05-29
|
论文外文题名: |
Beamforming Control and Applied Research Based on Electromagnetic Metasurfaces
|
论文中文关键词: |
超表面 ; 波束调控 ; 无源编码 ; 有源编码 ; 信号补盲
|
论文外文关键词: |
Metasurface ; Beamforming control ; Passive coding ; Active coding ; Signal coverage
|
论文中文摘要: |
︿
随着通信技术的迅猛发展,电磁波束调控作为其关键的研究方向,在提高通信系统性能和适应复杂通信环境方面具有重要意义。本文基于电磁超表面对波束调控及应用展开了深入研究,旨在提升波束调控的精确性和灵活性,为通信技术的进步提供有力支持。
(1)设计了一个工作在矿用频率3.5 GHz的无源编码波束调控超表面,其编码单元的幅度达到0.99以上,相位均匀覆盖0°-360°。通过精确调控2 bit极化不敏感的方形超表面单元,实现了对入射波相位的精确调节。所设计的编码超表面不仅能对垂直入射的线极化波进行双波束和单波束调控(波束调控范围为-60°至60°),还具备对斜入射电磁波精确调控的功能,能够应对复杂的电磁环境。在电磁仿真软件FEKO中进行煤矿巷道建模,将设计的波束调控超表面等效为定向天线进行电磁强度仿真。结果显示所设计的电磁超表面在信号补盲方面表现优异。微波暗室测试实验验证了仿真结果,证实了超表面能够实现定向波束辐射。在矿井巷道等复杂环境进行的现场工业测试进一步验证了超表面在信号补盲方面的良好性能。
(2)设计了一个工作在3.5 GHz的2 bit有源编码波束调控超表面,其中编码单元的反射幅度高于0.85,相位均匀覆盖0°-360°。引入PIN二极管结合人工排列和算法排列进行相位调制,成功实现了对y极化波在半空间内的任意调控。通过人工排列验证了超表面在(-40°, 40°)范围内的良好波束调控性能。进一步引入遗传算法对阵列进行优化,相较于人工布阵,算法排列阵列的RCS达到17.6 dBsm,旁瓣能量减小为原来的1/2,半功率波束宽度缩减为4.4°,表现出更为出色的波束指向性。仿真结果显示所设计的超表面在半空间内具备任意调控电磁波的能力。同时,研究了阵列大小对波束的影响。相对于无源编码超表面,有源编码超表面在灵活性上表现出更大的优势。通过自由空间法对样品进行实验测试,实验结果与仿真结果吻合。分别在炮掘工作面、综掘工作面和综采工作面三个巷道进行信号补盲测试,结果显示,所设计的编码超表面在三个巷道中,分别可以将信号强度提高7.42 dBm、10 dBm、和7.42 dBm,在不同的巷道中均具有良好的信号补盲能力。
研究结果显示,所设计的编码超表面成功实现了对线性极化波的波束定向控制,在煤矿巷道等特殊有限空间中,具备提升信号质量和覆盖盲区的潜力。
﹀
|
论文外文摘要: |
︿
With the rapid development in communication technology and electromagnetic wave control, beamforming technology has emerged as a crucial research area, holding significant implications for enhancing communication system performance and adapting to complex communication environments. This thesis delves into an in-depth study based on metasurfaces, aiming to enhance the precision and flexibility of beamforming, providing robust support for the advancement of communication technology.
(1) A passive coded beamformer operating at 3.5 GHz was designed, where the amplitude of each coding element exceeded 0.99, ensuring a uniform phase coverage from 0° to 360°. Through precise control of 2-bit polarization-insensitive square metasurface elements, accurate adjustments of both phase and amplitude for incident waves were achieved. The designed coded metasurface not only enables dual-beam and single-beam control for vertically incident linearly polarized waves (with a beamforming range from -60° to 60°) but also exhibits control capability for obliquely incident electromagnetic waves, addressing complex electromagnetic environments. By utilizing the electromagnetic simulation software FEKO for tunnel modeling, the designed beamformer was equivalent to a directional antenna for electromagnetic intensity simulation. Results demonstrated its outstanding performance in signal nulling. Experimental validation confirmed the simulation results, affirming the metasurface's ability to achieve directional beam radiation. Field industrial tests conducted in complex environments such as mine tunnels further validated the metasurface's outstanding performance in signal nulling.
(2) A 2-bit active coded beamformer operating at 3.5 GHz was designed, featuring reflection amplitudes higher than 0.85 and a phase coverage from 0° to 360°. The introduction of PIN diodes combined with manual and algorithmic arrangements facilitated phase modulation, successfully achieving arbitrary control of y-polarized waves in half-space. Manual arrangements verified the metasurface's excellent beamforming within the range of -40° to 40°. Further introduction of a genetic algorithm for array optimization resulted in an array with an RCS value reaching 17.6 dBsm, a 50% reduction in sidelobe energy, and a 4.4° reduction in half-power beamwidth, showcasing superior beam directionality. Simulation results illustrated that the designed metasurface possessed the capability for arbitrary electromagnetic wave control in half-space. Additionally, the study investigated the influence of array size on beamforming. In comparison to passive-coded metasurfaces, active-coded metasurfaces demonstrated greater flexibility. Experimental tests using free-space methods aligned with simulation results, confirming the precise and flexible beam control of the designed active coded metasurface. Signal blind spot tests are conducted in three different tunnels: drilling, tunneling, and mining faces. The results show that the designed active-coded metasurfaces enhances signal strength by 7.28 dBm, 7.42 dBm, and 7.62 dBm, respectively, in the three tunnels, demonstrating effective signal enhancement capabilities across diverse tunnel environments.
The research findings demonstrate that the designed encoded metasurface has successfully achieved beamforming control of linearly polarized waves. It possesses the potential to improve signal quality and cover blind spots in specific confined spaces such as coal mine tunnels.
﹀
|
参考文献: |
︿
[1] Huang C, Liao J, Ji C, et al. Graphene‐integrated reconfigurable metasurface for independent manipulation of reflection magnitude and phase[J]. Advanced Optical Materials, 2021, 9(7): 2001950. [2] Wu L W, Xiao Q, Gou Y, et al. Electromagnetic diffusion and encryption holography integration based on reflection–transmission reconfigurable digital coding metasurface[J]. Advanced Optical Materials, 2022, 10(10): 2102657. [3] Wang J, Zhang Z, Huang C, et al. Transmission–reflection‐integrated quadratic phase metasurface for multifunctional electromagnetic manipulation in full space[J]. Advanced Optical Materials, 2022, 10(6): 2102111. [4] Wang H P, Li Y B, Li H, et al. Intelligent metasurface with frequency recognition for adaptive manipulation of electromagnetic wave[J]. Nanophotonics, 2022, 11(7): 1401-1411. [5] Wan X, Qi M Q, Chen T Y, et al. Field-programmable beam reconfiguring based on digitally-controlled coding metasurface[J]. Scientific reports, 2016, 6(1): 20663. [6] Li Y, Pang Y, Wang J, et al. Tailoring Circular Dichroism in an Isomeric Manner: Complete Control of Amplitude and Phase for High‐Quality Hologram and Beam Forming[J]. Advanced Optical Materials, 2022, 10(3): 2101982. [7] Wang X, Han J Q, Li G X, et al. High-performance cost efficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface[J]. Nature Communications, 2023, 14(1): 6002. [8] Zeng B, Li C, Cheng H, et al. Anisotropic programmable metasurface beam splitter based on diode real-time control[J]. Optics and Lasers in Engineering, 2023, 169: 107723. [9] Jiang L, Jing Y, Li Y, et al. Multidimensionally manipulated active coding metasurface by merging pancharatnam–berry phase and dynamic phase[J]. Advanced Optical Materials, 2021, 9(13): 2100484. [10] Zhang C, Gao J, Cao X, et al. Multifunction tunable metasurface for entire-space electromagnetic wave manipulation[J]. IEEE Transactions on Antennas and Propagation, 2019, 68(4): 3301-3306. [11] 顾义东. 5G 技术在煤矿掘进工作面运输系统中的应用[J]. 工矿自动化, 2022, 48(6) 64-68. [12] 孙继平. 煤矿智能化与矿用 5G[J]. 工矿自动化, 2020, 46(8) : 1-7. [13] Zhang M, Ma X, Pu M, et al. Large-area and low-cost nanoslit-based flexible metasurfaces for multispectral electromagnetic wave manipulation[J]. Advanced Optical Materials, 2019, 7(23): 1900657. [14] Zhang X, Deng R, Yang F, et al. Metasurface-based ultrathin beam splitter with variable split angle and power distribution[J]. ACS photonics, 2018, 5(8): 2997-3002. [15] Gulzar Khawaja W A, Ozdemir O, Erden F, et al. Effect of Passive Reflectors for Enhancing Coverage of 28 GHz mmWave Systems in an Outdoor Setting[J]. arXiv e-prints, 2018: arXiv: 1811.07400. [16] Khawaja W, Ozdemir O, Yapici Y, et al. Coverage enhancement for NLOS mmWave links using passive reflectors[J]. IEEE Open Journal of the communications Society, 2020, 1: 263-281. [17] Anjinappa C K, Erden F, Güvenç I. Base station and passive reflectors placement for urban mmWave networks[J]. IEEE Transactions on Vehicular Technology, 2021, 70(4): 3525-3539. [18] Wang C, Xu H X, Wang Y, et al. Reconfigurable transmissive metasurface synergizing dynamic and geometric phase for versatile polarization and wavefront manipulations[J]. Materials & Design, 2023, 225: 111445. [19] Zhang X G, Sun Y L, Huang Z, et al. A review of light-controlled programmable metasurfaces for remote microwave control and hybrid signal processing[J]. Engineering Reports, 2023, 5(9): e12658. [20] Shen Z, Ye F J, Tan H R, et al. Programmable coding metasurface controlled by ultraviolet light-patterns[J]. Optics Continuum, 2023, 2(7): 1531-1539. [21] Chang M, Mu Y, Han J, et al. Tailless Information‐Energy Metasurface[J]. Advanced Materials, 2024: 2313697. [22] 王国法, 赵国瑞, 胡亚辉. 5G 技术在煤矿智能化中的应用展望[J]. 煤炭学报, 2020, 45(1): 16-23. [23] 孙继平, 梁伟锋, 彭铭, 等. 煤矿井下无线传输衰减分析测试与最佳工作频段研究[J]. 工矿自动化, 2023, 49(4) : 1-8. [24] Hancke G P, Silva B J. Wireless positioning in underground mines: Challenges and recent advances[J]. IEEE Industrial Electronics Magazine, 2021, 15(3): 39-48. [25] 孙彦景, 霍羽, 陈岩, 等. 矿山动态协同作业场景无线通信关键技术[J]. 煤炭学报, 2021, 46(1): 321-332. [26] Li L, Chen Q, Yuan Q, et al. Novel broadband planar reflectarray with parasitic dipoles for wireless communication applications[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 881-885. [27] Tang H, Ding S, Zhu Z, et al. Generation of Multiple Nondiffracting Beams Based on Transmission Metasurface in Microwave-Frequency Region[J]. IEEE Antennas and Wireless Propagation Letters, 2022, 22(1): 208-212. [28] Bai L, Liu Y K, Xu L, et al. A smart metasurface for electromagnetic manipulation based on speech recognition[J]. Engineering, 2023, 22: 185-190. [29] Bao L, Ma Q, Wu R Y, et al. Programmable reflection-transmission shared‐aperture metasurface for real-time control of electromagnetic waves in full space[J]. Advanced Science, 2021, 8(15): 2100149. [30] Wang H L, Ma H F, Chen M, et al. A reconfigurable multifunctional metasurface for full‐space control of electromagnetic waves[J]. Advanced Functional Materials, 2021, 31(25): 2100275. [31] Manickam P, Mariappan S A, Murugesan S M, et al. Artificial intelligence (AI) and internet of medical things (IoMT) assisted biomedical systems for intelligent healthcare[J]. Biosensors, 2022, 12(8): 562. [32] Zhang N, Chen K, Zheng Y, et al. Programmable coding metasurface for dual-band independent real-time beam control[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2020, 10(1): 20-28. [33] Li W, Ma Q, Liu C, et al. Intelligent metasurface system for automatic tracking of moving targets and wireless communications based on computer vision[J]. Nature Communications, 2023, 14(1): 989. [34] Dong G, Chen J, Zhang A, et al. Beam Width and Direction Control Through Metasurface Based on Surface Wave[J]. IEEE Photonics Technol. Lett. 2023, 35 (23), 1283–1286. [35] 吴利杰,杨汉卿,程强,等. 可增强信号覆盖范围的放大型信息超表面设计[J], 通信 学报, 2022,43(12) :3-12. [36] LI Shiyin, YANG Ruixin, YANG Lei, et al. Survey of thenon-line-of-sight wireless coverage technology by reconfigurable intelligent surfaces in underground coal mines[J], Journal of China University of Mining & Technology, 2023,1-10. [37] Hu Q, Yang W, Wang J, et al. Dynamically Generating Diverse Multi‐Beams with On‐Demand Polarizations through Space‐Time Coding Metasurface[J]. Advanced Optical Materials, 2024, 12(6): 2300093. [38] Yin T, Ren J, Zhang B, et al. Reconfigurable Transmission‐Reflection‐Integrated Coding Metasurface for Full‐Space Electromagnetic Wavefront Manipulation[J]. Advanced Optical Materials, 2024, 12(2): 2301326. [39] Zhao T, Zhang P, Fang B, et al. Scattered beam control of encoded metasurface based on near-field coupling effects of elements[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2024, 305: 123535. [40] Xiao Q, Ma Q, Ning Y M, et al. Programmable topological metasurface to modulate spatial and surface waves in real time[J]. Nanophotonics, 2024, 1497, 1–9. [41] Chen K, Zhang N, Ding G, et al. Active Anisotropic Coding Metasurface with Independent Real‐Time Reconfigurability for Dual Polarized Waves[J]. Advanced Materials Technologies, 2020, 5(2): 1900930. [42] Zhang J, Zhang H, Yang W, et al. Dynamic scattering steering with graphene-based coding metamirror[J]. Advanced Optical Materials, 2020, 8(19): 2000683. [43] Sur S N, Bera R. Intelligent reflecting surface assisted MIMO communication system: A review[J]. Physical Communication, 2021, 47: 101386. [44] Dong L, Wang H M, Bai J. Active reconfigurable intelligent surface aided secure transmission[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 2181-2186. [45] Veselago V G. Electrodynamics of substances with simultaneously negative ε and μ[J]. Usp. fiz. nauk, 1967, 92(7): 517. [46] Pendry J B, Holden A J, Robbins D J, et al. Low frequency plasmons in thin-wire structures[J]. Journal of Physics: Condensed Matter, 1998, 10(22): 4785. [47] Pendry J B, Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE transactions on microwave theory and techniques, 1999, 47(11): 2075-2084. [48] Smith D R, Vier D C, Padilla W, et al. Loop-wire medium for investigating plasmons at microwave frequencies[J]. Applied Physics Letters, 1999, 75(10): 1425-1427. [49] Shelby R A, Smith D R, Nemat-Nasser S C, et al. Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial[J]. Applied Physics Letters, 2001, 78(4): 489-491. [50] Holloway C L, Dienstfrey A, Kuester E F, et al. A discussion on the interpretation and characterization of metafilms/metasurfaces: The two-dimensional equivalent of metamaterials[J]. Metamaterials, 2009, 3(2): 100-112. [51] Yu N, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. science, 2011, 334(6054): 333-337. [52] Cui T J, Qi M Q, Wan X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: science & applications, 2014, 3(10): e218-e218. [53] Saifullah Y, Waqas A B, Yang G M, et al. Multi-bit dielectric coding metasurface for EM wave manipulation and anomalous reflection[J]. Optics Express, 2020, 28(2): 1139-1149. [54] Jing H B, Ma Q, Bai G D, et al. Anomalously Perfect Reflections Based on 3‐Bit Coding Metasurfaces[J]. Advanced Optical Materials, 2019, 7(9): 1801742. [55] Gao H, Huang X, Ma X, et al. An ultra-wideband coding polarizer for beam control and RCS reduction[J]. Frontiers of Physics, 2023, 18(4): 42301. [56] Pan W, Wang Z, Chen Y, et al. High-efficiency generation of far-field spin-polarized wavefronts via designer surface wave metasurfaces[J]. Nanophotonics, 2022, 11(9): 2025-2036. [57] Fu X, Shi L, Yang J, et al. Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces[J]. ACS Applied Materials & Interfaces, 2022, 14(19): 22287-22294. [58] Wu R Y, Bao L, Wu L W, et al. Broadband transmission-type 1-bit coding metasurface for electromagnetic beam forming and scanning[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(8): 284211. [59] Gao L H, Cheng Q, Yang J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science & Applications, 2015, 4(9): e324-e324. [60] Ding G, Chen K, Luo X, et al. Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface[J]. Nanophotonics, 2020, 9(9): 2977-2987. [61] Zhao T, Jing X, Tang X, et al. Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface[J]. Optics and Lasers in Engineering, 2021, 141: 106556. [62] 46.Chen J, Wei Y, Zhao Y, et al. Transparent and broadband diffusion metasurface with high transparency and high shielding effectiveness using metallic mesh[J]. IEEE transactions on Antennas and Propagation, 2022, 70(7): 5574-5583. [63] 47.Huang C, Sun B, Pan W, et al. Dynamical beam manipulation based on 2-bit digitally-controlled coding metasurface[J]. Scientific reports, 2017, 7(1): 42302. [64] Zhang, L.; Wang, Z. X.; Shao, R. W.; Shen, J. L.; Chen, X. Q.; Wan, X.; Cheng, Q.; Cui, T. J. Dynamically Realizing Arbitrary Multi-Bit Programmable Phases Using a 2-Bit Time-Domain Coding Metasurface[J]. IEEE Trans. Antennas Propag. 2020, 68 (4) : 2984–2992. [65] Ma Q, Hong Q R, Gao X, et al. Highly integrated programmable metasurface for multifunctions in reflections and transmissions[J]. APL Materials, 2022, 10(6): 061113. [66] Hu Q, Zhao J, Chen K, et al. An intelligent programmable omni‐metasurface[J]. Laser & Photonics Reviews, 2022, 16(6): 2100718. [67] Heiden J T, Ding F, Linnet J, et al. Gap‐surface plasmon metasurfaces for broadband circular‐to‐linear polarization conversion and vector vortex beam generation[J]. Advanced Optical Materials, 2019, 7(9): 1801414. [68] Yin J, Wu Q, Lou Q, et al. Single-beam 1 bit reflective metasurface using prephased unit cells for normally incident plane waves[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5496-5504.
﹀
|
中图分类号: |
TN015
|
开放日期: |
2024-06-12
|