- 无标题文档
查看论文信息

题名:

 硫化锌镉及铁酸铋基催化剂制备及其压电催化性能研究    

作者:

 郑健    

学号:

 22213225063    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 085600    

学科:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 材料与化工    

研究方向:

 压电催化及热释电催化    

导师姓名:

 宫铭    

导师单位:

 西安科技大学    

第二导师姓名:

 周文英    

提交日期:

 2025-06-16    

答辩日期:

 2025-06-03    

外文题名:

 Study on the preparation and piezocatalytic performance of cadmium zinc sulfide-based and bismuth ferrite-based catalysts    

关键词:

 铁酸铋 ; 硫化锌镉 ; 热释电催化 ; 压电催化 ; 染料降解    

外文关键词:

 Bismuth ferrite ; Cadmium zinc sulfide ; Piezoelectric ; Dye degradation ; Pyroelectric catalysis    

摘要:

工业化的快速发展导致有机染料废水污染问题日益突出,罗丹明B (RhB)、甲基橙 (MO) 等难降解染料对水体生态安全构成严重威胁。传统光催化技术虽具备绿色环保特性,但其实际应用受限于太阳能利用率低、光穿透性深度不足等瓶颈。因此,开发其他能量形式 (如机械能、热能和电能) 的新型的绿色催化技术势在必行。本研究以铁酸铋 (BiFeO3,BFO) 与硫化锌镉 (CdxZn1-xS,CZS) 为基体,基于缺陷工程、能带工程及异质界面设计策略,构建高效催化体系,系统探究催化剂在压电、热释电及铁电效应驱动下对RhB和MO的催化降解性能,揭示其对有机染料废水的高效降解机制。本研究的主要内容如下:

1、铁酸铋及硫化镉改性的铁酸铋催化剂制备及其催化性能研究

本研究通过尿素辅助煅烧法精准构建氧空位 (OVs) 浓度可调的BFO纳米催化剂,BFO-3样品因适中的OVs浓度展现出最优压电催化性能,对RhB和MO的降解率 (D) 分别达40.5%和25.9%。研究结果表明,催化活性增强机制源于OVs作为活性位点促进压电诱导的电子-空穴对 (e--h+) 分离,加速生成超氧自由基 (O2-) 和羟基自由基 (∙OH)。为进一步提升催化性能,采用水热法在BFO-3表面包覆CdS纳米层,构建BFO-3@CdS复合材料。得益于CdS包覆层优化的载流子迁移效率,BFO-3@CdS-6样品在铁电、热释电及压电催化中性能显著提升:铁电催化下,经2.5 kV极化处理2 h后,7 h内RhB和MO的D分别提升至62.9%和51.1%;热释电催化中,经84次冷热循环 (25-65 °C) 后,D达52.6%和58.7%;压电催化下,超声105 min后D高达85.4%和52.4%。利用多样化的能量形式激发压电、热释电及铁电效应,促使BFO-3@CdS材料内部实现e--h+的高效分离,进而将机械能、热能及电能有效地转化为化学能,使得BFO-3@CdS能够在较短时间内高效降解染料。

2、硫化锌镉及二硫化钼改性的硫化锌镉催化剂制备及其压电催化性能研究

本研究通过水热法合成Zn/Cd比例可调的CZS压电催化剂,研究结果表明CZS-9样品 (Zn/Cd=1:9) 具有最优的降解效率,在超声振动105 min后对RhB和MO的D分别达到40.5%和25.9%。能带结构分析表明,Cd含量的增加显著优化了材料能带结构,使导带位置更负、价带位置更正,从而增强e--h+对的氧化还原能力。进一步构建的CZS-9/MoS2异质结复合材料在7% MoS2包覆量时展现出优异的压电催化性能,RhB和MO的D分别提升至90.8%和57.9%,这归因于CZS-9与MoS2的协同效应增强了压电响应,促进载流子分离与迁移效率,实现对染料的高效降解。

综上所述,本研究通过异质界面设计策略,构建BFO-3@CdS和CZS-9/MoS2复合催化体系,显著促进载流子的分离与迁移,实现对有机染料的高效降解,并探明了材料结构与催化性能的构效关系,揭示了压电催化材料对有机染料的高效降解机制,为开发高性能压电催化剂及推进工业废水深度处理技术提供了创新思路。

外文摘要:

The rapid development of industrialization has led to prominent pollution issues from organic dye wastewater, where refractory dyes such as Rhodamine B (RhB) and Methyl Orange (MO) pose serious threats to aquatic ecological safety. Although traditional photocatalytic technology exhibits environmentally friendly characteristics, its practical application is constrained by bottlenecks such as low solar energy utilization efficiency and insufficient light penetration depth. Therefore, it is imperative to develop novel green catalytic technologies utilizing other energy forms (e.g., mechanical energy, thermal energy, and electrical energy). This study employs bismuth ferrite (BiFeO3 BFO) and cadmium zinc sulfide (CdxZn1-x CZS) as matrix materials. Through defect engineering, bandgap engineering, and heterointerface design strategies, we construct high-efficiency catalytic systems to systematically investigate the catalytic degradation performance of RhB and MO driven by piezoelectric, pyroelectric, and ferroelectric effects. The mechanisms underlying the efficient degradation of organic dyes will be elucidated. The main contents of this study are as follows:

1. Synthesis and investigation of catalytic performance of bismuth ferrite and cadmium sulfide-modified bismuth ferrite catalysts

This study precisely constructed BFO nanocatalysts with tunable oxygen vacancy (OVs) concentration via the urea-assisted calcination method. The BFO-3 sample exhibited optimal piezoelectric catalytic performance due to its appropriate OVs concentration, with the degradation rates (D) for RhB and MO reaching 40.5% and 25.9%, respectively. The enhanced catalytic activity originates from OVs acting as active sites to promote piezoelectric-induced electron-hole pairs (e--h+) separation, accelerating the generation of superoxide radicals (⋅O2-) and hydroxyl radicals (⋅OH). To further improve catalytic performance, a CdS nanolayer was coated on BFO-3 surface via hydrothermal method to construct BFO-3@CdS composite. Benefiting from optimized carrier migration efficiency by CdS coating, BFO-3@CdS-6 exhibits significantly enhanced performance in ferroelectric, pyroelectric, and piezoelectric catalysis: Under ferroelectric catalysis after 2.5 kV polarization for 2 h, RhB and MO degradation rates increase to 62.9% and 51.1% within 7 h; In pyroelectric catalysis after 84 thermal cycles (25-65°C), degradation rates reach 52.6% and 58.7%; Under piezoelectric catalysis, 85.4% and 52.4% degradation rates are achieved after 105 min ultrasonication. The diversified energy forms (mechanical, thermal, and electrical) activate piezoelectric, pyroelectric, and ferroelectric effects to realize efficient e--h+ separation in BFO-3@CdS, effectively converting these energy forms into chemical energy. This enables BFO-3@CdS to achieve rapid and efficient dye degradation within short durations

2. Preparation of zinc cadmium sulfide and molybdenum disulfide-modified zinc cadmium sulfide catalysts and study of their piezoelectric catalytic performance

This study synthesized CZS piezoelectric catalysts with tunable Zn/Cd ratios via the hydrothermal method. The results show that the CZS-9 sample (Zn/Cd=1:9) possesses the optimal degradation efficiency, with the D for RhB and MO reaching 40.5% and 25.9%, respectively, after 105 min of ultrasonic vibration. Band structure analysis reveals that increased Cd content significantly optimizes the material’s energy band structure, rendering a more negative conduction band position and a more positive valence band position, thereby enhancing the redox capability of e--h+ pairs. The further-constructed CZS-9/MoS2 heterojunction composite with 7% MoS2 coating exhibits exceptional piezoelectric catalysts performance, elevating RhB and MO degradation rates to 90.8% and 57.9%. This enhancement is attributed to the synergistic effect between CZS-9 and MoS2, which strengthens the piezoelectric response, promotes carrier separation and migration efficiency, and achieves efficient dye degradation.

In summary, this study employs a heterointerface design strategy to construct BFO-3@CdS and CZS-9/MoS2 composite catalytic systems, which significantly enhance carrier separation and migration, achieving efficient degradation of organic dyes. The structure-activity relationships between material architectures and catalytic performance are systematically elucidated, and the mechanisms underlying the efficient degradation of organic dyes by piezoelectric catalytic materials are clarified. This work provides innovative insights for developing high-performance piezoelectric catalysts and advancing advanced industrial wastewater treatment technologies.

参考文献:

Li H, Bowen C R, Yang Y. Scavenging energy sources using ferroelectric materials [J]. Advanced Functional Materials, 2021, 31(25): 2100905.

[2] 宋国彬. 功能化碳纳米管复合材料对水中染料的吸附机制研究 [D]. 大连海事大学, 2024 .

[3] Sudrajat H, Rossetti I, Carra I, et al. Piezocatalytic reduction: an emerging research direction with bright prospects [J]. Current Opinion in Chemical Engineering, 2024, 45: 101043.

[4] Yang H, Lee C G, Lee J. Piezocatalysis-combined advanced oxidation processes for organic pollutant degradation in water system [J]. Ultrasonics Sonochemistry, 2025: 107219.

[5] Zhang M, Wang K, Han C, et al. Kesterite‐type narrow bandgap piezoelectric catalysts for highly efficient piezocatalytic fenton system [J]. Advanced Functional Materials, 2025, 35(2): 2412258.

[6] Zhuang W, Zhang Y, Luo Q, et al. Piezoelectric catalytic process: A genuinely energy-saving approach for water Treatment? A critical review [J]. Chemical Engineering Journal, 2024: 155956.

[7] 张美玉. CdS基半导体材料光、压电和热释电催化产氢性能研究 [D]. 兰州大学, 2022. 2022.

[8] 马江平. 钛酸钡铁电纳米材料热释电催化和压电催化效应降解染料研究 [D]. 浙江:浙江师范大学, 2020.

[9] Jhilik R, Shubham R, Dhananjoy M, et al. Gd-doped bismuth ferrite nanocomposite: A promising candidate for piezocatalytic degradation of organic dyes and pathogenic E. coli [J]. Surfaces and Interfaces, 2024, 44: 103579.

[10] Zhang C, Ren X, Wang K, et al. Boosting piezocatalytic efficiency: Thin carbon layer-modified ZnO for superior rhodamine B degradation [J]. Ceramics International, 2024, 50(21): 43340-43344.

[11] Liu X, Wang M, Li Y, et al. Bismuth titanate microplates with tunable oxygen vacancies for piezocatalytic hydrogen peroxide production [J]. Journal of Colloid and Interface Science, 2025, 678: 246-255.

[12] 胡志文. 钙钛矿型BaTiO3基异质结催化剂的微纳结构设计、机制及膜应用 [D]. 景德镇陶瓷大学, 2024.

[13] Jeyabalan S S, Ekande O S, Mainali B, et al. A systematic review of recent advances in piezocatalysis-Synergetic heterojunctions for organic pollutants removal, immobilization, and scope of machine learning techniques [J]. Chemical Engineering Journal, 2024: 155086.

[14] Gong H Y, Zhang Y, Ye J J, et al. Retrievable hierarchically porous ferroelectric ceramics for “greening” the piezo-catalysis process [J]. Advanced Functional Materials, 2024, 34(18): 2311091.

[15] Wang L, Wang J, Ye C, et al. Photodeposition of CoOx nanoparticles on BiFeO3 nanodisk for efficiently piezocatalytic degradation of rhodamine B by utilizing ultrasonic vibration energy [J]. Ultrasonics Sonochemistry, 2021, 80: 105813.

[16] Kuru T, Sarilmaz A, Aslan E, et al. Rational design of ZnO/SrTiO3 S-scheme heterojunction for photo-enhanced piezocatalytic hydrogen production [J]. Applied Surface Science, 2025, 682: 161704.

[17] Amdouni W, Yedra L, Otoničar M, et al. Annealing temperature effects on BiFeO3 nanoparticles towards photodegradation of Eosin B dye [J]. Journal of Materials Science, 2022, 57(40): 18726-18738.

[18] Liu D, Tan L, Li H, et al. Robust coupling between piezoelectric field and interfacial polarization in layered bismuth‐based heterostructure for high‐performance piezocatalytic water splitting [J]. Small, 2025: 2500268.

[19] Farshad G, Mohammad J D, Ali I, et al. Photocatalytic degradation of phenol using silica SBA-16 supported TiO2 [J]. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130: 1171-1192.

[20] Su Y X, Wang B L, Liu L, et al. Electrospinning of a porous silica fiber-confined titanium dioxide catalyst for the degradation of methyl orange [J]. Journal of Nanoparticle Research, 2018, 20: 280.

[21] Xu X, Wang Y, Cheng W, et al. Recent advances in piezocatalytic hydrogen production and prospects [J]. Surfaces and Interfaces, 2024: 105245.

[22] Liu M, Wang L, Lu G M, et al. Twins in Cd1-xZnxS solid solution: highly efficient photocatalyst for hydrogen generation from water [J]. Energy & Environmental Science, 2011, 4(4): 1372-1378.

[23] Jiang T J, Wang Y, Guo Z C, et al. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self-etching of Bi25FeO40 for 4-chlorophenol degradation [J]. Journal of Cleaner Production, 2022, 20: 130908.

[24] 陈琳. BaxSr1-xTiO3材料压电催化、热释电催化染料降解及机理研究 [D]. 浙江: 浙江师范大学, 2021.

[25] Wu J, Qin N, Lin E Z, et al. Enhancement of piezocatalytic activity at the ferro-paraelectric phase transition of Ba1-xSrxTiO3 nanopowders [J]. Materials Today Energy, 2021, 21: 100732

[26] 王慧颖. Ba1-xCaxTiO3铁电纳米材料热释电催化及热-电-化学耦合机理研究 [D]. 浙江: 浙江师范大学, 2022.

[27] Lu L Z, Liang N, Sun H Q, et al. Highly efficient sono-piezo-photo synergistic catalysis in bismuth layered ferroelectrics via finely distinguishing sonochemical and electro mechanochemical processes [J]. Journal of Materiomics, 2022, 8(1): 47-58.

[28] Li R, Cai Y Y, Liang S Y, et al. Improved piezocatalytic activity with Ag2O@KNbO3: Mechanisms and performance in organic pollutant degradation [J]. Applied Surface Science, 2024, 644: 158811

[29] 闫灏.铋基氧化物复合材料的制备及其在催化领域的应用[D].西安工业大学,2023.

[30] 俞成烨.钛酸钡基纳米材料的压电催化性能及机理研究[D].北京科技大学,2023.

[31] Xie M, Dunn S, Boulbar E L, et al. Pyroelectric energy harvesting for water splitting [J]. International Journal of Hydrogen Energy, 2017, 42:23437-23445.

[32]张路渌. BaZr0.2Ti0.8O3@Al2O3@SiO2粉体及陶瓷的制备及表征 [D]. 陕西: 西北大学, 2014.

[33] Feng Y W, Ling L L, Wang Y X, et al. Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis [J]. Nano Energy, 2017, 40: 481-486.

[34] 王德朋. ZnxCd1-xS 固溶体基异质结的构筑及光催化性能研究[D].哈尔滨理工大学,2019.

[35] 胡雅楠,刘洁,徐凯旋,等.CeO2/CdxZn1-xS光催化剂的制备及其可见光催化产氢性能[J/OL].复合材料学报,1-10 [2024-12-02].

[36] Lin S, Wang Q, Huang H, et al. Piezocatalytic and photocatalytic hydrogen peroxide evolution of sulfide solid solution nano-branches from pure water and air [J]. Small, 2022, 18(19): 2200914.

[37] 杜思颖.Zn(1-x)CdxS的表面修饰及其光催化分解水产氢的研究[D].广西大学,2023.

[38] Zhou L, Meng L, Jia H, et al. Recent advances in piezocatalysts for dye degradation [J]. Advanced Sustainable Systems, 2024: 2300652.

[39] 赵金贺.铁酸铋纳米材料及异质结构压电催化和热释电催化降解染料研究[D].浙江师范大学,2021.

[40] Amdouni W, Fricaudet M, Otoničar M, et al. BiFeO3 nanoparticles: the “holy-grail” of piezo-photocatalysts? [J]. Advanced Materials, 2023, 35(31): 2301841.

[41] Weng S K, Jing W L, Woon C C, et al. An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane [J]. Environmental Science and Pollution Research, 2020, 27: 2522-2565.

[42] Rojviroon T, Rojviroon O, Sirivithayapakorn S. Photocatalytic decolorization of dyes using TiO2 thin film photocatalysts [J]. Surface Engineering, 2016, 32(8): 562-569.

[43] Ivana TB, Mojca BK, Dmitry SK, et al. Photolytic and photocatalytic degradation of doxazosin in aqueous solution [J]. Science of the Total Environment, 2020, 740: 140131.

[44] Elfeky A S, Salem S S, Elzaref A S, et al. Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities [J]. Carbohydrate polymers, 2020, 230: 115711.

[45] Chen X Q, Wu Z S, Liu D D, et al. Preparation of ZnO photocatalyst for the efficient and rapid photocatalytic degradation of azo dyes [J]. Nanoscale Research Letters, 2017, 12: 143.

[46] Li R, Liang S, Aihemaiti A, et al. Effectively enhanced piezocatalytic activity in flower-like 2H-MoS2 with tunable S vacancy towards organic pollutant degradation [J]. Applied Surface Science, 2023, 631: 157461.

[47] Li S H, Ning X E, Hao P Y, et al. Defect-rich MoS2 piezocatalyst: efficient boosting piezocatalytic activation of PMS activity towards degradation organic pollutant [J]. Dyes and Pigments, 2022, 206: 110678.

[48] Ning X E, Hao A, Cao YL, et al. Effective promoting piezocatalytic property of zinc oxide for degradation of organic pollutants and insight into piezocatalytic mechanism [J]. Journal of Colloid and Interface Science, 2020, 557: 290-299

[49] Wang C, Tian N, Ma T, et al. Pyroelectric catalysis[J]. Nano Energy, 2020, 78: 105371.

[50] You H, Ma X, Wu Z, et al. Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro-bi-catalytic dye decomposition of NaNbO3 nanofibers [J]. Nano Energy, 2018, 52: 351-359.

[51] Xu X, Xiao L, Jia Y, et al. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold-hot alternation energy near room-temperature [J]. Energy & Environmental Science, 2018, 11(8): 2198-2207.

[52] Chen L, Li H M, Wu Z, et al. Enhancement of pyroelectric catalysis of ferroelectric BaTiO3 crystal: the action mechanism of electric poling [J]. Ceramics International, 2020, 46(10): 16763-16769

[53] Qiao Z X, Liu Z F, Yan W G, et al. Pyro-photo-electric catalysis in Bi2WO6 nanostructures for efficient degradation of dyes under thermal-assisted visible light irradiation [J]. Journal of Alloys and Compounds, 2021, 892: 162203.

[54] Yu J, Qin N, Bao D H, et al. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration [J]. Nano Energy, 2017, 45: 44-51.

[55] Lei G, Yang J X, Zhang H Q, et al. Highly enhanced visible-light photocatalytic activity via a novel surface structure of CeO2/g-C3N4 toward removal of 2,4-dichlorophenol and Cr(VI) [J]. Chem Cat Chem, 2021, 13(8): 2034-2044.

[56] Dong H, Zhou Y, Wang L, et al. Oxygen vacancies in piezocatalysis: A critical review [J]. Chemical Engineering Journal, 2024: 150480.

[57] Liu D M, Zhang J T, Jin C C, et al. Insight into oxygen-vacancy regulation on piezocatalytic activity of (Bi1/2Na1/2)TiO3 crystallites: Experiments and first-principles calculations [J]. Nano Energy, 2022, 95: 106975.

[58] Meng N, Liu W, Jiang R, et al. Fundamentals, advances and perspectives of piezocatalysis: A marriage of solid-state physics and catalytic chemistry [J]. Progress in Materials Science, 2023, 138: 101161.

[59] Zhu X, Zheng Y, Yu H, et al. Boosting piezocatalytic activity of Bi5Ti3FeO15/BiOCl heterostructured nanocomposites for degrading multiple dyes and antibiotics [J]. ACS Applied Nano Materials, 2024, 7(2): 1885-1895.

[60] 刘海波, 阎建辉. 钛酸钡的制备及光催化性能研究[J]. 湖南理工学院学报, 2007, 20(4): 76-79.

[61] 郝亮, 张慧娜, 闫建成, 等. 氧空位缺陷对光催化活性的影响及其机制[J]. 天津科技大学报, 2018, 33(05): 1-13.

[62] Wang P L, Li X Y, Fan S Y, et al. Impact of oxygen vacancy occupancy on piezo-catalytic activity of BaTiO3 nanobelt [J]. Applied Catalysis B: Environmental, 2020, 279: 119340.

[63] Liu X T, Shen X F, Sa B S, et al. Piezotronic-enhanced photocatalytic performance of heterostructured BaTiO3/SrTiO3 nanofibers [J]. Nano Energy, 2021, 89: 106391.

[64] 拜佳妮.铕、钐、锰和钴掺杂铁酸铋粉体的制备及光催化性能研究[D].西安理工大学,2024.

[65] Hamid M A S H, Zengin Y, Boz I. CdxZn1-xS with bulk-twinned homojunctions and rich sulfur vacancies for efficient photocatalytic hydrogen production [J]. International Journal of Hydrogen Energy, 2024, 52: 103-114.

[66] 张苗.铁酸铋基材料的制备及其压电催化降解污染物的研究[D].哈尔滨工业大学,2024.

[67] 谢卓炯.钛酸钡及其复合材料的制备以及热释电催化性能的研究[D].南京信息工程大学,2024.

[68] Pisal K B, Thorat A S, Jagtap S S, et al. Synthesis and characterization of hydrothermally prepared molybdenum disulfide for supercapacitor application [J]. Materials Today: Proceedings, 2021, 43: 2707-2710.

[69] Xie C, Niu B, Guo H, et al. Piezoelectric-catalytic degradation of organic dyes and catalytic reduction of Cr (VI) with BaCO3@BaTiO3 microspheres [J]. Inorganic Chemistry Communications, 2023, 154: 110922.

[70] Han Y, Zhang H, Yang R, et al. Ba2+-doping introduced piezoelectricity and efficient ultrasound-triggered bactericidal activity of brookite TiO2 nanorods[J]. Journal of Colloid and Interface Science, 2024, 670: 742-750.

[71] Ali M, Singh R, Kumari R, et al. Enhanced piezocatalytic degradation of mixed organic dyes using BaTiO3–MoS2 heterostructure nanocomposites: A mechanistic investigation [J]. Materials Science in Semiconductor Processing, 2024, 178: 108454.

[72] Ning X, Hao A, Qiu X. S-scheme heterojunction engineering of CdS/Bi2WO6 in breakthrough piezocatalytic nitrogen reduction and hydrogen evolution: performance, mechanism, and DFT calculations [J]. Advanced Functional Materials, 2025, 35(2): 2413217.

中图分类号:

 TQ426    

开放日期:

 2026-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式