- 无标题文档
查看论文信息

论文中文题名:

 锂硫电池无机极性催化材料缺陷/异质结设计的第一性原理研究    

姓名:

 张新龙    

学号:

 22211225025    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料科学与工程    

研究方向:

 新能源材料与器件    

第一导师姓名:

 田爱芬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-18    

论文答辩日期:

 2025-05-30    

论文外文题名:

 First-Principles Study on Defect and Heterojunction Design of Inorganic Polar Catalysts for Lithium-Sulfur Batteries    

论文中文关键词:

 锂硫电池 ; 第一性原理 ; 催化剂 ; 过渡金属 ; 改性    

论文外文关键词:

 Lithium-sulfur battery ; First-principle ; Catalyst ; Transition metal ; Modification    

论文中文摘要:

锂硫电池凭借理论能量密度高、原料来源丰富、环境友好等优点,成为极具发展潜力下一代高比能二次电池体系,但当前主要面临硫转化反应动力学缓慢和多硫化物的穿梭效应等技术挑战。引入各类催化材料可以加速硫氧化还原反应进程并有效抑制穿梭效应,但针对锂硫电池的高效催化材料开发仍存在较大的探索空间。本论文采用缺陷工程与异质结策略,通过第一性原理计算,重点解析了过渡金属掺杂氮化硼(TM-BN)、空位引入/非金属原子掺杂硫化钒(VS2)和WO3/SnO2异质结三种催化材料体系的优化设计与吸附/催化性能调控机制。主要研究内容及获得的结论如下:

(1)基于密度泛函理论(DFT),构建过渡金属(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn)单原子掺杂正交氮化硼(TM-BN)。通过分子动力学模拟(MD),验证了过渡金属原子(TM)在BN表面掺杂的热力学稳定性。TM-BN体系具有较好的导电性,且TM掺杂诱导的电子转移使得对多硫化物吸附能得以提升。通过构建隐式溶剂模型证实了该体系的吸附能力不受溶剂干扰。通过计算反应自由能以及Li2S分解路径发现,过渡金属原子掺杂可以降低硫还原反应能垒、提升BN催化活性。整体而言,Cr-BN在结构稳定性与催化性能等方面具有良好的均衡表现。

(2)针对VS2催化材料构建空位/掺杂模型,成功构建硫空位(VS2-v)和氧、氮、磷原子掺杂(VS2-O、VS2-N、VS2-P)多种催化材料,探究引入空位和掺杂杂原子对VS2结构与催化性能的影响。研究结果表明,这些体系均具有较好的热力学稳定性和电子导电性,其中VS2-v对多硫化物的吸附能最弱而VS2-P的吸附能最强,VS2-O和VS2-N对多硫化物的结合能适中,但高于电解液溶剂分子。VS2-O可以显著降低硫还原反应和Li2S分解能垒,有望用作锂硫电池的高效催化材料。

(3)利用WO3和SnO2两款氧化物构建异质结结构,研究该异质结设计对多硫化物吸附性能和转化反应动力学的影响规律。MD模拟验证了异质结的热力学稳定性。相比单一氧化物,异质结对多硫化物具有适中的吸附强度,有助于促进锂离子和多硫化物的扩散/迁移,降低硫还原反应能垒和硫化锂分解势垒。实验研究证实了WO3/SnO2异质结可以显著提升锂硫电池的长周期循环稳定性。

论文外文摘要:

Lithium-sulfur (Li-S) batteries have emerged as a highly promising next-generation high-energy-density secondary battery system due to their advantages of high theoretical energy density, abundant raw materials, and environmental friendliness. However, they currently face significant technical challenges, including slow sulfur conversion kinetics and the polysulfide shuttle effect. Introducing various catalytic materials can accelerate sulfur redox reactions and effectively suppress the shuttle effect, yet substantial exploration remains in developing efficient catalysts for Li-S batteries.

This study employed defect engineering and heterojunction strategies, utilizing first-principles calculations to systematically investigate the optimized design and adsorption/catalytic performance regulation mechanisms of three catalytic material systems: transition metal-doped boron nitride (TM-BN), vacancy-introduced/non-metal atom-doped vanadium sulfide (VS2), and WO3/SnO2 heterojunctions. The main findings are summarized as follows:

(1) Based on density functional theory (DFT), single-atom transition metal (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn)-doped orthorhombic boron nitride (TM-BN) was constructed. Molecular dynamics (MD) simulations confirmed the thermodynamic stability of transition metal (TM) atom doping on the BN surface. The TM-BN system exhibits good electrical conductivity, and TM doping-induced electron transfer enhances polysulfide adsorption energy. Implicit solvation models confirmed solvent-independent adsorption capability. Calculations of reaction free energy and Li2S decomposition pathways revealed that TM doping lowers the energy barrier for sulfur reduction reactions and enhances BNs catalytic activity. Overall, Cr-BN demonstrates a well-balanced performance in structural stability and catalytic properties.

(2) Various vacancy/doping models were constructed for VS2 catalysts, including sulfur vacancy (VS2-v) and oxygen, nitrogen, phosphorus atom doping (VS2-O, VS2-N, VS2-P), to investigate the impact of vacancies and dopants on VS2 structure and catalytic performance. Results indicate good thermodynamic stability and electronic conductivity across all systems. VS2-v exhibits the weakest polysulfide adsorption, while VS2-P shows the strongest. VS2-O and VS2-N possess moderate polysulfide binding energies, exceeding those of electrolyte solvent molecules. VS2-O significantly reduces the energy barriers for sulfur reduction and Li2S decomposition, demonstrating potential as an efficient catalyst for Li-S batteries.

(3) A heterojunction structure was constructed using WO3 and SnO2 oxides to study its effect on polysulfide adsorption and conversion reaction kinetics. MD simulations verified the heterojunction's thermodynamic stability. Compared to single oxides, the heterojunction provides moderate polysulfide adsorption strength, facilitating lithium-ion and polysulfide diffusion/migration, and lowering energy barriers for sulfur reduction and Li2S decomposition. Experimental studies confirmed that the WO3/SnO2 heterojunction significantly enhances the long-term cycling stability of Li-S batteries.

参考文献:

CO2 emissions, resource rent, renewable and nonrenewable energy in 16-EU countries[J]. Science of The Total Environment, 2019, 657: 1023-1029.

[2] Hu Y, Chen W, Lei T, et al. Strategies toward high-loading lithium-sulfur battery[J]. Advanced Energy Materials, 2020, 10(17): 2000082.

[3] Larcher D, Tarascon J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7(1): 19-29.

[4] Fang R, Zhao S, Sun Z, et al. More reliable lithium-sulfur batteries: status, solutions and prospects[J]. Advanced Materials, 2017, 29(48): 1606823.

[5] Sun M-H, Huang S-Z, Chen L-H, et al. Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine[J]. Chemical Society Reviews, 2016, 45(12): 3479-3563.

[6] Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries: progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006.

[7] Lu H, Zeng F, He L, et al. Advanced perfluorinated electrolyte with synergistic effect of fluorinated solvents for high-voltage LiNi0.5Mn1.5O4/Li cell[J]. Electrochimica Acta, 2022, 421: 140472.

[8] Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019, 31(27): 1901125.

[9] Chen L, Dietz Rago N L, Bloom I D, et al. New insights into the electrode mechanism of lithium sulfur batteries via air-free post-test analysis[J]. Chemical Communications, 2016, 52(64): 9913-9916.

[10] Li J, Niu Z, Guo C, et al. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: a review[J]. Journal of Energy Chemistry, 2021, 54: 434-451.

[11] Yang D, Li C, Sharma M, et al. Three birds with one arrow: multifunctional single-atom catalysts enable efficient lithium-sulfur batteries[J]. Energy Storage Materials, 2024, 66: 103240.

[12] Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009, 8(6): 506.

[13] Zhou L, Danilov D L, Eichel R A, et al. Host materials anchoring polysulfides in Li-S batteries reviewed[J]. Advanced Energy Materials, 2020, 11(15): 2001304.

[14] Cao G, Duan R, Li X. Controllable catalysis behavior for high performance lithium sulfur batteries: from kinetics to strategies[J]. EnergyChem, 2023, 5(1): 100096.

[15] Li T, Bai X, Gulzar U, et al. A comprehensive understanding of lithium-sulfur battery technology[J]. Advanced Functional Materials, 2019, 29(32): 1901730.

[16] Ye H, Sun J, Zhang S, et al. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li-S batteries[J]. ACS Nano, 2019, 13(12): 14208-14216.

[17] He Y, Qiao Y, Chang Z, et al. Developing a “polysulfide-phobic” strategy to restrain shuttle effect in lithium-sulfur batteries[J]. Angewandte Chemie International Edition, 2019, 58(34): 11774-11778.

[18] Shen J, Xu X, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019, 13(8): 8986-8996.

[19] Song Y-W, Shen L, Yao N, et al. Cationic lithium polysulfides in lithium-sulfur batteries[J]. Chem, 2022, 8(11): 3031-3050.

[20] Xu H, Jiang Q, Shu Z, et al. Fundamentally manipulating the electronic structure of polar bifunctional catalysts for lithium-sulfur batteries: heterojunction design versus doping engineering[J]. Advanced Science, 2024, 11(20): 2307995.

[21] Zhao M, Li B Q, Peng H J, et al. Lithium-sulfur batteries under lean electrolyte conditions: challenges and opportunities[J]. Angewandte Chemie International Edition, 2020, 59(31): 12636-12652.

[22] Bieker G, Küpers V, Kolek M, et al. Intrinsic differences and realistic perspectives of lithium-sulfur and magnesium-sulfur batteries[J]. Communications Materials, 2021, 2(1): 1-12.

[23] Ye H, Li M, Liu T, et al. Activating Li2S as the lithium-containing cathode in lithium-sulfur batteries[J]. ACS Energy Letters, 2020, 5(7): 2234-2245.

[24] He F, Li K, Yin C, et al. A combined theoretical and experimental study on the oxygenated graphitic carbon nitride as a promising sulfur host for lithium-sulfur batteries[J]. Journal of Power Sources, 2018, 373: 31-39.

[25] Chen X, Lv H, Wu X. Synergistic promotion of electrocatalytic activities and multilevel descriptors in nitrogen-doped graphene supported dual-atom catalysts for lithium-sulfur batteries[J]. Energy Storage Materials, 2024, 65: 103187.

[26] Wang S, Wang Y, Song Y, et al. Immobilizing polysulfide via multiple active sites in W18O49 for Li-S batteries by oxygen vacancy engineering[J]. Energy Storage Materials, 2021, 43: 422-429.

[27] Zhu Y, Zuo Y, Jiao X, et al. Selective sulfur conversion with surface engineering of electrocatalysts in a lithium-sulfur battery[J]. Carbon Energy, 2022, 5(2): e249.

[28] Zhu C, Gao D, Ding J, et al. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches[J]. Chemical Society Reviews, 2018, 47(12): 4332-4356.

[29] Chen J, Zhong J, Liu S, et al. Density functional theory studies on tuning p-band electronic structures of TiS2-based single-atom catalysts for polysulfide conversion in lithium-sulfur batteries[J]. ACS Applied Nano Materials, 2024, 7(13): 15344-15353.

[30] Liu G, Zeng Q, Fan Z, et al. Boosting sulfur catalytic kinetics by defect engineering of vanadium disulfide for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2022, 448: 137683.

[31] Zhang W, Chen J, Wang X, et al. First-principles study of transition metal Ti-based MXenes (Ti2MC2Tx and M2TiC2Tx) as anode materials for sodium-ion batteries[J]. ACS Applied Nano Materials, 2022, 5(2): 2358-2366.

[32] Deng D-R, An T-H, Li Y-J, et al. Hollow porous titanium nitride tubes as a cathode electrode for extremely stable Li-S batteries[J]. Journal of Materials Chemistry A, 2016, 4(41): 16184-16190.

[33] Wang X, Chen L, Yu Y, et al. Tuning p-band centers and interfacial built-in electric field of heterostructure catalysts to expedite bidirectional sulfur redox for high-performance Li-S batteries[J]. Advanced Functional Materials, 2024, 34(41): 2406290.

[34] Li Y, Zhao T, Li L, et al. Computational evaluation of ScB and TiB MBenes as promising anode materials for high-performance metal-ion batteries[J]. Physical Review Materials, 2022, 6(4): 1-7.

[35] He C, Liang Y, Zhang W. Design of novel transition-metal-doped C6N2 with high-efficiency polysulfide anchoring and catalytic performances toward application in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2022, 14(25): 29120-29130.

[36] Angulakshmi N, Dhanalakshmi R B, Sathya S, et al. Understanding the electrolytes of lithium-sulfur batteries[J]. Batteries & Supercaps, 2021, 4(7): 1064-1095.

[37] Chen B, Zhong X, Zhou G, et al. Graphene-supported atomically dispersed metals as bifunctional catalysts for next-generation batteries based on conversion reactions[J]. Advanced Materials, 2022, 34(5): e2105812.

[38] Shi Z, Ci H, Yang X, et al. Direct-chemical vapor deposition-enabled graphene for emerging energy storage: versatility, essentiality, and possibility[J]. ACS Nano, 2022, 16(8): 11646-11675.

[39] Zhou G, Zhao S, Wang T, et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li-S batteries[J]. Nano Letters, 2019, 20(2): 1252-1261.

[40] Wang J, Qiu W, Li G, et al. Coordinatively deficient single-atom Fe-N-C electrocatalyst with optimized electronic structure for high-performance lithium-sulfur batteries[J]. Energy Storage Materials, 2022, 46: 269-277.

[41] Qiu Y, Fan L, Wang M, et al. Precise synthesis of Fe-N2 sites with high activity and stability for long-life lithium-sulfur batteries[J]. ACS Nano, 2020, 14(11): 16105-16113.

[42] Xu R, Xiang J, Feng J, et al. In situ visualization by X-Ray computed tomography on sulfur stabilization and lithium polysulfides immobilization in S@HCS/MnO cathode[J]. Energy Storage Materials, 2020, 31: 164-171.

[43] Zheng Y, Yi Y, Fan M, et al. A high-entropy metal oxide as chemical anchor of polysulfide for lithium-sulfur batteries[J]. Energy Storage Materials, 2019, 23: 678-683.

[44] Wang Y, Zhang R, Chen J, et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering[J]. Advanced Energy Materials, 2019, 9(24): 201900953.

[45] Shen Z, Jin X, Tian J, et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium-sulfur batteries[J]. Nature Catalysis, 2022, 5(6): 555-563.

[46] Wang J, Zhou L, Guo D, et al. Flower-like NiS2/WS2 heterojunction as polysulfide/sulfide bidirectional catalytic layer for high-performance lithium-sulfur batteries[J]. Small, 2023, 19(11): 2206926.

[47] Cao Y, Chen H, Shen Y, et al. SnS2 nanosheets anchored on nitrogen and sulfur Co-doped MXene sheets for high-performance potassium-ion batteries[J]. ACS Applied Materials Interfaces, 2021, 13(15): 17668-17676.

[48] Li J, Li G, Wang R, et al. Boron-doped dinickel phosphide to enhance polysulfide conversion and suppress shuttling in lithium-sulfur batteries[J]. ACS Nano, 2024, 18(27): 17774-17785.

[49] Jia X, Bai L, Zhang M, et al. Transition metal-doped boron phosphide monolayer in lithium-sulfur batteries with anchoring ability and catalytic performance: a first-principles study[J]. The Journal of Physical Chemistry C, 2023, 127(40): 19963-19972.

[50] Thakur A K, Kurtyka K, Majumder M, et al. Recent advances in boron- and nitrogen-doped carbon-based materials and their various applications[J]. Advanced Materials Interfaces, 2022, 9(11): 202101964.

[51] Cao G, Wang Z, Bi D, et al. Atomic-scale dispersed Fe-based catalysts confined on nitrogen-doped graphene for Li-S batteries: polysulfides with enhanced conversion efficiency[J]. Chemistry, 2020, 26(45): 10314-10320.

[52] Liu Z, Zhou L, Ge Q, et al. Atomic iron catalysis of polysulfide conversion in lithium-sulfur batteries[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19311-19317.

[53] Wang M, Sun Z, Ci H, et al. Identifying the evolution of selenium-vacancy-modulated MoSe2 precatalyst in lithium-sulfur chemistry[J]. Angew Chem Int Ed Engl, 2021, 60(46): 24558-24565.

[54] Hou W, Feng P, Guo X, et al. Catalytic mechanism of oxygen vacancies in perovskite oxides for lithium-sulfur batteries[J]. Advanced Materials, 2022, 34(26): e2202222.

[55] Xiong W, Lin J, Wang H, et al. Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2023, 81: 492-501.

[56] Shi Z, Tian Z, Guo D, et al. Kinetically favorable Li-S battery electrolytes[J]. ACS Energy Letters, 2023, 8(7): 3054-3080.

[57] Zhang L, Liang P, Shu H-B, et al. Borophene as efficient sulfur hosts for lithium-sulfur batteries: suppressing shuttle effect and improving conductivity[J]. The Journal of Physical Chemistry C, 2017, 121(29): 15549-15555.

[58] Zhao J, Yang Y, Katiyar R S, et al. Phosphorene as a promising anchoring material for lithium-sulfur batteries: a computational study[J]. Journal of Materials Chemistry A, 2016, 4(16): 6124-6130.

[59] Roy S, Zhang X, Puthirath A B, et al. Structure, properties and applications of two-dimensional hexagonal boron nitride[J]. Advanced Materials, 2021, 33(44): 202101589.

[60] Khossossi N, Singh D, Essaoudi I, et al. Unveiling the catalytic potential of two-dimensional boron nitride in lithium-sulfur batteries[J]. Chemical Engineering Journal, 2024, 479: 147518.

[61] He C, Qi Z F, Zhang W X. Design of transition metal carbonitrides (MCNs) as promising anchoring and high catalytic performance materials for lithium-sulfur batteries[J]. Journal of Alloys and Compounds, 2023, 934: 167786.

[62] Deng D R, Xue F, Bai C-D, et al. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range[J]. ACS Nano, 2018, 12(11): 11120-11129.

[63] Xiao W, He Q, Zhao Y. Virtual screening of two-dimensional selenides and transition metal doped SnSe for lithium-sulfur batteries: A first-principles study[J]. Applied Surface Science, 2021, 570: 151213.

[64] Xu J, Xu L, Zhang Z, et al. Heterostructure ZnSe-CoSe2 embedded with yolk-shell conductive dodecahedral as two-in-one hosts for cathode and anode protection of lithium-sulfur full batteries[J]. Energy Storage Materials, 2022, 47: 223-234.

[65] Zhao J, Zeng H, Yao G. Computational design of a polymorph for 2D III-V orthorhombic monolayers by first principles calculations: excellent anisotropic, electronic and optical properties[J]. Physical Chemistry Chemical Physics, 2021, 23(6): 3771-3778.

[66] Demirci S, Rad S E, Kazak S, et al. Monolayer diboron dinitride: direct band-gap semiconductor with high absorption in the visible range[J]. Physical Review B, 2020, 101(12): 125408.

[67] Liu J, Lu R, Xiao G, et al. Trade-off effect of 3d transition metal doped boron nitride on anchoring polysulfides towards application in lithium-sulfur battery[J]. Journal of Colloid and Interface Science, 2022, 616: 886-894.

[68] Zhao Y, Yang L, Zhao J, et al. How to make inert boron nitride nanosheets active for the immobilization of polysulfides for lithium-sulfur batteries: a computational study[J]. Physical Chemistry Chemical Physics, 2017, 19(28): 18208-18216.

[69] Yuan Z, Peng H-J, Hou T-Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016, 16(1): 519-527.

[70] Zhang C Y, Sun G W, De Shi Z, et al. Deciphering the catalysis essence of vanadium self-intercalated two-dimensional vanadium sulfides (V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries[J]. Energy Storage Materials, 2021, 43: 471-481.

[71] He L, Zhang X, Yang D, et al. Defect-engineered VS2 electrocatalysts for lithium-sulfur batteries[J]. Nano Letters, 2023, 23(16): 7411-7418.

[72] Tomar S, Sen P, Chakraborty S. Single atom functionalization in vanadium dichalcogenide monolayers: towards enhanced electrocatalytic activity[J]. Sustainable Energy & Fuels, 2022, 6(23): 5337-5344.

[73] Boteju T, Abraham A M, Ponnurangam S, et al. Theoretical study on the role of solvents in lithium polysulfide anchoring on vanadium disulfide facets for lithium-sulfur batteries[J]. The Journal of Physical Chemistry C, 2023, 127(9): 4416-4424.

[74] Xiao T, Yi F, Yang M, et al. A composite of CoNiP quantum dot-decorated reduced graphene oxide as a sulfur host for Li-S batteries[J]. Journal of Materials Chemistry A, 2021, 9(31): 16692-16698.

[75] Liang F, Deng Q, Ning S, et al. Mastering surface sulfidation of MnP-MnO2 heterostructure to facilitate efficient polysulfide conversion in Li-S batteries[J]. Advanced Science, 2024, 11(32): 202403391.

[76] Cai J, Sun Z, Cai W, et al. A robust ternary heterostructured electrocatalyst with conformal graphene chainmail for expediting bi-directional sulfur redox in Li-S batteries[J]. Advanced Functional Materials, 2021, 31(23): 2100586.

[77] Wu Y, Shi K, Chen Z, et al. 1D WO3@CNFs modified with sulphur for fabricating self-supported flexible supercapacitors with enhanced performance[J]. Journal of Alloys and Compounds, 2024, 1008: 176596.

[78] Zhang D, Duan T, Luo Y, et al. Oxygen defect-rich WO3-x-W3N4 mott-schottky heterojunctions enabling bidirectional catalysis for sulfur cathode[J]. Advanced Functional Materials, 2023, 33(42): 202306578.

[79] Soussi A, Haounati R, Ait Hssi A, et al. Investigating structural, morphological, electronic, and optical properties of SnO2 and Al-doped SnO2: a combined DFT calculation and experimental study[J]. Physica B: Condensed Matter, 2024, 690: 416242.

[80] Yang H, Sun H, Li Q, et al. Structural, electronic, optical and lattice dynamic properties of the different WO3 phases: first-principle calculation[J]. Vacuum, 2019, 164: 411-420.

[81] Qiu H, Wang T, Lv W, et al. Three-dimensional carbon foam decorated with SnO2 as multifunctional host for lithium sulfur batteries[J]. Journal of Colloid and Interface Science, 2023, 630: 106-114.

[82] Lee J, Hwang S Y, Oh B I, et al. Dual chemifunctional tin(IV) oxide/nanoperforated graphene interlayer as a polysulfide adsorbent for use in high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2024, 480.

中图分类号:

 TQ152    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式