- 无标题文档
查看论文信息

论文中文题名:

 公路瓦斯长大隧道通风参数对瓦斯运移规律的影响及实践    

姓名:

 文健    

学号:

 21220226165    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 瓦斯灾害防治    

第一导师姓名:

 赵鹏翔    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 The influence and practice of ventilation parameters on gas transport law in highway gas long tunnel    

论文中文关键词:

 长大瓦斯隧道 ; 通风参数 ; 流场分布 ; 瓦斯运移 ; Fluent数值模拟    

论文外文关键词:

 Long gas tunnel ; Ventilation parameters ; Flow field distribution ; Gas migration ; Fluent numerical simulation    

论文中文摘要:

随着我国交通事业的发展迅速,以中西部地区为重心的高速公路、铁路隧道建设数量及里程不断增加,并且,长大瓦斯隧道数量也在不断增加。然而,对于长大瓦斯隧道,其施工现场环境复杂,需要考虑的因素较多,施工通风系统要求相对较高,因此,瓦斯长大隧道施工通风中的许多问题需要进一步研究。本文以四川宜金高速公路卡哈洛1号隧道为工程背景,利用理论分析、数值模拟及现场实践的方法,对隧道通风流场演化及瓦斯运移规律开展了研究。

基于理论分析,对隧道内部流场区域进行了划分,其主要分为涡流区和回流区,并推导了两种区域下瓦斯运移的微分方程,建立了隧道内部瓦斯运移数学模型。同时,依据现场工程条件,利用Fluent软件建立了隧道三维数值计算模型,与数学模型共同构成隧道瓦斯运移模型。

通过对隧道风流演化开展模拟研究,得到了隧道内风流时变特性,主要表现为射流、涡流及回流不断相互影响、交叉融合的变化规律。同时,通过分析风流空间分布特征,得到了隧道内部各层位风流速度矢量变化及涡强分布规律,掌握了风流场在隧道内的分布区域,其主要分为涡流区、发展区以及稳定区。另外,基于不同通风参数条件下的模拟研究,明晰了各通风参数对风流分布的影响,获得了各参数不同梯度下隧道风管中心面风流场的变化特性。

通过对隧道内部瓦斯运移规律开展模拟研究,得到了隧道掌子面瓦斯浓度的时变特征,量化了掌子面全局瓦斯分布特征。同时,研究了掌子面及前方9m区域内隧道横断面全方位瓦斯分布特性,明确了瓦斯积聚空间变化规律。并且,通过多因素模拟研究,掌握了各通风参数下掌子面及前方区域内瓦斯浓度变化特征,获得了各梯度下瓦斯积聚演化特性。

通过开展正交试验设计,获得了不同试验条件下掌子面处瓦斯积聚浓度,通过分析得到了最优参数组合,分别为风速12m/s、风管直径2.0m、出风口距掌子面距离8m以及出风口距二衬台车距离24m。并应用于隧道现场进行通风系统优化,结果表明随通风时间增加,掌子面以及二衬台车处瓦斯浓度较优化前有明显下降趋势,说明优化后的通风系统,可以有效地降低隧道瓦斯浓度。

通过上述研究,得到了公路瓦斯长大隧道通风流场及瓦斯运移的时空演化机理,进一步完善了瓦斯隧道通风研究,对指导现场进行通风系统优化及保障隧道安全施工有重要的意义。

论文外文摘要:

With the rapid development of China's transportation industry, the number and mileage of highway and railroad tunnel construction focusing on the central and western regions are increasing, and the number of long gas tunnels is also increasing. However, for long gas tunnels, the construction site environment is complex, more factors need to be considered, and the construction ventilation system requirements are relatively high, so many problems in the construction ventilation of long gas tunnels need to be further studied. In this paper, using the Kahaluo No. 1 Tunnel of Yijin Expressway in Sichuan Province as the engineering background, we carried out a study on the evolution of the tunnel ventilation flow field and the law of gas transportation by using theoretical analysis, numerical simulation and on-site practice.

Based on the theoretical analysis, the flow field area inside the tunnel is divided into vortex area and reflux area, and the differential equations of gas transport under the two areas are deduced, and a mathematical model of gas transport inside the tunnel is established. At the same time, based on the site engineering conditions, a three-dimensional numerical calculation model of the tunnel was established using Fluent software, which together with the mathematical model constitutes the tunnel gas transport model.

Through the simulation study on the evolution of tunnel wind flow, the time-varying characteristics of wind flow in the tunnel are obtained, which are mainly manifested as the changing rules of jet, vortex and reflux constantly influencing each other and cross-fertilizing. At the same time, by analyzing the spatial distribution characteristics of the wind flow, we obtained the wind flow velocity vector change and vortex strength distribution law of each level inside the tunnel, and grasped the distribution area of the wind flow field inside the tunnel, which is mainly divided into vortex area, development area and stability area. In addition, based on the simulation study under different ventilation parameters, the influence of each ventilation parameter on the wind flow distribution is clarified, and the change characteristics of the wind flow field at the center surface of tunnel ducts under different gradients of each parameter are obtained.

Through the simulation study on the gas transport law inside the tunnel, the time-varying characteristics of the gas concentration in the tunnel palm face were obtained, and the global gas distribution characteristics of the palm face were quantified. At the same time, the full range of gas distribution characteristics of the tunnel cross-section in the palm face and the 9m area in front were studied, and the change rule of gas accumulation space was clarified. Moreover, through the multi-factor simulation study, we have grasped the change characteristics of gas concentration in the palm face and the area in front of it under each ventilation parameter, and obtained the evolution characteristics of gas accumulation under each gradient. The orthogonal test design was carried out to obtain the gas accumulation concentration at the palm face under different test conditions, and the optimal parameter combinations were analyzed and obtained, respectively, the wind speed was 12 m/s, the diameter of the air duct was 2.0 m, the distance of the air outlet from the palm face was 8 m, and the distance of the air outlet from the second lining cart was 24 m. And applied to the tunnel site for ventilation system optimization, the results show that with the increase of ventilation time, the gas concentration at the palm face as well as at the second lining cart has a significant downward trend compared with the pre-optimization, indicating that the optimized ventilation system can effectively reduce the gas concentration in the tunnel.

Through the above study, the ventilation flow field and the spatial and temporal evolution mechanism of gas transport in highway gas long tunnels are obtained, which further improves the study on the ventilation of gas tunnels, and is of great significance in guiding the optimization of the ventilation system and ensuring the safe construction of tunnels in the field.

参考文献:

[1] 《中国公路学报》编辑部. 中国交通隧道工程学术研究综述·2022[J]. 中国公路学报, 2022, 35(04): 1-40.

[2] 洪开荣, 冯欢欢. 中国公路隧道近10年的发展趋势与思考[J]. 中国公路学报, 2020, 33(12): 62-76.

[3] Zhu YM, Zhou JJ, Zhang B, et al. Statistical analysis of major tunnel construction accidents in China from 2010 to 2020[J]. Tunnelling and Underground Space Technology, 2022, 124: 104460-104474.

[4] Ye F, Qin N, Liang X, et al. Analyses of the defects in highway tunnels in China[J]. Tunnelling and Underground Space Technology, 2021, 107: 103658-103675.

[5] 中华人民共和国交通运输部. 2022年交通运输行业发展统计公报[Z]. 2022. https://www.gov.cn/lianbo/bumen/202306/content_6887539.htm.

[6] 王海洋, 赵树磊, 陈祥, 等. 我国隧道瓦斯事故统计及影响因素分析[J]. 中国安全科学学报, 2021, 31(04): 34-40.

[7] Kang XB, Luo S, Li QS, et al. Developing a risk assessment system for gas tunnel disasters in China[J]. Journal of Mountain Science, 2017, 14(09): 1751-1762.

[8] 魏新江, 李帅, 杜世明, 等. 超长公路隧道运营通风控制技术与空气质量研究综述[J]. 现代隧道技术, 2022, 59(S1): 1-12.

[9] 王永东, 赖宜, 化思豪, 等. 公路隧道平行导洞结合分段纵向通风系统研究[J]. 地下空间与工程学报, 2022, 18(06): 2090-2100.

[10] 袁传保, 张广泽, 宋章. 川西复杂隧道特殊瓦斯灾害成因及特征研究[J]. 铁道工程学报, 2023, 40(08): 29-34.

[11] 苏培东, 黎俊麟, 徐正宣, 等. 非煤系地层浅层天然气赋存规律及瓦斯隧道工程防护方案[J]. 中国铁道科学, 2021, 42(02): 88-97.

[12] 陈其学, 何成, 权晓亮. 非煤系地层隧道施工期瓦斯涌(突)出灾害分析研究[J]. 现代隧道技术, 2016, 53(03): 146-150.

[13] 谭忠盛, 杨旸, 薛君. 土质地层公路隧道大断面快速施工技术研究[J]. 中国公路学报, 2021, 34(09): 253-262.

[14] 刘敦文, 唐宇, 李波, 等. 瓦斯隧道施工通风风筒优化数值模拟及试验研究[J]. 中国公路学报, 2015, 28(11):98-103+142.

[15] 杨义. 非煤系地层瓦斯隧道施工关键技术与管理研究[J]. 现代隧道技术, 2023, 60(01): 249-255.

[16] 云峰, 黄飞, 安俊杰, 等. 瓦斯隧道穿越构造煤层施工风险的模糊层次评价[J]. 安全与环境学报, 2023, 23(10): 3447-3454.

[17] 李冰, 叶爱军, 崔鹏杰, 等. 特长瓦斯隧道多作业面施工通风流场研究[J]. 现代隧道技术, 2022, 59(05): 118-124.

[18] 周泽林, 张凯, 张恒, 等. 非煤系地层隧道瓦斯突出风险属性识别体系[J]. 地下空间与工程学报, 2023, 19(05): 1708-1718.

[19] 刘家民, 杨枫, 李晓洪, 等. 汶马高速公路鹧鸪山隧道非煤地层瓦斯赋存特性与风险防控研究[J]. 现代隧道技术, 2023, 60(04): 172-177.

[20] 张雄文, 杜宇本, 王科. 渝怀二线新白沙沱隧道瓦斯突出及工区判定[J]. 铁道工程学报, 2023, 40(02): 59-65.

[21] 孙意. 成贵铁路四川红层段瓦斯特征分析及勘察阶段划分隧道瓦斯工区类别的建议[J]. 现代隧道技术, 2022, 59(01): 195-199.

[22] 唐鸥玲, 陈兴海, 常兴旺, 等. 非煤系地层高瓦斯隧道浅层天然气赋存特征及抽排试验研究[J]. 现代隧道技术, 2021, 58(05): 140-146+158.

[23] 魏安辉, 马文涛, 邬凯. 川东北红层浅层天然气赋存特征隧道瓦斯等级判定[J]. 地下空间与工程学报, 2020, 16(S1): 371-374+382.

[24] 彭立敏, 安永林, 张运良, 等.可拓法识别勘测阶段隧道瓦斯突出的模型与实例[J]. 土木工程学报, 2008(04): 81-85.

[25] 文畅平. 隧道瓦斯突出危险性评价的属性识别模型与实例[J]. 煤炭学报, 2011, 36(08): 1322-1328.

[26] 黎俊麟, 苏培东, 徐正宣, 等. 非煤高瓦斯隧道盾构施工技术研究[J]. 地下空间与工程学报, 2020, 16(S1): 194-200.

[27] 龙港, 黄飞, 李树清, 等. 大断面公路隧道穿越构造煤层瓦斯抽放技术研究[J]. 隧道建设(中英文), 2022, 42(S1): 486-492.

[28] 王栋. 高瓦斯隧道非防爆无轨运输风险防控技术探讨与应用—以渝黔铁路天坪隧道工程为例[J]. 隧道建设(中英文), 2021, 41(09): 1577-1584.

[29] 翟强, 顾伟红, 赵映璎. 基于未确知测度理论的隧道施工瓦斯灾害风险评价[J]. 铁道科学与工程学报, 2021, 18(03): 803-812.

[30] 李好. 新型防爆地震仪在瓦斯隧道超前地质预报中的应用[J]. 隧道建设(中英文), 2020, 40(02): 261-266.

[31] 许汝杭, 王海洋, 柯善剑, 等. 多煤层高瓦斯隧道爆破后瓦斯异常涌出量预测模型分析[J]. 现代隧道技术, 2021, 58(S1): 458-463.

[32] 吴元金, 杨立新, 苟红松. 瓦斯突出隧道掘进工作面瓦斯涌出强度影响因素分析及控制措施研究[J]. 隧道建设, 2017, 37(10): 1262-1268.

[33] 匡亮, 赵万强, 喻渝. BP神经网络法预测隧道瓦斯突出的模型与实例[J]. 铁道工程学报, 2018, 35(02): 56-61.

[34] 张占海, 那志英. 用工程地质方法预测瓦斯隧道灾害的实践[J]. 地下空间与工程学报, 2007(S2): 1568-1573.

[35] 常兴旺, 王光能, 刘云鹏. 老石山隧道瓦斯特征及分区预测研究[J]. 铁道工程学报, 2013, 30(04): 79-85.

[36] 朱宝合, 郑邦友, 戴亦军, 等. 基于非线性支持向量机的隧道煤与瓦斯突出危险性预测[J]. 现代隧道技术, 2020, 57(02): 20-25.

[37] 李栋, 荣耀, 周东平, 等. 基于突变理论的瓦斯隧道揭煤突出危险性预测[J]. 现代隧道技术, 2018, 55(S2): 484-492.

[38] 李栋, 卢义玉, 荣耀, 等. 基于定向水力压裂增透的大断面瓦斯隧道快速揭煤技术[J]. 岩土力学, 2019, 40(01): 363-369+378.

[39] Wang H, Wang EY, Li ZH. Study on dynamic prediction model of gas emission in tunneling working face[J]. Combustion Science and Technology, 2020, 194(03): 506-522.

[40] Cao SY, Yang M, Hu JY, et al. Advanced perception and control method of harmful gas during construction period of coal tunnel based on DeepAR[J]. Frontiers in Earth Science, 2023, 11: 1-10.

[41] Li PH, Li K, Wang F, et al. A novel method for gas disaster prevention during the construction period in coal penetration tunnels−a stepwise prediction of gas concentration based on the LSTM method[J]. Sustainability, 2022, 14(20): 12998-13016.

[42] Wang HY, Zhao SL, Liu JL, et al. Prediction and analysis of abnormal gas emission law in low-gas tunnel based on K-line diagram[J]. Geofluids, 2020, 2020: 1-11.

[43] Yang ZH, Zhang HW, Li S, et al. Prediction of residual gas content during coal roadway tunneling based on drilling cuttings indices and BA-ELM algorithm[J]. Advances in Civil Engineering, 2020, 2020: 1-8.

[44] Wang SP, Li Z, Fang Q, et al. Performance of utility tunnels under gas explosion loads[J]. Tunnelling and Underground Space Technology, 2021, 109: 103762-103790.

[45] Zhang ZJ, Liu ZX, Zhang H, et al. Spatial distribution and machine learning-based prediction model of natural gas explosion loads in a utility tunnel[J]. Tunnelling and Underground Space Technology, 2023, 140: 1-19.

[46] 安俊杰, 黄飞, 刘刚, 等. 大断面隧道瓦斯涌出位置对瓦斯分布的影响规律[J]. 科学技术与工程, 2023, 23(29): 12705-12713.

[47] Wang QF, Li CW, Zhao YC, et al. Study of gas emission law at the heading face in a coal-mine tunnel based on the Lattice Boltzmann method[J]. Energy Science and Engineering, 2020, 8(05): 1705-1715.

[48] Zheng DF, Zhang J, Liu ZY, et al. Effects of pipeline pressure on diffusion characteristics of leaked natural gas in tunnel space[J]. ACS Omega, 2023, 8(11): 10235-10241.

[49] Yan QX, Yang K, Wu W, et al. Prevention and control of gas hazards in a tunnel under construction: a case study[J]. Environmental Earth Science, 2020, 79(13): 317-334.

[50] Likar J, Cade J. Ventilation design of enclosed underground structures[J]. Tunnelling and Underground Space Technology, 2000, 15(04): 477-480.

[51] Parra MT, Villafruela JM, Castro F, et al. Numerical and experimental analysis of different ventilation systems in deep mines[J]. Building & Environment, 2006, 41(02): 87-93.

[52] Phuong NL, Ito K. Experimental and numerical study of airflow pattern and particle dispersion in a vertical ventilation duct[J]. Building and Environment, 2013, 59(01): 466-481.

[53] Hargreaves DM, Lowndes IS. The computational modeling of the ventilation flows within a rapid development drivage[J]. Tunnelling and Underground Space Technology, 2007, 22(02): 150-160.

[54] Haas A, Weber A, Dorer V, et al. COMIS v3.1 simulation environment for multizone air flow and pollutant transport modelling[J]. Energy and Buildings, 2002, 34(09): 873-882.

[55] Yuan SQ, Wu JS, Zhang XL, et al. EnKF-based estimation of natural gas release and dispersion in an underground tunnel[J]. Journal of Loss Prevention in the Process Industries, 2019, 62: 103931-103942.

[56] Bai YP, Wu JS, Sun YX, et al. BN & CFD-based quantitative risk assessment of the natural gas explosion in utility tunnels[J]. Journal of Loss Prevention in the Process Industries, 2022, 80: 104883-104898.

[57] 王恩元, 梁栋, 柏发松. 巷道瓦斯运移机理及运移过程的研究[J]. 山西矿业学院学报, 1996, 2: 24-29.

[58] 唐斌. 成都地铁龙泉山隧道浅层天然气分布特征及运移规律研究[J]. 现代隧道技术, 2019, 56(06): 41-46.

[59] 王海桥, 刘荣华, 陈世强. 独头巷道受限贴附射流流场特征模拟实验研究[J]. 中国工程科学, 2004, 8: 45-49+63.

[60] 王海桥. 掘进工作面射流通风流场研究[J]. 煤炭学报, 1999, 24(05): 498-501.

[61] 王海桥, 陈世强, 李轶群. 独头巷道受限贴附射流有效射程的理论研究与数值计算[J]. 中国安全生产科学技术, 2015, 11(11): 41-45.

[62] 张磊, 李永福, 孙杰, 等. 瓦斯隧道施工通风流场及瓦斯迁移研究[J]. 地下空间与工程学报, 2014, 10(01): 188-194.

[63] 张营旭, 陈明浩, 苏培东, 等. 南大巴山地区隧道有害气体特征分析[J]. 铁道工程学报, 2022, 39(12): 86-90+109.

[64] 李冰, 叶爱军, 崔鹏杰, 等. 特长瓦斯隧道多作业面施工通风流场研究[J]. 现代隧道技术, 2022, 59(05): 118-124.

[65] 蒋仲安, 曾发镔, 冯雪, 等. 高海拔隧道爆破后粉尘污染动力学模型及影响因素[J]. 煤炭学报, 2023, 48(01): 263-278.

[66] 高峰, 唐宇辰, 张根思, 等. 高原区螺旋隧道CO运移规律研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(06): 66-72+80.

[67] 杨超, 王志伟. 公路隧道通风技术现状及发展趋势[J]. 地下空间与工程学报, 2011, 7(04): 819-824.

[68] 康小兵, 丁睿, 许模等. 高瓦斯隧道施工通风处理数值模拟分析[J]. 成都理工大学学报(自然科学版), 2012, 39(03): 311-316.

[69] 陈绍瑛. 瓦斯隧道运营通风监控系统的设计[J]. 铁道工程学报, 2007, 12: 69-72.

[70] Wang X, Wang MN, Chen J, et al. Analysis of calculation of fresh-air demand for road tunnel ventilation design in China[J]. Tunnelling and Underground Space Technology, 2020, 103: 103469-103477.

[71] Ren TX, Richards MJ. Computerized system for the study of the spontaneous combustion of coal[J]. Mining Engineer (London), 1994, 154: 121-127.

[72] Zhang XQ, Hu JY, Zhang DF, et al. Distribution of harmful gas and ventilation length design of high altitude long gas tunnel construction: a case study[J]. Frontiers in Earth Science, 2023, 11: 1-11.

[73] Liu J, Zhou HW, Wang WQ, et al. Study of the diffusion law of harmful gases in tunnel construction on plateaus and optimization of ventilation parameters[J]. ACS Omega, 2022, 7(31): 27135-27148.

[74] He J, Zhu HH, Wei XY, et al. Numerical and experimental analyses of methane leakage in shield tunnel[J]. Frontiers of Structural and Civil Engineering, 2023, 17(07): 1011-1020.

[75] Fang Y, Yao ZG, Lei S. Air flow and gas dispersion in the forced ventilation of a road tunnel during construction[J]. Underground Space, 2019, 4(02): 168-179.

[76] Menéndez J, Merlé N, Fernández-Oro JM, et al. Concentration, propagation and dilution of toxic gases in underground excavations under different ventilation modes[J]. International Journal of Environmental Research and Public Health, 2022, 19(12): 7092-70113.

[77] 杨永斌, 王轶君, 王庆, 等.考虑双风筒通风隧道瓦斯运移规律数值计算及试验研究[J]. 北京交通大学学报, 2023, 47(02): 169-178.

[78] 赵树磊, 叶爱军, 李冰, 等. 瓦斯隧道多工作面施工通风死区控制方法研究[J]. 安全与环境学报, 2024, 24(01): 118-126.

[79] 王林峰, 钟宜宏, 李玲玉, 等. 基于正交试验的瓦斯隧道压入式通风优化[J]. 现代隧道技术, 2021, 58(S1): 170-178.

[80] 唐鸥玲, 陈兴海, 常兴旺, 等. 非煤系地层高瓦斯隧道浅层天然气赋存特征及抽排试验研究[J]. 现代隧道技术, 2021, 58(05): 140-146+158.

[81] 王永东, 化思豪, 何志伟, 等. 特长公路隧道横通道结合单风井混合式通风设计体系[J]. 交通运输工程学报, 2020,20(06): 161-170.

[82] 王永东, 覃桢杰, 何志伟, 等. 公路隧道互补结合竖井送排的改进型混合通风方式研究[J]. 中国公路学报, 2020,33(04): 106-114.

[83] 闫肃. 采用平导超前和无轨运输方式的长大瓦斯隧道施工六阶段通风技术[J]. 现代隧道技术, 2020, 57(02): 80-85.

[84] 王小敏, 方勇. 南大梁高速公路华蓥山特长隧道施工通风方案[J]. 现代隧道技术, 2013, 50(04): 188-196.

[85] 舒东利, 杨建民, 谢文强, 等. 保安营特长高瓦斯隧道运营通风方案研究[J]. 现代隧道技术, 2019, 56(S2): 96-105.

[86] 何聪. 大丽攀铁路特长高瓦斯隧道施工通风方案研究[J]. 现代隧道技术, 2019, 56(S2): 478-484.

[87] Yang S, Ai ZB, Zhang C, et al. Study on optimization of tunnel ventilation flow field in long tunnel based on CFD computer simulation technology[J]. Sustainability, 2022, 14(18): 11486-11501.

[88] 黄磊, 范建国, 唐协, 等. 低瓦斯公路隧道横通道附近流场分析及优化[J]. 隧道建设(中英文), 2018, 38(S1): 97-103.

[89] 张恒, 吴瑾, 陈寿根, 等. 风机布置方式对高瓦斯隧道施工通风效果的影响[J]. 安全与环境学报, 2018, 18(05): 1834-1841.

[90] Chang XK, Chai JR, Luo JP, et al. Tunnel ventilation during construction and diffusion of hazardous gases studied by numerical simulations[J]. Building and Environment, 2020, 177: 106902-106916.

[91] 刘春, 杜俊生, 郭臣业, 等. 大断面瓦斯隧道风筒布置对瓦斯浓度的影响研究[J]. 现代隧道技术, 2019, 56(05): 114-121.

[92] Cao C, Zhao JY, Ding HG. Dust removal of large cross-section tunnels: following ventilation and its adjustment strategy[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(10): 483-497.

[93] Nie W, Jiang CW, Sun N, et al. CFD-based simulation study of dust transport law and air age in tunnel under different ventilation methods[J]. Environmental Science and Pollution Research, 2023, 30(53): 114484-114500.

[94] Liu Q, Nie W, Hua Y, et al. Long-duct forced and short-duct exhaust ventilation system in tunnels: Formation and dust control analysis of pressure ventilation air curtain[J]. Process Safety and Environmental Protection, 2019, 132: 367-377.

[95] 刘红森, 王方超, 陈长坤, 等. 平行导洞压入式通风对特长隧道污染物分布的影响[J]. 安全与环境学报, 2024, 24(03): 1000-1009.

[96] 付孝康, 张子龙, 张涛, 等. 大万山特长隧道送排与互补组合通风方案研究[J]. 地下空间与工程学报, 2021, 17(S2): 965-971+984.

[97] 姜学鹏, 毛杨苏宜, 谢智云. 特长城市复杂隧道通风系统运营优化研究[J]. 隧道建设(中英文), 2018, 38(09): 1471-1479.

[98] 胡威东. 超大直径泥水盾构隧道施工通风设计方案研究[J]. 现代隧道技术, 2023, 60(05): 186-194.

[99] 雷震霖, 陈世强, 董向阳, 等. 长大区间隧道抽出式串联通风机排烟能力实验研究[J]. 中国安全生产科学技术, 2023, 19(03): 115-120.

[100] 中华人民共和国交通运输部. JTG/T 3374-2020 公路瓦斯隧道设计与施工技术规范[S]. 北京:人民交通出版社, 2020.

[101] 张国枢. 通风安全学[M]. 徐州: 中国矿业大学出版社, 2007.

[102] 冯森. 公路隧道瓦斯公区类别划分指标与方法研究[D]. 重庆交通大学, 2021.

[103] 梁栋. 通风过程瓦斯运移规律和数值模拟[M]. 北京: 煤炭工业出版社, 1995.

[104] 李恩良, 王秉权. 紊流扩散理论在井巷传质中的应用[J]. 煤炭学报, 1988, 1: 65-75.

[105] 李恩良, 王秉权. 井巷紊流传质的数学模型及紊流弥散系数[J]. 东北工学院学报, 1985, 3: 41-47.

[106] Zhou Y, Yang Y, Bu R, et al. Effect of press-in ventilation technology on pollutant transport in a railway tunnel under construction[J]. Journal of Cleaner Production, 2020, 243: 118590-1185101.

[107] 李伟林. 施工隧道瓦斯运移扩散规律及其浓度动态预测研究[D]. 武汉理工大学, 2022.

[108] 田敏. 长独头巷道受控循环通风数学模型研究[D]. 昆明理工大学, 2008.

[109] 陈辉浩. 瓦斯隧道施工通风流场特征分析及参数优化研究[D]. 广西大学, 2022.

[110] Wu ZY, Jiang SG, He XJ, et al. Study of 3-D numerical simulation for gas transfer in the goaf of the coal mining[J]. Journal of China University of Mining & Technology, 2007, 17(02): 152-157.

[111] 刘安林, 叶道星, 罗逸民, 等. 基于小波变换的核主泵惰转过程叶轮压力脉动及泵内部流动规律[J]. 排灌机械工程学报, 2023, 41(11): 1088-1095+1103.

中图分类号:

 TD712    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式