论文中文题名: |
大采高综采覆岩卸压瓦斯运储实验系统研制及机理研究
|
姓名: |
魏宗勇
|
学号: |
16120075007
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
083700
|
学科名称: |
工学 - 安全科学与工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全科学与工程
|
研究方向: |
矿井瓦斯防治
|
第一导师姓名: |
李树刚
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
张天军
|
论文提交日期: |
2022-06-23
|
论文答辩日期: |
2022-06-02
|
论文外文题名: |
Experimental System Development and Mechanism Research for Pressure Relief Gas Transportation and Storage in Overburden of Fully Mechanized Mining with Large Mining Height
|
论文中文关键词: |
三维相似模拟 ; 瓦斯运储 ; 覆岩裂隙 ; 大采高 ; 卸压瓦斯
|
论文外文关键词: |
3D similar simulation ; Gas transportation and storage ; Overlying rock fracture ; Large mining height ; Pressure relief gas
|
论文中文摘要: |
︿
矿井瓦斯既是宝贵的资源,同时也严重威胁着煤矿的安全生产。在煤矿机械以及自动化程度提高的背景下,煤矿的开采深度加深、开采强度加强,瓦斯的涌出量也越来越大。大采高综采的特点是采高大、覆岩裂隙发育范围大,极大的增强了采空区卸压瓦斯运移储集能力,同时也增大了工作面瓦斯防控压力。为此,本文研发了瓦斯运储三维大尺度物理模拟实验系统,从煤层采动覆岩移动、破坏规律以及采动覆岩裂隙特点入手,采用理论分析、实验研究、数值模拟及现场实践相结合的方法,研究了煤层采动覆岩破断裂隙发育以及分布特征,建立了覆岩裂隙瓦斯运储通道数学模型;在此基础上研究了大采高综采条件下卸压瓦斯运储规律,揭示了大采高综采卸压瓦斯运储机理。论文主要内容及成果如下:
(1)基于弹性力学、流体力学建立了瓦斯运储相似准则,基于相似准则成功地研制了以水泥、淀粉为胶结剂的新型物理相似模拟实验室材料,材料在弹性力学与渗流力学方面与原型保持高度一致,满足气固两相物理相似材料的要求,对采用物理相似模拟手段研究瓦斯运储规律取得了较好的促进作用。
(2)采用系统构建的方法,自主设计研发了瓦斯运储三维大尺度物理模拟实验系统。该系统由箱体与基座、自动液压开采、柔性加载、自动通风、瓦斯涌出与瓦斯抽采以及综合数据采集与控制等7个子单元构成。按照相似比1:100,可模拟最大采深2105 m,采高0~12 m以及推进距离200 m;通风单元可模拟U型、U+L型、Y型等多种通风方式以及实现不同风量通风;抽采单元可模拟高位巷、高位钻孔、地面抽采等多种立体化抽采方式;瓦斯涌出单元采用独立注入方式,实现不同瓦斯涌出量、不同位置的瓦斯涌出。实验系统可进行煤层开采、矿井通风、瓦斯涌出与瓦斯抽采等功能的模拟,实现煤层开采过程中覆岩裂隙演化、矿山压力分布、卸压瓦斯运移、瓦斯抽采等科学问题的一体同步研究,为本课题研究提供实验平台支撑。
(3)基于山西某典型大采高综采工作面地质条件,通过大型三维物理相似模拟实验,得到了工作面开采过程覆岩空间微震事件动态分布特征及微震参数变化特征。采用模型剖切的方法,得到大采高综采覆岩裂隙三带分布情况,研究了覆岩层破断下沉关系,以及各覆岩层的下沉量、裂隙密度、裂隙贯通度等特征,得到了瓦斯运储优势通道分布特征。
(4)采用三维大尺度物理相似模拟实验的手段,得到U型通风方式下大采高综采采空区三维裂隙网络空间内瓦斯运储分布规律。在三维空间内,沿工作面方向从进风侧至回风侧瓦斯浓度分布呈增加趋势;在采空区深度方向瓦斯浓度逐渐增加,直至深度采空区瓦斯浓度稳定且维持在较高水平。由于采空区采动覆岩层孔隙率变化影响以及瓦斯升浮-扩散特性,在采空区高度方向上存在明显的分层特征,裂隙带顶端瓦斯浓度为66-68%,瓦斯在采动裂隙中升浮-扩散、渗流,最终富集在裂隙带顶端。
(5)采用物理相似模拟与数值模拟的方法,研究了在不同风量等级、不同通风方法影响下采动覆岩裂隙中瓦斯浓度分布运移规律,得到在工作面方向、采空区深度方向及高度方向上瓦斯受各因素影响程度。
(6)根据大采高综采煤层覆岩采动裂隙演化过程破断时序性和采空区充填特征,给出了大采高综采煤层工作面卸压瓦斯在活跃区、过渡区、压实区采动裂隙中运移特征;分析了瓦斯运储通道的形成与采空区空隙率的分布特征,建立了采空区空隙率分布方程;建立了采动裂隙椭抛带中卸压瓦斯渗流-升浮-扩散综合控制模型,得出卸压瓦斯运移与覆岩纵向破断裂隙及横向离层裂隙之间的动态演化关系,根据此模型可以明确采动裂隙椭抛带中的瓦斯运储机理,为抽采卸压瓦斯技术提供一定理论基础。
研究揭示的大采高综采覆岩卸压瓦斯运储机理,在山西某典型高瓦斯矿井工作面瓦斯灾害治理工作中得到了较好的验证和应用,工作面瓦斯实施走向高位巷与长钻孔协同抽采卸压瓦斯措施后,达到了较好的卸压瓦斯抽采效果,保障了工作面的安全回采,为类似地质条件下矿井瓦斯治理提供科学依据。
﹀
|
论文外文摘要: |
︿
Mine gas is not only a valuable resource, but also a serious threat to coal mine safety production. Under the background of the improvement of coal mine machinery and automation, the mining depth of coal mine is deepened, the mining intensity is strengthened, so that the emission of gas is increasing. Fully mechanized mining with large mining height is characterized by large mining height and large development range of overburden fractures, which greatly enhances the pressure relief gas migration and storage capacity of goaf, and also increases the gas prevention and control pressure of working face. Therefore, a three-dimensional large-scale physical similarity simulation experimental system for gas transportation and storage is developed in this paper. Starting with the movement and failure law of coal seam mining overburden and the characteristics of mining overburden fractures, the development and distribution characteristics of mining overburden fractures are studied by using the methods of theoretical analysis, experimental research, numerical simulation and field practice, and the mathematical model of overburden fracture gas transportation and storage channel is established; On this basis, the law of pressure relief gas transportation and storage under the condition of large mining height fully mechanized mining is studied, and the mechanism of pressure relief gas transportation and storage in large mining height fully mechanized mining is revealed. The main contents and achievements of this paper are as follows:
(1) The similarity criterion of gas transportation and storage is established based on elasticity and fluid mechanics. Based on the similarity criterion, a new physical similarity simulation laboratory material with paraffin and cement as cement is successfully developed. The material is highly consistent with the prototype in elasticity and seepage mechanics, meets the requirements of gas-solid two-phase physical similarity materials, and plays a good role in promoting the study of gas transportation and storage law by means of physical similarity simulation.
(2) Using the method of system construction, a three-dimensional large-scale physical similarity simulation experimental system for gas transportation and storage is independently designed and developed. The system consists of seven sub units: box and base, automatic hydraulic mining, flexible loading, automatic ventilation, gas emission and gas drainage, and comprehensive data acquisition and control. According to the similarity ratio of 1:100, the maximum mining depth of 2105m, mining height of 0 ~ 12m and advance distance of 200m can be simulated; The ventilation unit can simulate various ventilation modes such as U-type, U + L-type and Y-type, and realize ventilation with different air volume; The extraction unit can simulate many kinds of three-dimensional extraction methods, such as high-level roadway, high-level drilling, ground extraction and so on; The gas emission unit adopts the independent injection mode to realize the gas emission of different gas emission quantities and different positions. The experimental system can simulate the functions of coal seam mining, mine ventilation, gas emission and gas drainage, and realize the integrated and synchronous research on scientific problems such as overburden fracture evolution, mine pressure distribution, pressure relief gas migration and gas drainage in the process of coal seam mining, so as to provide experimental platform support for this research.
(3) Based on the geological conditions of a typical fully mechanized mining face with large mining height in Shanxi, the dynamic distribution characteristics of microseismic events and the variation characteristics of microseismic parameters in overburden space during mining are obtained through large-scale three-dimensional physical similarity simulation experiments. Using the method of model cutting, the distribution of three zones of overburden fractures in fully mechanized mining with large mining height is obtained, the relationship between overburden fracture and subsidence, as well as the characteristics of subsidence, fracture density and fracture penetration of each overburden are studied, and the distribution characteristics of dominant channels for gas transportation and storage are obtained.
(4) By means of three-dimensional large-scale physical similarity simulation experiment, the law of gas transportation and storage in three-dimensional fracture network space of fully mechanized goaf with large mining height under U-shaped ventilation is obtained. In the three-dimensional space, the gas concentration distribution along the working face from the inlet side to the return side shows an increasing trend; The gas concentration increases gradually in the depth direction of the goaf until the gas concentration in the deep goaf is stable and maintained at a high level. Due to the influence of the porosity change of the mining overburden in the goaf and the characteristics of gas rise, float and diffusion, there are obvious stratification characteristics in the height direction of the goaf. The gas concentration at the top of the fracture zone is 66-68%. The gas rises, floats, diffuses and seeps in the mining fracture, and finally enriches at the top of the fracture zone.
(5) Using the methods of physical similarity simulation and numerical simulation, the distribution and migration law of gas concentration in mining overburden fractures under the influence of different air volume levels and different ventilation methods are studied, and the influence degree of gas by various factors in the direction of working face, goaf depth and height is obtained.
(6) According to the fracture time sequence of overburden mining fracture evolution process and goaf filling characteristics of large mining height fully mechanized coal seam, the migration characteristics of pressure relief gas in mining fractures in active area, transition area and compaction area are given; The formation of gas transportation and storage channel and the distribution characteristics of void ratio in goaf are analyzed, and the distribution equation of void ratio in goaf is established; The comprehensive control model of pressure relief gas seepage, rising and floating diffusion in the mining fracture ellipsoidal zone is established, and the dynamic evolution relationship between the pressure relief gas migration and the longitudinal fracture fracture and transverse separation fracture of overburden is obtained. According to this model, the gas transportation and storage mechanism in the mining fracture ellipsoidal zone can be clarified, which provides a certain theoretical basis for pressure relief gas drainage technology.
The mechanism of pressure relief gas transportation and storage in overburden of large mining height fully mechanized mining revealed in the study has been well verified and applied in the gas disaster control of a typical high gas mine face in Shanxi. After the implementation of the pressure relief gas drainage measures of strike high roadway and long borehole, the better pressure relief gas drainage effect is achieved, the safe mining of the working face is guaranteed, and the scientific basis for mine gas control under similar geological conditions is provided.
﹀
|
参考文献: |
︿
[1] 袁亮, 张平松. 煤炭精准开采地质保障技术的发展现状及展望[J]. 煤炭学报, 2019,44(08): 2277-2284.
[2] 张平松, 欧元超, 李圣林. 我国矿井物探技术及装备的发展现状与思考[J]. 煤炭科学技术, 2021,49(07): 1-15.
[3] 宋洪柱. 中国煤炭资源分布特征与勘查开发前景研究[D]. 北京: 中国地质大学(北京), 2013.
[4] 王国法, 庞义辉. 8.2m超大采高综采成套装备研制及应用[J]. 煤炭工程, 2017,49(11): 1-5.
[5] 2021煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2022.
[6] 许永祥, 王国法, 李明忠, 等. 特厚坚硬煤层超大采高综放开采支架-围岩结构耦合关系[J]. 煤炭学报, 2019,44(06): 1666-1678.
[7] 许永祥. 特厚坚硬煤层超大采高综放开采支架-围岩结构耦合关系研究_许永祥[D]. 北京: 煤炭科学研究总院, 2020.
[8] WANG J, ZHANG Q, ZHANG J, et al. Study on the controller factors associated with roof falling and ribs spalling in deep mine with great mining height and compound roof[J]. Engineering Failure Analysis, 2021,129: 105723.
[9] 王金华. 特厚煤层大采高综放开采关键技术[J]. 煤炭学报, 2013,38(12): 2089-2098.
[10] 孙闯, 闫少宏, 徐乃忠, 等. 大采高综采采空区条件下上行开采关键问题研究[J]. 采矿与安全工程学报, 2021,38(03): 449-457.
[11] 李明忠. 榆神矿区坚硬特厚煤层大采高综放开采关键技术研究[D]. 煤炭科学研究总院, 2018.
[12] LI L, ZHANG F. Instability Model of a Coal Wall with Large Mining Height under Excavation Unloading Conditions[J]. Advances in Civil Engineering, 2020,2020: 1-6.
[13] LI S, WANG L, ZHU C, et al. Research on Mechanism and Control Technology of Rib Spalling in Soft Coal Seam of Deep Coal Mine[J]. Advances in Materials Science and Engineering, 2021,2021: 1-9.
[14] 张金虎, 李明忠, 杨正凯, 等. 超大采高综采工作面煤壁片帮机理及多维防护措施研究[J]. 采矿与安全工程学报, 2021,38(03): 487-495.
[15] 彭林军, 岳宁, 李申龙, 等. 超大采高综采工作面回撤通道支护研究[J]. 煤炭科学技术, 2020: 1-7.
[16] 刘忠全, 陈殿赋, 孙炳兴, 等. 高瓦斯矿井超大区域瓦斯治理技术[J]. 煤炭科学技术, 2021,49(05): 120-126.
[17] 周福宝, 孙玉宁, 李海鉴, 等. 煤层瓦斯抽采钻孔密封理论模型与工程技术研究[J]. 中国矿业大学学报, 2016,45(03): 433-439.
[18] GRIFFITH A A. VI. The phenomena of rupture and flow in solids[J]. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 1921,221(582-593): 163-198.
[19] GRIFFITH A A, GILMAN J J. The phenomena of rupture and flow in solids[J]. Transactions of the ASM, 1968,61: 855-906.
[20] PRANDTL L. A thought model for the fracture of brittle solids[J]. Zeitschrift f眉r angewandte Mathematik und Mechanik, 2011,13: 129-133.
[21] TADA H, PARIS P, IRWIN G. The analysis of cracks handbook[J]. New York: ASME Press, 2000,2: 1.
[22] BROWN E T. Underground excavations in rock[M]. CRC Press, 1980.
[23] KEMENY J, COOK N. Effective moduli, non-linear deformation and strength of a cracked elastic solid: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts[C]: Elsevier, 1986.
[24] 刘东燕朱可善. 岩石压剪断裂的模型试验研究[J]. 重庆建筑工程学院学报, 1994(01): 56-62.
[25] 谢和平. 岩石材料的局部损伤拉破坏[J]. 岩石力学与工程学报, 1988(02): 147-154.
[26] 焦玉勇, 张秀丽, 刘泉声, 等. 用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007(04): 682-691.
[27] 凌建明. 压缩荷载条件下岩石细观损伤特征的研究[J]. 同济大学学报(自然科学版), 1993(02): 219-226.
[28] 陈炎光, 钱鸣高. 中国煤矿采场围岩控制[M]. 徐州: 中国矿业大学出版社, 1995.
[29] 钱鸣高, 李鸿昌. 采场上覆岩层活动规律及其对矿山压力的影响[J]. 煤炭学报, 1982(02): 1-12.
[30] LIU C, XUE J, YU G, et al. Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology[J]. International Journal of Mining Science and Technology, 2016,26(2): 295-299.
[31] ZHANG Y J, LI F M. Monitoring analysis of fissure development evolution and height of overburden failure of high tension fully-mechanized caving mining[J]. Chin J Rock Mech Eng, 2011,30(S1): 2994-3001.
[32] YANG D, GUO W, TAN Y. Study on the evolution characteristics of two-zone failure mode of the overburden strata under shallow buried thick seam mining[J]. Advances in Civil Engineering, 2019,2019.
[33] 郝春生, 袁瑞甫, 郝海金, 等. 基于采动覆岩裂隙三维分布形态的地面L型抽采钻孔合理位置研究[J]. 河南理工大学学报(自然科学版), 2019,38(06): 24-31.
[34] 程香港, 乔伟, 李路, 等. 煤层覆岩采动裂隙应力-渗流耦合模型及涌水量预测[J]. 煤炭学报, 2020,45(08): 2890-2900.
[35] 王浩, 吕有厂, 王满, 等. 煤层覆岩采动破断及瓦斯流动规律[M]. 重庆大学出版社, 2019: 134.
[36] 胡岚清. 采动区卸压瓦斯覆岩裂隙优势通道演化规律[D]. 太原理工大学, 2021.
[37] 许家林, 钱鸣高. 关键层运动对覆岩及地表移动影响的研究[J]. 煤炭学报, 2000(02): 122-126.
[38] 许家林, 钱鸣高. 覆岩关键层位置的判别方法[J]. 中国矿业大学学报, 2000(05): 21-25.
[39] 茅献彪, 缪协兴, 钱鸣高. 采动覆岩中关键层的破断规律研究[J]. 中国矿业大学学报, 1998(01): 41-44.
[40] 钱鸣高, 茅献彪, 缪协兴. 采场覆岩中关键层上载荷的变化规律[J]. 煤炭学报, 1998(02): 25-29.
[41] 缪协兴, 茅献彪, 孙振, 等. 采场覆岩中复合关键层的形成条件与判别方法[J]. 中国矿业大学学报, 2005(05): 547-550.
[42] 缪协兴, 陈荣华, 浦海, 等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报, 2005(08): 1289-1295.
[43] 侯忠杰. 浅埋煤层关键层研究[J]. 煤炭学报, 1999(04): 25-29.
[44] 张吉雄, 李剑, 安泰龙, 等. 矸石充填综采覆岩关键层变形特征研究[J]. 煤炭学报, 2010,35(03): 357-362.
[45] 张宏伟, 朱志洁, 霍利杰, 等. 特厚煤层综放开采覆岩破坏高度[J]. 煤炭学报, 2014,39(05): 816-821.
[46] 朱卫兵, 许家林, 施喜书, 等. 覆岩主关键层运动对地表沉陷影响的钻孔原位测试研究[J]. 岩石力学与工程学报, 2009,28(02): 403-409.
[47] 杨俊哲, 刘前进, 徐刚, 等. 8.8 m支架超大采高工作面矿压规律及覆岩破断结构研究[J]. 采矿与安全工程学报, 2021,38(04): 655-665.
[48] 刘垚鑫, 高明仕, 赵华山, 等. 钻孔测井技术探测覆岩结构及其关键层判识[J]. 采矿与岩层控制工程学报, 2020,2(02): 85-93.
[49] LI J, LIU C. Spatio-temporal distribution and gas conductivity of overburden fissures in the mining of shallow thick coal seams[J]. European Journal of Environmental and Civil Engineering, 2019,23(8): 1019-1033.
[50] SONG Y, CHENG G, GUO W. Study of distribution of overlying strata fissures and its porosity characteristics[J]. Rock Soil Mech, 2011,32(2): 533.
[51] ZHAO P, ZHUO R, LI S, et al. Research on the effect of coal seam inclination on gas migration channels at fully mechanized coal mining face[J]. Arabian Journal of Geosciences, 2019,12(18): 1-14.
[52] 皮希宇. 煤层群采动卸压煤与覆岩裂隙演化特征及其对瓦斯抽采的影响[D]. 北京科技大学, 2021.
[53] 钱鸣高. 20年来采场围岩控制理论与实践的回顾[J]. 中国矿业大学学报, 2000(01): 1-4.
[54] 钱鸣高, 许家林. 煤炭开采与岩层运动[J]. 煤炭学报, 2019,44(04): 973-984.
[55] 钱鸣高, 曹胜根. 煤炭开采的科学技术与管理[J]. 采矿与安全工程学报, 2007(01): 1-7.
[56] 刘天泉. 矿山岩体采动影响与控制工程学及其应用[J]. 煤炭学报, 1995(01): 1-5.
[57] 刘天泉. 矿山岩体采动响应与控制工程学及其应用[J]. 科技导报, 1994(12): 21-23.
[58] 黄志安, 童海方, 张英华, 等. 采空区上覆岩层“三带”的界定准则和仿真确定[J]. 北京科技大学学报, 2006(07): 609-612.
[59] 李树刚, 石平五, 钱鸣高. 覆岩采动裂隙椭抛带动态分布特征研究[J]. 矿山压力与顶板管理, 1999(Z1): 44-46.
[60] 李树刚, 徐培耘, 赵鹏翔, 等. 采动裂隙椭抛带时效诱导作用及卸压瓦斯抽采技术[J]. 煤炭科学技术, 2018,46(09): 146-152.
[61] 李树刚, 丁洋, 安朝峰, 等. 近距离煤层重复采动覆岩裂隙形态及其演化规律实验研究[J]. 采矿与安全工程学报, 2016,33(05): 904-910.
[62] 程远平, 俞启香, 袁亮. 上覆远程卸压岩体移动特性与瓦斯抽采技术[J]. 辽宁工程技术大学学报, 2003(04): 483-486.
[63] BOOTH C J. The effects of longwall coal mining on overlying aquifers[J]. Geological Society, London, Special Publications, 2002,198(1): 17-45.
[64] KARACAN C Z, OLEA R A. Sequential Gaussian co-simulation of rate decline parameters of longwall gob gas ventholes[J]. International Journal of Rock Mechanics and Mining Sciences, 2013,59: 1-14.
[65] DAVID K, TIMMS W A, BARBOUR S L, et al. Tracking changes in the specific storage of overburden rock during longwall coal mining[J]. Journal of Hydrology, 2017,553: 304-320.
[66] 张胜, 田利军, 肖鹏. 综放采场支承压力对覆岩裂隙发育规律的影响机理研究[J]. 矿业安全与环保, 2011,38(06): 12-14.
[67] 林海飞. 综放开采覆岩裂隙演化与卸压瓦斯运移规律及工程应用[D]. 西安科技大学, 2009.
[68] 林海飞, 李树刚, 成连华, 等. 覆岩采动裂隙演化形态的相似材料模拟实验[J]. 西安科技大学学报, 2010,30(05): 507-512.
[69] 薛东杰, 周宏伟, 王超圣, 等. 上覆岩层裂隙演化逾渗模型研究[J]. 中国矿业大学学报, 2013,42(06): 917-922.
[70] 栗东平. 深部开采煤岩体裂隙演化的分形及逾渗特征研究[D]. 中国矿业大学(北京), 2015.
[71] 薛东杰, 周宏伟, 任伟光, 等. 浅埋深薄基岩煤层组开采采动裂隙演化及台阶式切落形成机制[J]. 煤炭学报, 2015,40(08): 1746-1752.
[72] 尹光志, 李星, 韩佩博, 等. 三维采动应力条件下覆岩裂隙演化规律试验研究[J]. 煤炭学报, 2016,41(02): 406-413.
[73] 尹光志, 李星, 鲁俊, 等. 深部开采动静载荷作用下复合动力灾害致灾机理研究[J]. 煤炭学报, 2017,42(09): 2316-2326.
[74] 张明, 姜福兴, 陈广尧, 等. 基于厚硬岩层运动状态的采场应力转移模型及其应用[J]. 岩石力学与工程学报, 2020,39(07): 1396-1407.
[75] 姜福兴, 杨光宇, 魏全德, 等. 煤矿复合动力灾害危险性实时预警平台研究与展望[J]. 煤炭学报, 2018,43(02): 333-339.
[76] 张向阳, 任启寒, 涂敏, 等. 潘一东矿近距离煤层上行开采围岩裂隙演化规律模拟研究[J]. 采矿与安全工程学报, 2016,33(02): 191-198.
[77] WEN Z, XING E, SHI S, et al. Overlying strata structural modeling and support applicability analysis for large mining-height stopes[J]. Journal of Loss Prevention in the Process Industries, 2019,57: 94-100.
[78] MENG Z, ZENG Q, GAO K, et al. Failure analysis of super-large mining height powered support[J]. Engineering Failure Analysis, 2018,92: 378-391.
[79] HUANG Q, HE Y. Research on overburden movement characteristics of large mining height working face in shallow buried thin bedrock[J]. Energies, 2019,12(21): 4208.
[80] 李春意, 高永格, 陈洁, 等. 大采高沿空留巷围岩稳定性及形变规律分析[J]. 地下空间与工程学报, 2021,17(03): 897-908.
[81] 李春意, 赵亮, 高永格, 等. 深部大采高沿空留巷围岩稳定性及形变规律分析: 中国煤炭学会土地复垦与生态修复专业委员会第八届全国矿区土地复垦与生态修复学术会议[C], 中国河南焦作, 2019.
[82] HARPALANI S. GAS FLOW THROUGH STRESSED COAL (FLUID FLOW, POROUS MEDIC)[D]. University of California, Berkeley, 1985.
[83] PEIDE S. Study of dynamic models for coal gas dynamics (part 2)[J]. Mining Science and Technology, 1991,12(3): 311-316.
[84] SOMERTON W H, S枚YLEMEZO岣 U I M, DUDLEY R C. Effect of stress on permeability of coal: International journal of rock mechanics and mining sciences & geomechanics abstracts[C]: Elsevier, 1975.
[85] 林柏泉, 周世宁. 煤样瓦斯渗透率的实验研究[J]. 中国矿业学院学报, 1987(01): 24-31.
[86] 周世宁, 何学秋. 煤和瓦斯突出机理的流变假说[J]. 中国矿业大学学报, 1990(02): 4-11.
[87] 姚宇平, 周世宁. 含瓦斯煤的力学性质[J]. 中国矿业学院学报, 1988(01): 4-10.
[88] 许江, 鲜学福, 杜云贵, 等. 含瓦斯煤的力学特性的实验分析[J]. 重庆大学学报(自然科学版), 1993(05): 42-47.
[89] 易俊. 声震法提高煤层气抽采率的机理及技术原理研究[D]. 重庆大学, 2007.
[90] 吴世跃. 煤层瓦斯扩散与渗流规律的初步探讨[J]. 山西矿业学院学报, 1994(03): 259-263.
[91] 吴世跃, 郭勇义. 煤层气运移特征的研究[J]. 煤炭学报, 1999(01): 67-71.
[92] 李树刚. 综放开采围岩活动影响下瓦斯运移规律及其控制[J]. 岩石力学与工程学报, 2000(06): 809-810.
[93] 章梦涛, 王景琰. 采场空气流动状况的数学模型和数值方法[J]. 煤炭学报, 1983(03): 46-54.
[94] 梁冰, 章梦涛, 王泳嘉. 煤层瓦斯渗流与煤体变形的耦合数学模型及数值解法[J]. 岩石力学与工程学报, 1996(02): 40-47.
[95] 蒋曙光, 张人伟. 综放采场流场数学模型及数值计算[J]. 煤炭学报, 1998(03): 36-39.
[96] 李宗翔. 高瓦斯易自燃采空区瓦斯与自燃耦合研究[D]. 辽宁工程技术大学, 2007.
[97] 李宗翔, 题正义, 赵国忱. 回采工作面采空区瓦斯涌出规律的数值模拟研究[J]. 中国地质灾害与防治学报, 2005(04): 46-50.
[98] 李宗翔, 孟宪臣, 纪传仁. 冒落非均质平面流场非达西渗流新迭代算法[J]. 力学与实践, 2007(02): 28-30.
[99] 梁运涛, 张腾飞, 王树刚, 等. 采空区孔隙率非均质模型及其流场分布模拟[J]. 煤炭学报, 2009,34(09): 1203-1207.
[100] ZHANG J, LIU Y, REN P, et al. A fully multifield coupling model of gas extraction and air leakage for in-seam borehole[J]. Energy Reports, 2021,7: 1293-1305.
[101] 洛锋, 曹树刚, 李国栋, 等. 采动应力集中壳和卸压体空间形态演化及瓦斯运移规律研究[J]. 采矿与安全工程学报, 2018,35(01): 155-162.
[102] 吴奉亮, 李智胜, 常心坦. 矿井采空区漏风问题的迎风有限元求解技术及其应用[J]. 西安科技大学学报, 2019,39(02): 234-240.
[103] ZHANG R, CHENG J, WANG Z, et al. Recapitulation and Prospect of Research on Flow Field in Coal Mine Gob[J]. Shock and Vibration, 2021,2021: 1-24.
[104] 李俊贤, 邢玉忠, 王进尚. U+L+高位钻孔组方式下采空区漏风和瓦斯运移规律相似模拟[J]. 煤矿安全, 2013,44(05): 7-10.
[105] 肖晓春, 潘一山, 吕祥锋, 等. 含水煤岩变形破坏过程中瓦斯运移规律的实验研究[J]. 煤炭学报, 2012,37(S1): 115-119.
[106] 袁亮, 郭华, 沈宝堂, 等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报, 2011,36(03): 357-365.
[107] 胡千庭, 梁运培, 刘见中. 采空区瓦斯流动规律的CFD模拟[J]. 煤炭学报, 2007(07): 719-723.
[108] 李树刚, 张伟, 邹银先, 等. 综放采空区瓦斯渗流规律数值模拟研究[J]. 矿业安全与环保, 2008(02): 1-3.
[109] 张天军, 李伟, 李树刚, 等. 高瓦斯综放工作面采空区瓦斯涌出规律[J]. 科技导报, 2015,33(03): 58-62.
[110] 罗振敏, 郝苗, 苏彬, 等. 采空区瓦斯运移规律实验及数值模拟[J]. 西安科技大学学报, 2020,40(01): 31-39.
[111] 汪腾蛟, 聂朝刚, 杨小彬, 等. 考虑温度变化的采空区瓦斯抽采数值模拟[J]. 煤炭科学技术, 2021,49(07): 85-94.
[112] 徐超, 曹明月, 李小芳, 等. 基于三维空隙率模型的采空区瓦斯运移及富集规律[J]. 煤矿安全, 2021,52(05): 7-13.
[113] 林海飞, 李树刚, 索亮, 等. 走向高抽巷合理层位的FLUENT数值模拟[J]. 辽宁工程技术大学学报(自然科学版), 2014,33(02): 172-176.
[114] 孙荣军, 李泉新, 方俊, 等. 采空区瓦斯抽采高位钻孔施工技术及发展趋势[J]. 煤炭科学技术, 2017,45(01): 94-99.
[115] 于宝种. 上隅角不同插管深度瓦斯抽采效果研究[J]. 煤矿安全, 2017,48(07): 169-172.
[116] 周爱桃, 李志磊, 杜锋, 等. 采空区埋管抽放治理上隅角瓦斯技术研究[J]. 煤炭技术, 2015,34(02): 114-116.
[117] 周声才, 李栋, 张凤舞, 等. 煤层瓦斯抽采爆破卸压的钻孔布置优化分析及应用[J]. 岩石力学与工程学报, 2013,32(04): 807-813.
[118] 谢生荣, 何富连, 张守宝, 等. 尾巷超大直径管路横接采空区密闭抽采技术[J]. 煤炭学报, 2012,37(10): 1688-1692.
[119] 程远平, 俞启香. 煤层群煤与瓦斯安全高效共采体系及应用[J]. 中国矿业大学学报, 2003(05): 5-9.
[120] 俞启香, 程远平, 蒋承林, 等. 高瓦斯特厚煤层煤与卸压瓦斯共采原理及实践[J]. 中国矿业大学学报, 2004(02): 3-7.
[121] 袁亮. 卸压开采抽采瓦斯理论及煤与瓦斯共采技术体系[J]. 煤炭学报, 2009,34(01): 1-8.
[122] 卢平, 方良才, 童云飞, 等. 深井煤层群首采层Y型通风工作面采空区卸压瓦斯抽采与综合治理研究[J]. 采矿与安全工程学报, 2013,30(03): 456-462.
[123] 卢平, 袁亮, 程桦, 等. 低透气性煤层群高瓦斯采煤工作面强化抽采卸压瓦斯机理及试验[J]. 煤炭学报, 2010,35(04): 580-585.
[124] 王维忠, 刘东, 许江, 等. 瓦斯抽采过程中钻孔位置对煤层参数演化影响的试验研究[J]. 煤炭学报, 2016,41(02): 414-423.
[125] 许江, 苏小鹏, 彭守建, 等. 卸压区不同钻孔长度抽采条件下瓦斯运移特性试验[J]. 岩土力学, 2018,39(01): 103-111.
[126] HU G, XU J, REN T, et al. Adjacent seam pressure-relief gas drainage technique based on ground movement for initial mining phase of longwall face[J]. International Journal of Rock Mechanics and Mining Sciences, 2015,77: 237-245.
[127] 王红胜, 李树刚, 双海清, 等. 外错高抽巷高位钻孔卸压瓦斯抽采技术[J]. 中南大学学报(自然科学版), 2016,47(04): 1319-1326.
[128] ZHAO P, WANG J, LI S, et al. Effects of Recovery Ratio on the Fracture Evolution of the Overburden Pressure-Relief Gas Migration Channel for a Fully Mechanized Working Face[J]. Natural Resources Research, 2022.
[129] 赵鹏翔, 康新朋, 李树刚, 等. 卸压瓦斯运移区“孔-巷”协同抽采布置参数优化及高效抽采[J]. 煤炭科学技术, 2021: 1-12.
[130] ZHAO P, ZHUO R, LI S, et al. Analysis of advancing speed effect in gas safety extraction channels and pressure-relief gas extraction[J]. Fuel, 2020,265: 116825.
[131] 林海飞, 李磊明, 李树刚, 等. 煤层群重复采动卸压瓦斯储运区演化规律实验研究[J]. 西安科技大学学报, 2021,41(03): 385-393.
[132] 林海飞, 李树刚, 赵鹏翔, 等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术, 2018,46(01): 28-35.
[133] 林海飞, 杨二豪, 夏保庆, 等. 高瓦斯综采工作面定向钻孔代替尾巷抽采瓦斯技术[J]. 煤炭科学技术, 2020,48(01): 136-143.
[134] 郝世俊, 段会军, 莫海涛, 等. 大直径高位定向长钻孔瓦斯抽采技术及实践[J]. 煤田地质与勘探, 2020,48(06): 243-248.
[135] BI B, MENG J, CHENG B. A Study on the Dynamic Adjustment of Pressure Relief Gas Drainage Drilling in Mined-Out Areas[J]. World Journal of Engineering and Technology, 2021,09(02): 337-345.
[136] XIAOCUN C, HUI T. Technical scheme and application of pressure-relief gas extraction in multi-coal seam mining region[J]. International Journal of Mining Science and Technology, 2018,28(3): 483-489.
[137] 刘超, 孙宝强, 李树刚, 等. 厚煤层双重卸压采动覆岩裂隙分布特征及卸压瓦斯抽采技术[J]. 煤矿安全, 2021,52(12): 89-96.
[138] 李树刚, 徐培耘, 林海飞, 等. 倾斜煤层卸压瓦斯导流抽采技术研究与工程实践[J]. 采矿与安全工程学报, 2020,37(05): 1001-1008.
[139] 李树刚, 杨二豪, 林海飞, 等. 深部开采卸压瓦斯精准抽采体系构建及实践[J]. 煤炭科学技术, 2021,49(05): 1-10.
[140] SONG S, LI S, ZHANG T, et al. Research on a multi-parameter fusion prediction model of pressure relief gas concentration based on RNN[J]. Energies, 2021,14(5): 1384.
[141] ZHANG C, TU S, BAI Q, et al. Evaluating pressure-relief mining performances based on surface gas venthole extraction data in longwall coal mines[J]. Journal of Natural Gas Science and Engineering, 2015,24: 431-440.
[142] 陈龙, 龚选平, 成小雨, 等. 低瓦斯高强度开采综放工作面卸压瓦斯抽采关键技术[J]. 西安科技大学学报, 2021,41(05): 815-824.
[143] 王金华. 特厚煤层大采高综放开采关键技术[J]. 煤炭学报, 2013,38(12): 2089-2098.
[144] GUO H, LI X, CUI H, et al. Effect of roof movement on gas flow in an extremely thick coal seam under fully mechanized sublevel caving mining conditions[J]. Energy Science & Engineering, 2020,8(3): 677-688.
[145] 薛俊华. 近距离高瓦斯煤层群大采高首采层煤与瓦斯共采[J]. 煤炭学报, 2012,37(10): 1682-1687.
[146] WANG W, CHENG Y, WANG H, et al. Fracture failure analysis of hard–thick sandstone roof and its controlling effect on gas emission in underground ultra-thick coal extraction[J]. Engineering Failure Analysis, 2015,54: 150-162.
[147] 张新建, 王硕, 张双全, 等. 大采高长工作面三级瓦斯抽采模式研究[J]. 煤炭科学技术, 2013,41(06): 62-64.
[148] LIU S, HUANG J, HUANG Q, et al. Floor pressure-relief during top slice mining of extra-thick coal seams and its implications for gas drainage application[J]. Geotechnical and Geological Engineering, 2019,37(4): 3113-3125.
[149] 赵宇鹏. 高位定向钻孔技术在大采高工作面瓦斯治理中的应用[J]. 煤矿现代化, 2018(03): 31-34.
[150] LIU T, LIN B, XIAO W, et al. A safe mining approach for deep outburst coal seam groups with hard‐thick sandstone roof: Stepwise risk control based on gas diversion and extraction[J]. Energy Science & Engineering, 2020,8(8): 2946-2965.
[151] GAO H, GONG X, CHENG X, et al. Reasonable Arrangement of High-Level Orientation Extraction Boreholes of Pressure Relief Gas in Overlying Strata under High-Strength Fully Mechanized Mining in Low-Gas-Thick-Coal Seam[J]. Shock and Vibration, 2021,2021: 1-16.
[152] 李宏, 刘明举, 高宏. 高突矿井大采高工作面瓦斯抽采技术及实践[J]. 中国安全生产科学技术, 2019,15(06): 99-104.
[153] 雷照源, 郭超奇, 黄兴利, 等. 深部高瓦斯矿井大采高工作面立体抽采瓦斯技术[J]. 煤炭科学技术, 2019,47(02): 82-87.
[154] S H. GAS FLOW THROUGH STRESSED COAL (FLUID FLOW, POROUS MEDIC)[D]. Berkeley: University of California, 1985.
[155] V K V. Role of methane in the stress state of a coal seam[J]. Soviet Mining, 1980,5(16): 460-466.
[156] 周世宁. 用线性相似材料模拟非线性稳定现象的方法[J]. 煤炭学报, 1965,02(02): 20-28.
[157] SOMERTON W H, SÖYLEMEZOḠLU I M, DUDLEY R C. Effect of stress on permeability of coal: International journal of rock mechanics and mining sciences & geomechanics abstracts[C]: Elsevier, 1975.
[158] 刘长武余建. 三维采矿物理模拟实验装置主要设计参数研究[J]. 岩土力学, 2003(S2): 325-328.
[159] 韩佩博. 三维采动应力条件下煤层覆岩及底板裂隙场演化规律与瓦斯运移特征研究[D]. 重庆大学, 2015.
[160] 姜耀东, 刘文岗, 赵毅鑫. 一种新型真三轴巷道模型试验台的研制[J]. 岩石力学与工程学报, 2004(21): 3727-3731.
[161] 石平五, 张幼振. 急斜煤层放顶煤开采“跨层拱”结构分析[J]. 岩石力学与工程学报, 2006(01): 79-82.
[162] 来兴平, 伍永平, 曹建涛, 等. 复杂环境下围岩变形大型三维模拟实验[J]. 煤炭学报, 2010,35(01): 31-36.
[163] 伍永平, 来兴平, 曹建涛, 等. 多场耦合下急斜煤层开采三维物理模拟(1)[J]. 西安科技大学学报, 2009,29(06): 647-653.
[164] 来兴平, 伍永平, 张坤, 等. 多场耦合下急斜煤层开采三维物理模拟(2)[J]. 西安科技大学学报, 2009,29(06): 654-660.
[165] 杨科, 刘文杰, 焦彪, 等. 深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J]. 岩土工程学报, 2021,43(01): 85-93.
[166] YE Q, WANG G, JIA Z, et al. Similarity simulation of mining-crack-evolution characteristics of overburden strata in deep coal mining with large dip[J]. Journal of Petroleum Science and Engineering, 2018,165: 477-487.
[167] LI X, HE W, XU Z. Study on law of overlying strata breakage and migration in downward mining of extremely close coal seams by physical similarity simulation[J]. Advances in Civil Engineering, 2020,2020.
[168] 李术才, 周毅, 李利平, 等. 地下工程流–固耦合模型试验新型相似材料的研制及应用[J]. 岩石力学与工程学报, 2012,31(06): 1128-1137.
[169] 黄庆享, 侯志成, 张文忠, 等. 黏土隔水层相似材料胶结剂的正交实验分析[J]. 采矿与安全工程学报, 2007(01): 42-46.
[170] 黄庆享, 胡火明. 黏土隔水层的应力应变全程相似模拟材料和配比实验研究[J]. 采矿与安全工程学报, 2017,34(06): 1174-1178.
[171] 李树刚, 赵波, 赵鹏翔, 等. 煤岩瓦斯固气耦合相似材料瓦斯吸附特性研究[J]. 采矿与安全工程学报, 2019,36(03): 634-642.
[172] 李树刚, 赵勇, 许满贵. 煤岩与瓦斯固流耦合机理研究进展[J]. 煤矿安全, 2015,46(10): 186-189.
[173] 李树刚, 赵鹏翔, 林海飞, 等. 煤岩瓦斯“固-气”耦合物理模拟相似材料特性实验研究[J]. 煤炭学报, 2015,40(01): 80-86.
[174] WANG G, LI W, WANG P, et al. Deformation and gas flow characteristics of coal-like materials under triaxial stress conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2017,91: 72-80.
[175] SHENG-QUAN H, LONG-ZHE J, SHENG-NAN O, et al. Soft coal solid–gas coupling similar material for coal and gas outburst simulation tests[J]. Journal of Geophysics and Engineering, 2018,15(5).
[176] SUN P, SUN H, LIN F, et al. Experimental study on the ratio model of similar materials in the simulation test of coal and gas outburst[J]. Scientific Reports, 2021,11(1): 1-14.
[177] 曹志国, 鞠金峰, 许家林. 采动覆岩导水裂隙主通道分布模型及其水流动特性[J]. 煤炭学报, 2019,44(12): 3719-3728.
[178] 黄炳香, 刘长友, 许家林. 采动覆岩破断裂隙的贯通度研究[J]. 中国矿业大学学报, 2010,39(01): 45-49.
[179] 赵鹏翔, 卓日升, 李树刚, 等. 综采工作面推进速度对瓦斯运移优势通道演化的影响[J]. 煤炭科学技术, 2018,46(07): 99-108.
[180] 李树刚, 林海飞, 赵鹏翔, 等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报, 2014,39(08): 1455-1462.
[181] 李树刚. 综放开采围岩活动及瓦斯运移[M]. 徐州: 中国矿业大学出版社, 2000.
[182] 韦善阳. 瓦斯异常涌出气体运移规律及影响范围研究[D]. 中国矿业大学(北京), 2013.
[183] 崔永国. 瓦斯突出气体逆流运移规律及致灾范围研究[D]. 中国矿业大学(北京), 2014.
[184] 李成武, 付帅, 崔永国, 等. 高浓瓦斯井巷运移规律及致灾时空特征研究[J]. 中国矿业大学学报, 2017,46(01): 27-32.
[185] 周世宁, 林柏泉. 煤层赋存与流动理论[M]. 北京: 煤炭工业出版社, 1998.
[186] 双海清. 缓倾斜煤层采动卸压瓦斯储运优势通道演化机理及应用[D]. 西安科技大学, 2017.
[187] MINGHE J, XUEHUA L, QIANGLING Y, et al. Effect of sand grain size on simulated mining-induced overburden failure in physical model tests[J]. Engineering Geology, 2017,226.
[188] 李树刚, 钱鸣高. 综放采空区冒落特征及瓦斯流态[J]. 矿山压力与顶板管理, 1997(Z1): 79-81.
[189] 李树刚钱鸣高石平五. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报, 2000(05): 604-607.
[190] MINGYUN T, BINGYOU J, RUIQING Z, et al. Numerical analysis on the influence of gas extraction on air leakage in the gob[J]. Journal of Natural Gas Science and Engineering, 2016,33.
[191] HAO S, SHUGUANG J, LANYUN W, et al. Bulking factor of the strata overlying the gob and a threedimensional numerical simulation of the air leakage flow field[J]. Mining Science and Technology, 2011,2(21): 261-266.
[192] 张建全, 廖国华. 覆岩离层产生的机理及离层计算方法的探讨[J]. 地下空间, 2001(S1): 407-411.
[193] 李树刚, 钱鸣高, 石平五. 综放开采覆岩离层裂隙变化及空隙渗流特性研究[J]. 岩石力学与工程学报, 2000(05): 604-607.
﹀
|
中图分类号: |
TD712
|
开放日期: |
2022-06-27
|