- 无标题文档
查看论文信息

论文中文题名:

 神府矿区黄土沟壑采动裂缝发育机理研究    

姓名:

 白文勇    

学号:

 19103077005    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山压力与岩层控制    

第一导师姓名:

 张杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research on Development Mechanism of Mining Fractures of Loess Hilly in Shenfu Mining Area    

论文中文关键词:

 浅埋煤层 ; 黄土沟壑区 ; 采动裂缝 ; 土层块体结构 ; 判别准则    

论文外文关键词:

 Shallow coal seam ; Loess hilly areas ; Mining fractures ; Soil block structure ; Discriminate criterion    

论文中文摘要:

神府矿区黄土沟壑采动裂缝在采动与地形的双重作用下发育规律复杂,致灾形式多样,是制约矿井安全生产、损害生态环境的重大问题。论文以神府矿区典型黄土沟壑工作面为工程背景,采用室内试验、相似模拟、数值模拟、理论分析以及现场监测等方法进行了综合研究,揭示了黄土沟壑采动裂缝发育机理,为实现矿区资源开发与灾害治理提供了一定的理论依据。论文取得以下主要研究成果:

(1)基于坡体产状及侵蚀程度将黄土沟壑划分为浅沟型、深沟型以及侵蚀型三类。通过室内试验得出随黄土沟壑土层埋深增加,土体黏性矿物成分比例下降,大、中架空孔隙结构减少,黄土颗粒紧密度明显提高。FLAC3D数值模拟分析得出黄土沟壑地表原始应力存在区域集中,工作面回采加剧了地表应力集中,加大了沟壑坡体移动范围及移动量。

(2)建立了浅沟型、深沟型以及侵蚀型黄土沟壑地形物理相似模型,研究了采动裂缝发育特征,得到沟底采动裂缝以剪切破坏为主,裂缝形态近似“I”型,部分裂缝受坡体挤压闭合;逆坡采动裂缝以拉伸破坏为主,受坡体自重作用裂缝形态近似“V”型;顺坡采动裂缝以拉伸破坏为主,受坡体回转挤压裂缝多处于闭合状态。同时,揭示了采动裂缝存在“半周期”、“单周期”以及“双周期”三种周期演化规律,并基于黄土沟壑采动岩土活动特征,建立了沟壑土层块体结构模型,分析了黄土沟壑采动裂缝周期活动特征。

(3)分析了黄土沟壑区在采动覆岩运移过程中基岩与土层的耦合作用关系,在基岩层中建立了基岩“岩链结构”模型,分析了采动裂缝在基岩中的动态发育过程,得出了线性载荷作用下基岩结构失稳条件及裂缝发育类型。在沟壑土层中,通过引入沟壑坡体附加应力分析了沟壑浅部土层中土体单元受力状态,提出了黄土沟壑下行采动裂缝“拉伸破坏”判别准则;建立了沟壑深部土层线性载荷力学模型,得出了黄土沟壑上行采动裂缝“剪切破坏”与“拉伸破坏”的判别准则。

(4)采用UDEC数值模拟软件建立了工作面回采方向、坡体角度、基岩厚度以及土层厚度等不同因素的数值模型,得出了逆坡回采在前期开采阶段破坏了坡体的完整性,相较于顺坡回采采动裂缝更为发育;随坡体角度增大,坡体水平位移量呈非线性增大,坡体移动范围也在不断扩大;随基岩厚度增大,基岩整体强度增大,坡体移动量及移动范围减小,削弱了采动裂缝发育程度;随土层厚度增大,坡体位移量及移动范围减小幅度较小,与增加同样基岩厚度相比,对坡体采动裂缝发育阻滞作用有限。

(5)将采动裂缝分布空间划分为“四带三区”,建立黄土沟壑地表移动变形预计模型分析了不同类型裂缝形态特征,通过建立“I”型与“V”型平板采动裂缝形态特征几何模型,推导了采动裂缝等效宽度与示踪气体流速的关系式,并基于两者之间的关系,采用SF6示踪气体技术实测得出黄土沟壑采动裂缝演化特征存在动态性、区域性。

论文外文摘要:

Under the dual action of mining and topography, the development rules of mining fractures in loess gully are complex and the disaster forms are diverse in Shenfu mine area, which is a major problem restricting mine safety production and damaging ecological environment. Taking the typical loess hilly working face of Shenfu mine area as the engineering background, this paper adopts the methods of laboratory test, similarity simulation, numerical simulation, theoretical analysis and field monitoring to conduct comprehensive research, and reveal the development mechanism of loess hilly mining fractures, which provides a certain theoretical basis for resource development and disaster management in mining area. The main achievements of the paper are as follows:

(1)Based on slope occurrence and erosion degree, loess hilly were divided into three types : shallow gully, deep gully, and erosion gully. The variation of the composition, pore structure and physical index of the gully soil layer with the buried depth are analyzed through laboratory experiments. The results show that the proportion of viscous minerals in soil decreases, the large and medium overhead pore structure decreases, the loess particle compactness increases obviously. FLAC3D numerical simulation analysis shows that the original surface stress of loess hilly exists regional concentration, and the surface stress concentration is aggravated by the working face mining, which increases the movement range and amount of gully slope.

(2)The physical similarity models of loess hilly landforms in shallow gully, deep gully and erosive loess was established to analyze the development characteristics of mining fractures, the results showed that the mining fractures in gully bottom were mainly shear failure, and the fracture morphology was approximately “I”, and some cracks were closed by extrusion of slope; the reverse slope mining fracture is mainly caused by tensile failure, and the fracture shape is approximately “V” under the slope body weight; the downslope mining fracture is mainly tensile failure, while the fracture of slope body is mostly closed by rotary extrusion. At the same time, it is revealed that there are three periodic evolution laws of mining fractures: “half period”, “single period” and “double period”. Based on the characteristics of mining rock and soil activities, a block structure model of gully soil layer is established, and the periodic activity characteristics of mining fractures are analyzed in loess hilly areas.

(3)The coupling relationship between bedrock and soil layer during mining overburden migration region is analyzed in loess hilly areas. Based on the characteristics of mining instability between bedrock and soil layer, a “rock chain” structure model of bedrock is established, and the dynamic development process of mining fractures is analyzed in bedrock, and the fracture development type caused by the instability of bedrock structure under linear load is obtained. In the gully soil layer, the prediction model of gully slope movement and deformation is established, and the formation mechanism and characteristics of different types of mining fractures are given. By introducing the additional stress of gully slope, the stress state of soil element in shallow gully soil layer is analyzed, and the criterion of “tensile failure” of mining fractures under gully is given. Based on the linear load mechanical model of deep gully soil layer, the criterion of “shear failure” and “tensile failure” of mining fractures up gully in loess is given.

(4)By using UDEC numerical simulation software, numerical models of different factors such as mining direction of working face, slope angle, bedrock thickness and soil thickness were established. It was concluded that the reverse slope mining destroyed the integrity of the slope in the early mining stage, and the mining fractures were more developed than that in the downslope mining. With the increase of slope angle, the horizontal displacement of slope increases nonlinearly, and the movement range of slope also expands. With the increase of bedrock thickness, the overall strength of bedrock increases, and the movement of slope decreases, which weakens the development of mining fractures. With the increase of soil layer thickness, the displacement and range of slope body decrease less, and compared with the increase of the same bedrock thickness, the retarding effect on the development of mining fractures in slope is limited.

(5)The distribution space of mining fractures is divided into “four zones and three zones”, and the prediction model of surface movement and deformation in loess hilly is established to analyze the morphological characteristics of different types of fractures. By establishing the geometric model of the morphology characteristics of mining fractures in “I” and “V” plates, the relationship between the equivalent width of mining fractures and the velocity of tracer gas is derived. Based on the relationship between the two, the SF6 tracer gas technique was used to detect the dynamic and regional characteristics of mining fractures in loess hilly areas.

参考文献:

[1] 中国国家统计局.中国统计年鉴2020[M].北京: 中国统计出版社,2020.

[2] JU J F, XU J L. Surface stepped subsidence related to top-coal caving longwall mining of extremely thick coal seam under shallow cover[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78(2015): 27-35.

[3] 王双明,段中会,马丽,等.西部煤炭绿色开发地质保障技术研究现状与发展趋势[J].煤炭科学技术,2019,47(02): 1-6.

[4] 王双明,申艳军,孙强,等.西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J].采矿与岩层控制工程学报,2020,2(04): 1-15.

[5] 李邦邦,刘智,余学义.陕北侏罗纪煤田采动损害现状及评价方法[J].西安科技大学学报,2008,28(02):265-269.

[6] 余学义,施文刚,张平,等.黄土沟壑区地表移动变形特征分析[J].矿山测量,2010,38(02): 38-40.

[7] 司金文.煤矿地质灾害诱因及预防措施[J].西部探矿工程,2021,33(09):148-149.

[8] 范立民,张晓团,向茂西,等.浅埋煤层高强度开采区地裂缝发育特征-以陕西榆神府矿区为例[J].煤炭学报,2015,40(06): 1442-1447.

[9] 刘辉,何春桂,邓喀中,等.开采引起地表塌陷型裂缝形成机理分析[J].采矿与安全工程学报,2013,30(03):17-22.

[10] 陈超,胡振琪.关键层理论在开采沉陷中的应用现状与进展[J].矿业科学学报,2017,2(03): 209-218.

[11] 王鹏,余学义,刘俊.浅埋煤层大采高开采地表裂缝破坏机理研究[J].煤炭工程,2014,46(05): 84-86.

[12] ЦИМБАРЕВИЧ П М.矿井支护[M].北京: 煤炭工业出版社,1957.

[13] HOLLA L, BUIZEN M. Strata movement due to shallow longwall mining and the effect on ground permeability[J]. Aus.Imm Bulletin and Proceedings, 1990, 295(01): 77-91.

[14] CHOUBEY V D. Hydrogeological and environmental-impact of coal-mining, Jharia coalfield, India[J]. Environmental Geology and Water Sciences, 1991, 17(03): 185-194.

[15] 钱鸣高,缪协兴,许家林.岩层控制中的关键层理论研究[J].煤炭学报,1996,21(03): 225-230.

[16] 黄庆享,李树刚.浅埋薄基岩煤层顶板破断及控制[J].矿山压力与顶板管理,1995,13(03): 22-25.

[17] 黄庆享,钱鸣高,石平五.浅埋煤层顶板周期来压结构分析[J].煤炭学报,1999,24(06): 581-585.

[18] 黄庆享.浅埋煤层的矿压特征与浅埋煤层定义[J].岩石力学与工程学报,2002,21(08): 1174-1177.

[19] 黄庆享.浅埋煤层长壁开采岩层控制[M].北京: 科学出版社,2018:5.

[20] 石平五,侯忠杰.神府浅埋煤层顶板破断运动规律[J].西安矿业学院学报,1996,16(03): 204-207.

[21] 侯忠杰.浅埋煤层关键层研究[J].煤炭学报,1999,24(04): 359-363.

[22] 侯忠杰.组合关键层理论的应用研究及其参数确定[J].煤炭学报,2001,26(06): 611-615.

[23] 侯忠杰.地表厚松散层浅埋煤层组合关键层的稳定性分析[J].煤炭学报,2000,25(02): 127-131.

[24] 许家林,朱卫兵,王晓振,等.浅埋煤层覆岩关键层结构分类[J].煤炭学报,2009,34(07): 865-870.

[25] 许家林,朱卫兵,王晓振,等.沟谷地形对浅埋煤层开采矿压显现的影响机理[J].煤炭学报,2012,37(02): 79-85.

[26] 钱鸣高,许家林.煤层开采与岩层运动[J].煤炭学报,2019,44(04): 937-984.

[27] 钱鸣高,许家林,缪协兴.煤矿绿色开采技术[J].中国矿业大学学报,2003,32(04): 343-348.

[28] 张杰,侯忠杰.厚土层浅埋煤层覆岩运动破坏规律研究[J].采矿与安全工程学报,2007,24(01):56-59.

[29] 张杰.采高对浅埋煤层老顶岩层破断距的影响[J].辽宁工程技术大学学报(自然科学版),2009,28(02): 161-164.

[30] 张杰,龙晶晶,杨涛,等.浅埋煤层沟谷下开采动载机理研究[J].采矿与安全工程学报,2019,36(06): 1222-1227.

[31] 伊茂森.神东矿区浅埋煤层关键层理论及其应用研究[D].徐州: 中国矿业大学,2008.

[32] 付玉平,宋选民,邢平伟,等.浅埋厚煤层大采高工作面顶板岩层断裂演化规律的模拟研究[J].煤炭学报,2012,37(06): 366-371.

[33] 鞠金峰,许家林,朱卫兵.关键层结构提前滑落失稳对浅埋近距离煤层出煤柱压架灾害的影响[J].煤炭学报,2015,40(09): 2033-2039.

[34] 任艳芳,宁宇.浅埋煤层长壁开采超前支承压力变化特征[J].煤炭学报,2014,39(S1): 38-42.

[35] LIU C, XUE J H, YU G F, et.al.Fractal characterization for the mining crack evolution process of overlying strata based on microseismic monitoring technology[J]. International Journal of Mining Science and Technology, 2016, 26(02): 295-299.

[36] 徐飞亚.近距离厚煤层高强度开采地裂缝分布特征及发育机理研究[D].焦作: 河南理工大学,2019.

[37] AKHPATELOV D.M. TER-MARTIROSYAN Z.G. The stressed state of ponderable semi infinite domains. Armenian Acad[J]. Sci. Mech. Bull, 1971, 24: 33-40.

[38] EWY R.T, HOOD M. Surface strain over longwall coal mines: its relation to the subsidence trough curvature and to surface topography[J]. International Journal of Rock Mechanics, Mining Science & Geomechanics, 1984, 21(03): 155-160.

[39] SAVAGE W.Z, SWOLFS H.S, POWERS P. S. Gravitational stress in long symmetric ridges and valleys[J]. Internation Journal of Rock Mechanics, Mining. Science & Geomech, 1986, 91: 3677-3685.

[40] SWOLFS H.S, SAVAGE W.Z. Topographic modification of in-situ stress in extensional and compressional tectonic environments[J]. Int Symp Rock Stress Rock Stress Meas, 1985, 22: 291-302.

[41] PENG S.S, LUO Y. Slope stability under the influence of ground subsidence due to longwall mining [J]. Mining Science & Technology, 1989, 8(02): 89-95.

[42] DONNELLY L J, NORTHMORE K J, SIDDLE H J. Block movements in the Pennines and South Wales and their association with landslides[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002, (35): 33-39.

[43] GRECOV R. Efficient Monte Carlo Technique for locating critical slip surface[J]. Journal of Geotechnical Engineering, 1996, 122(07): 517-520.

[44] HOMOUD A I. Studying theory of displacement and deformation in the mountain arcas under the influence of underground exploitation[D]. Krakow in Poland:AGH University of Science and Technology, 1999.

[45] GHOSE A K. Green mining-a unifying concept for mining industry[J]. Journal of Mines, Metals & Fuels, 2004, 52(12): 393-395.

[46] SINGH R, MANDAL P K, SINGH A K, et.al. Upshot of strata movement during underground mining of a thick coal seam below hilly terrain[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 45(01): 29-46.

[47] WATSON B P. A rock mass rating system for evaluating slope stability on the Bushveld platinum mines[J]. Journal of The South African Institute of Mining and Metallurgy, 2004, 104(04): 229-238.

[48] 王丽琴,邵生俊.黄土构度与物理指标之间的定量关系[J].岩石力学与工程学报,2015,34(S2): 4380-4386.

[49] 谢定义,齐吉琳,朱元林.土的结构性参数及其与变形强度的关系[J].水利学报,1999,30(10): 1-6.

[50] 邵生俊,陶虎,许萍.黄土结构性力学特性研究与应用的探讨[J].岩土力学,2011,32(S2): 42-50.

[51] TERZAGHI K. PECK R B. MESRI G. Soil mechanics in engineering practice[M]. New York: John Wiley & sons, Inc.1948.

[52] MITCHELL J K. SOGA K. Fundamentals of soil behavior[M]. New York: Wiley, 1993.

[53] 任权,王家鼎,袁中夏,等.高速铁路地基黄土微结构的分形研究[J].水文地质工程地质,2007,34(06): 76-82.

[54] 李文平,于双忠,姜振泉,等.淮河大堤土体工程地质特性及采动裂缝研究[J].煤田地质与勘探,1992,20(02): 47-50.

[55] 李亮.高强度开采条件下堤防损害机理及治理对策研究[D].徐州: 中国矿业大学,2010.

[56] 汤伏全,张健.西部矿区巨厚黄土层开采裂缝机理[J].辽宁工程技术大学学报,2014,33(11): 1466-1470.

[57] 高超,徐乃忠,倪向忠,等.煤矿开采引起地表裂缝发育宽度和深度研究[J].煤炭工程,2016,48(10): 81-83.

[58] 曹银真.黄土地区重力侵蚀的类型和成因[J].中国水土保持,1985,6(03): 7-13.

[59] 吴侃,胡振琪,常江,等.开采引起的地表裂缝分布规律[J].中国矿业大学学报,1997,26(02): 56-59.

[60] 惠东旭,王春刚,袁亚希.山区特厚黄土层下采煤地表移动变形规律探讨[J].陕西煤炭,2003,22(02): 23-25.

[61] 王贵荣,袁志明,韩飞.黄土山区矿井地表移动变形数值模拟[J].西安科技大学学报,2007,27(02): 236-239.

[62] 孙洪星.风积沙和黄土覆盖下煤层开采地表移动规律对比研究[J].煤矿开采,2008,13(01): 6-9.

[63] 余学义,施文刚,张平,等.黄土沟壑区地表移动变形特征分析[J].矿山测量,2010,38(02): 38-40+4.

[64] ZHANG D S, FAN G W, WANG X F.Characteristics and stability of slope movement response to underground mining of shallow coal seams away from gullies[J]. International Journal of Mining Science and Technology, 2012, 22:47-50.

[65] 赵兵朝,同超,刘樟荣,等.西部生态脆弱区地表开采损害特征[J].中南大学学报(自然科学版),2017,48(11): 2990-2997.

[66] 赵兵朝,路晓晓,贺卫中,等.陕北黄土沟壑区煤炭开采衍生灾害评价方法[J].矿业安全与环保,2019,46(01): 82-86.

[67] 赵兵朝,孙浩,郭亚欣,等.厚松散层近浅埋煤层开采导水裂缝动态演化规律研究[J].煤炭工程,2021,53(10): 100-105.

[68] 崔希民,车宇航,赵玉玲,等.采动地表移动变形与建筑物损坏程度评价的再认识[J].煤炭学报,2021,46(01): 145-153.

[69] ZHU H Z, HE F L, FAN Y Q. Development mechanism of mining-induced ground fissure for shallow burial coal seam in the mountainous area of Southwestern China: a case study[J]. Acta Geodynamica at Geomaterialia, 2018, 15(04): 349-362.

[70] 闫永乐.浅埋厚煤层开采地表采动裂缝时空演化机理及控制研究[D].包头: 内蒙古科技大学,2020.

[71] 何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州: 中国矿业大学出版社,1991.

[72] 范立民,马雄德,李永红,等.西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报,2017,42(02): 276-285.

[73] HE X, ZHAO Y X, YANG K, et.al. Development and formation of ground fissures induced by an ultra large mining height longwall panel in Shendong mining area[J]. Bulletin of Engineering Geology and the Environment, 2021, 80:7879-7898.

[74] LIU H, ZHOU T T, LIU X, et.al. Factors that trigger the development of mining-induced ground fissures, and standards to treat them in shallow coal mining areas[J]. The Journal of the Southern African Institute of Mining and Metallurgy, 2019, 119(01): 919-928.

[75] LIAN X G, HU H F, LI T, et.al.Main geological and mining factors affecting ground cracks induced by underground coal mining in Shanxi Province, China[J]. International Journal of Coal Science & Technology, 2020, 7(02): 362-370.

[76] WANG C L, ZHANG C S, ZHAO X D, et.al.Dynamic structural evolution of overlying strata during shallow coal seam longwall mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103:20-32.

[77] BAI W Y, ZHANG J, WANG B, et.al.A Study on the impact of longwall mining operation on the stability of a slope-pillar structure[J]. Shock and Vibration, 2021, Article ID 9994904.

[78] 王来贵,初影,赵娜.采煤引起地表裂缝数值模拟研究[J].沈阳建筑大学学报(自然科学版),2001,26(06): 1138-1141.

[79] 康建荣.山区采动裂缝对地表移动变形的影响分析[J].岩石力学与工程学报,2008,27(01): 59-64.

[80] 张聚国,栗献中.昌汉沟煤矿浅埋深煤层开采地表移动变形规律研究[J].煤炭工程,2010,32(11): 74-76.

[81] 朱国宏,连达军.开采沉陷对矿区地表裂缝的采动累积效应分析[J].中国安全生产科学技术,2012,8(05): 47-51.

[82] 刘栋林,许家林,朱卫兵,等.工作面推进方向对坡体采动裂缝影响的数值模拟[J].煤矿安全,2012,43(05): 150-153.

[83] 刘辉,刘小阳,邓喀中,等.基于UDEC数值模拟的滑动型地裂缝发育规律[J].煤炭学报,2016,41(03): 625-632.

[84] LIU H, DENG K, LEI S, et al. Mechanism of for mation of sliding ground fissure in loess hilly areas caused by underground mining[J]. International Journal of Mining Science and Technology, 2015, 250(04): 553-558.

[85] LI J W, LIU C Y. Formation mechanism and reduction technology of mining-induced fissures in shallow thick coal seam mining[J]. Shock and Vibration, 2017, Article ID 1980817.

[86] 李建伟,刘长友,卜庆为.浅埋厚煤层开采覆岩采动裂缝时空演化规律[J].采矿与安全工程学报,2020,37(02): 238-246.

[87] 车晓阳,侯恩科,孙学阳,等.沟谷区浅埋煤层覆岩破坏特征及地面裂缝发育规律[J].西安科技大学学报,2021,41(01): 104-111+186.

[88] 胡振琪,王新静,贺安民.风积沙区采煤沉陷地裂缝分布特征与发生发育规律[J].煤炭学报,2014,39(01): 11-18.

[89] 王云广,郭文兵.采空塌陷区地表裂缝发育规律分析[J].中国地质灾害与防治学报,2017,28(01): 89-95.

[90] 朱川曲,黄友金,芮国相,等.采动作用下煤矿区地表裂缝发育机理与特征分析[J].中国地质灾害与防治学报2017,28(04): 47-52.

[91] LI J W, LIU C Y. Spatio-temporal distribution and gas conductivity of overburden fissures in the mining of shallow thick coal seams [J]. European Journal of Environmental and Civil Engineering, 2017, Article ID 19648189.

[92] HU Y Z, LIU C Y, LI J W.Fractal analysis of cracks due to mixed mining of coal seam group[J]. Electronic Journal of Geotechnical Engineering, 2015, 20(17): 9749-9760.

[93] 李建伟.西部浅埋煤层高强度开采覆岩导气裂缝的时空演化机理及控制研究[D].徐州: 中国矿业大学,2017.

[94] 徐祝贺,李全生,李晓斌,等.浅埋高强度开采覆岩结构演化及地表损伤研究[J].煤炭学报,2020,45(08): 2728-2739.

[95] 侯恩科,冯栋,谢晓深,等.浅埋煤层沟道采动裂缝发育特征及治理方法[J].煤炭学报,2021,46(04): 1297-1308.

[96] 陈超,胡振琪.我国采动地裂缝形成机理研究进展[J]. 煤炭学报,2018,43(03): 238-246.

[97] 王景明,王江帅,刘金峰,等.地裂缝及其灾害的理论与应用[M].西安: 陕西科学技术出版社,2000.

[98] 刘辉,邓喀中.西部黄土沟壑区采动地裂缝发育规律及治理技术[M].徐州: 中国矿业大学出版社,2014.

[99] 余学义,黄森林.浅埋煤层覆岩切落裂缝破坏及控制方法分析[J]. 煤田地质与勘探,2006,34(02): 18-21.

[100] 余学义,李邦帮,李瑞斌,等.西部巨厚湿陷性黄土层开采损害程度分析[J].中国矿业大学学报,2008,37(01): 44-46.

[101] 黄庆享,张沛,董爱菊.浅埋煤层地表厚砂土层“拱梁”结构模型研究[J].岩土力学,2009,30(09): 2722-2726.

[102] 刘辉,何春桂,邓喀中,等.开采引起地表塌陷型裂缝的形成机理分析[J].采矿与安全工程学报,2013,30(03): 380-384.

[103] 韩奎峰,康建荣,王正帅,等.山区采动地表裂缝预测方法研究[J].采矿与安全工程学报,2014,31(06): 896-900.

[104] 刁乃勤.巨厚覆盖层下特厚煤层综放开采岩移规律[J].煤矿安全,2015,46(02): 197-200.

[105] 徐乃忠,高超,倪向忠,等.浅埋深特厚煤层综放开采地表裂缝发育规律研究[J].煤炭科学技术,2015,43(12): 124-128,97.

[106] 杨天鸿,师文豪,李顺才,等.破碎岩体非线性渗流突水机理研究现状及发展趋势[J].煤炭学报,2016,41(07): 1598-1609.

[107] LI L, WU K, HU Z Q, et al. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area[J]. Environmental Earth Sciences, 2017, 76(03):135.

[108] CHEN B, ZHANG S H, LI Y Y, et al. Experimental study on water and sand inrush of mining cracks in loose layers with different clay contents[J]. Bulletin of Engineering Geology and the Environment, 2021, 80, 663-678.

[109] 杨涛.神府矿区隔水土层采动失稳突水机理研究[D].西安: 西安科技大学,2019.

[110] 魏久传,吴复柱,谢道雷,等.半胶结中低强度围岩导水裂缝带发育特征[J].煤炭学报,2016,41(04): 974-983.

[111] 刘贵,张华兴,刘治国,等.河下综放开采覆岩破坏发育特征实测及模拟研究[J].煤炭学报,2013,38(06): 987-993.

[112] 许传峰.采动围岩裂隙动态演化规律研究[J].煤炭科学技术,2013,41(04): 20-23.

[113] 朱德明,田恒洲,华兰如,等.井下仰孔探测导水裂缝带技术方法试验[J].煤炭科学技术,1991,19(10): 4-8.

[114] 刘盛东,吴荣新,张平松,等.高密度电阻率法观测煤层上覆岩层破坏[J].煤炭科学技术,2001,29(04): 18-19.

[115] 程学丰,刘盛东,刘登宪.煤层采后围岩破坏规律的声波CT探测[J].煤炭学报,2001,26(02): 153-155.

[116] 冯锐,林宣明,陶裕录,等.煤层开采覆岩破坏的层析成像研究[J].地球物理学报,1996,39(01): 114-124.

[117] Ren Y. Study on Monitoring Technology of the Overlying Strata Spatial Structures’ Failure in Shallow Seam Long Wall Face[J]. Procedia Engineering, 2011, 26: 928-933.

[118] 张福成.SF6示踪气体测定漏风技术在神东矿区的应用[J].煤炭工程,2006,38(06): 94-95.

[119] 李世雄,卢斌,褚廷湘.浅埋藏工作面漏风特征及堵漏效果检验[J].煤炭工程,2017,49(10): 91-96.

[120] 吴玉国,王涌宇.SF6示踪气体瞬时—连续联合释放法在工作面漏风检测中的应用[J].煤矿安全,2017,48(09): 108-109.

[121] 张辛亥,吴刚,金永飞,等.浅埋煤层采空区强漏风流场数值模拟及自燃危险性研究[J].价值工程,2011,30(07): 1-3.

[122] 王新静,胡振琪,杨耀淇,等.采动动态地裂缝发育特征监测的设计与应用[J].煤炭工程,2014,46(03): 131-133.

[123] 王治军,罗建文,李荣建,等.陕北黄土工程地质[M].北京: 地质出版社,2017.

[124] 何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].徐州: 中国矿业大学出版社,1991.

[125] DZ/T 0276.21-2015.岩石物理力学性质试验规程[S].北京: 中国人民共和国国土资源部,2015.

[126] 赵兵朝,孙浩,郭亚欣,等.湿陷性黄土覆盖区煤层开采地表裂缝发育规律研究[J].矿业研究与开发,2021,41(06): 105-110.

[127] 李鸿昌.矿山压力的相似模拟试验[M].北京: 中国矿业大学出版社,1988.

[128] 钱鸣高,石平五,许家林.矿山压力与岩层控制[M].徐州: 中国矿业大学出版社,2003.

[129] 胡青峰,崔希民,袁德宝,等.厚煤层开采地表裂缝形成机理与危害性分析[J].采矿与安全工程学报,2012,29(06): 864-869.

[130] 王双明,黄庆享,范立民,等.生态脆弱区煤炭开发与生态水位保护[M].北京: 科学出版社,2010.

[131] 邵生俊,陶虎,许萍.黄土结构性力学特性研究与应用的探讨[J].岩土力学,2011(S2): 42-50.

[132] 杨进良,陈环.土力学[M].北京: 中国水利水电出版社,2009.

[133] 宋焱勋,李荣建,刘军定,等.结构性黄土的双曲线强度公式及其破坏应力修正[J].岩土力学,2014,35(06): 1534-1540.

[134] 王永秀,毛德兵,齐庆新.数值模拟中煤岩层物理力学参数确定的研究[J].煤炭学报,2003,28(06): 593-597.

[135] 陈晓祥,谢文兵,荆升国,等.数值模拟研究中采动岩体力学参数的确定[J].采矿与安全工程学报,2006,23(03): 341-345.

[136] YU Xueyi. Studying theory of displacement and deformation in the mountain areas under the influence of underground exploration[D]. Kracow: AGH university of science and technology, 1999.

[137] 吴望一.流体力学[M].北京: 北京大学出版社,1983.

[138] 王媛,速宝玉.单裂隙面渗流特性及等效水力裂宽[J].水科学进展,2002,13(01): 61-68.

[139] 周晓杰,介玉新,李广信.基于渗流和管流耦合的管涌数值模拟[J].岩土力学,2009,30(10): 3154-3158.

[140] 钟嘉高,梁杏,任志刚.岩体裂隙等效水力隙宽的统计确定方法[J].地质科技情报,2007,26(04): 103-106.

[141] 邹永洺.基于示踪气体法的覆岩“竖三带”测定[J].煤矿安全,2019,50(05): 7-10.

中图分类号:

 TD325    

开放日期:

 2025-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式