- 无标题文档
查看论文信息

论文中文题名:

 典型含氯有机废物在亚临界水中的脱氯及资源化研究    

姓名:

 王一笑    

学号:

 19209215082    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085229    

学科名称:

 工学 - 工程 - 环境工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 环境工程    

研究方向:

 固体废弃物处置与资源化    

第一导师姓名:

 修福荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Dechlorination and resource recovery of typical chlorinated organic waste in subcritical water    

论文中文关键词:

 PVC ; 52#氯化石蜡 ; 亚临界水体系 ; 亚临界水-碱体系 ; 脱氯    

论文外文关键词:

 PVC ; 52# Chlorinated paraffin ; Subcritical water system ; Subcritical water-alkali system ; Dechlorination    

论文中文摘要:

聚氯乙烯(PVC)废塑料及氯化石蜡(Chlorinated paraffins, CPs)废物等高氯含量有机废物因其潜在毒性且难以自然降解而受到广泛关注。因含大量氯元素和塑化剂,目前这两种废物无法用焚烧、填埋等传统方法处理,焚烧易产生氯代二噁英等高毒性物质,而填埋会导致氯化物、塑化剂等有毒物质对土壤和地下水的污染。安全高效脱氯是PVC和CPs两类废物无害化、资源化的关键环节。本文以富含邻苯二甲酸二异辛酯(DEHP)塑化剂的PVC废物及含氯量52 %的氯化石蜡(52# CPs)为对象,研究了亚临界水-氨体系中PVC废物的脱氯行为及塑化剂DEHP的分解机制,比较研究了PVC废物在亚临界水、亚临界甲醇、亚临界水-氨三个体系中的脱氯特性及残渣碳材料对六价铬离子的吸附行为,研究了亚临界水-碱体系中不同碱性物质对52# CPs脱氯行为的影响和脱氯路径。主要结果如下:

(1)亚临界水-氨体系中PVC废物的脱氯行为及塑化剂DEHP的分解机制。亚临界水-氨温度升高、停留时间增加均有利于提高脱氯率。250 ℃、60 min、5 %氨浓度,PVC脱氯效率达94.8 %。脱氯路径为直接脱氯化氢,固相产物为多烯结构。不同温度条件下可回收得到不同的油相产物。250 ℃条件下,亚临界水-氨条件可显著促进DEHP的水解并导致油相产物含86.12 %的塑化剂合成单体2-乙基-1-己醇,回收附加值高。温度升高到400 ℃,油相产物中2-乙基-1-己醇浓度降至10.16 %,苯甲醛和苯乙酮的浓度分别增加到20.48 %和26.63 %。苯甲醛和苯乙酮来源于PVC脱氯产物多烯结构的进一步环化、分解、部分氧化等过程。因此,亚临界水-氨介质中两阶段温度式的PVC废物处理可实现2-乙基-1-己醇、苯甲醛和苯乙酮等高附加值化学品的高效回收。

(2)PVC废物在亚临界水、亚临界甲醇、亚临界水-氨三个体系中的脱氯特性及脱氯后残渣碳材料对六价铬离子的吸附行为的比较研究。分别将上述三个体系不同反应条件下获得的固体残渣用于Cr(VI)离子的吸附研究,优选出获得具有最佳吸附性能残渣的PVC脱氯反应条件为:亚临界水体系(R1:300 ℃,60 min,1:30 g/mL),脱氯率接近100 %;亚临界甲醇体系(R2:200 ℃,30 min,1:30 g/mL),脱氯率44.9 %;亚临界氨水体系(R3:250 ℃,60 min,1:30 g/mL),脱氯率接近100 %。PVC在亚临界水、亚临界甲醇、亚临界水-氨三个体系脱氯获得R1(亚临界水)、R2(亚临界甲醇)和R3(亚临界水-氨)三种残渣。Cr(VI)离子吸附实验表明R1、R3在pH为2的条件下吸附效果最优,吸附量分别为9.41 mg/g、7.59 mg/g。R2在pH为10的条件下吸附量最大为7.17 mg/g。R1、R3主要以单层吸附为主,R2主要以多层吸附为主。R1、R2吸附过程ΔH<0为自发性吸附,R3吸附过程ΔH>0。PVC废物在亚临界水、甲醇、氨水体系脱氯处理后的固体残渣可作为吸附材料用于六价铬离子的吸附去除。

(3)亚临界水和亚临界水-碱体系对52# CPs脱氯行为的影响和脱氯路径。亚临界水反应300 ℃、45 min条件下可实现52# CPs完全脱氯。在亚临界水-氢氧化钠体系,在反应250 ℃、5 min、2 mL(0.05mol/l) NaOH条件下实现52# CPs完全脱氯。KOH、Na2CO3、NaHCO3、NH3·H2O等碱性添加剂可有效强化亚临界水对52# CPs的脱氯并降低处理温度、缩短处理时间。在250 ℃、5 min、1:5 mL/mL(52# CPs/(2 mL碱性添加剂+H2O)mL/mL)反应条件,发现碱性添加剂对52# CPs的脱氯都接近完全。在250 ℃、5 min、1:15(52# CPs/(2 mL碱性添加剂+H2O)mL/mL)反应条件,发现NaOH脱氯效果最好为97 %,其次为Na2CO3其脱氯率为65.4 %,最后依次为NaHCO3、NH3·H2O、KOH,证明了Na2CO3作为强碱替代品,具有一定应用前景。52# CPs亚临界水脱氯主要以羟基取代路径为主,产物主要为1,2,6-己三醇等多元醇化合物。引入NaOH强化剂后52# CPs主要脱氯化氢为主要反应路径,产物主要为2,4-己二炔等不饱和烃。从52# CPs脱除的氯全部以无机氯的形式转移至水相而回收。

论文外文摘要:

Organic wastes with high chlorine content, such as polyvinyl chloride (PVC) waste plastics and chlorinated paraffins (CPs) waste, have received widespread attention because of their potential toxicity and difficulty in natural degradation. Because of the large amount of chlorine and plasticizers, these two wastes cannot be treated by traditional methods such as incineration and landfills, which are prone to produce highly toxic substances such as chlorinated dioxins, while landfills can lead to soil and groundwater contamination by chlorinated substances, plasticizers and other toxic substances.Safe and efficient dechlorination is a key link in the environmentally sound and resourceful treatment of both PVC and CPs wastes. In this paper, we studied the dechlorination behavior of PVC waste and the decomposition mechanism of plasticizer DEHP in subcritical water-ammonia system by using PVC waste rich in diisooctyl phthalate (DEHP) plasticizer and chlorinated paraffin (52#   CPs) with 52 % chlorine content, and comparatively studied the dechlorination characteristics of PVC waste in three systems of subcritical water, subcritical methanol and subcritical water-ammonia and the residue The adsorption behavior of carbon materials on hexavalent chromium ions was studied, and the effects of different alkalis in the subcritical water-alkali system on the dechlorination behavior of 52# CPs and the dechlorination pathway were investigated. The main results are as follows.

(1) Dechlorination behavior of PVC waste in subcritical water-ammonia system and the decomposition mechanism of plasticizer DEHP. The increase of subcritical water-ammonia temperature and residence time were both beneficial to improve the dechlorination rate. 250 ℃, 60 min, 5 % ammonia concentration, PVC dechlorination efficiency reached 94.8 %. The dechlorination path was direct dechlorination of HCl, and the solid phase product was polyene structure. At 250 ℃, the subcritical water-ammonia condition significantly promoted the hydrolysis of DEHP and led to the oil phase product containing 86.12 % of the plasticizer synthesis monomer 2-ethyl-1-hexanol with high recovery added value. When the temperature was increased to 400 °C, the concentration of 2-ethyl-1-hexanol in the oil phase product decreased to 10.16 %, and the concentration of benzaldehyde and acetophenone increased to 20.48 % and 26.63 %, respectively. Benzaldehyde and acetophenone originated from the further cyclization, decomposition, and partial oxidation of the polyene structure of PVC dechlorination products. Therefore, two-stage temperature-based PVC waste treatment in subcritical water-ammonia media can achieve efficient recovery of high-value-added chemicals such as 2-ethyl-1-hexanol, benzaldehyde, and acetophenone.

(2) A comparative study of the dechlorination characteristics of PVC waste in three systems: subcritical water.subcritical methanol and subcritical water-ammonia and the adsorption behavior of residual carbon material on Cr(VI) ions after dechlorination. The solid residues obtained under different reaction conditions of the above three systems were used for the adsorption of Cr(VI) ions, respectively, and the PVC dechlorination reaction conditions with the best adsorption performance residues were preferably selected as follows:Subcritical water system (R1: 300 ℃, 60 min, 1:30 g/mL), dechlorination rate close to 100 %; subcritical methanol system (R2: 200 ℃, 30 min, 1:30 g/mL), dechlorination rate of 44.9 %; subcritical ammonia system (R3: 250 ℃, 60 min, 1:30 g/mL), dechlorination rate close to 100 % .PVC was dechlorinated in subcritical water, subcritical methanol and subcritical water-ammonia systems to obtain three residues, R1 (subcritical water), R2 (subcritical methanol) and R3 (subcritical water-ammonia).Cr(VI) adsorption experiments showed that R1 and R3 had the best adsorption effect at pH 2, with adsorption amounts of 9.41 mg/g and 7.59 mg/g, respectively. R2 adsorbed at a maximum of 7.17 mg/g at pH 10. R1 and R3 mainly adsorbed in monolayer, and R2 mainly adsorbed in multilayer. ΔH < 0 for R1 and R2 adsorption processes, and ΔH > 0 for R3 adsorption process. The solid residue of PVC waste after dechlorination in low temperature subcritical water, methanol and ammonia system can be used as adsorbent material for the adsorption removal of hexavalent chromium ions.

(3) Effects of subcritical water and subcritical water-alkali system on the dechlorination behavior and dechlorination path of 52# CPs. Complete dechlorination of 52# CPs could be achieved under the condition of 300 ℃ and 45 min of subcritical water reaction. In the subcritical water-sodium hydroxide system, complete dechlorination of 52#CPs was achieved at 250 ℃, 5 min and 2 mL (0.05 mol/l) NaOH. alkaline additives such as KOH, Na2CO3, NaHCO3 and NH3·H2O could effectively enhance the dechlorination of 52# CPs by subcritical water and reduce the treatment temperature and treatment time. Under the reaction conditions of 250 ℃, 5 min, and 1:5 mL/mL (52# CPs/(2 mL alkaline additives + H2O) mL/mL), the dechlorination of 52# CPs by alkaline additives was found to be nearly complete. At 250 ℃, 5 min, 1:15 (52# CPs/(2 mL alkaline additive + H2O) mL/mL) reaction conditions, the best dechlorination effect of NaOH was found to be 97 %,followed by Na2CO3 with 65.4 % dechlorination, and finally NaHCO3,NH3·H2O, and KOH in order, which proved that Na2CO3 as a strong alkali alternative has certain application prospects. The subcritical water dechlorination of 52# CPs was mainly based on the hydroxyl substitution path, and the products were mainly polyol compounds such as 1,2,6-hexanetriol. After the introduction of NaOH enhancer, the main reaction path of 52# CPs is dechlorination of hydrogen chloride, and the products are mainly unsaturated hydrocarbons such as 2,4-hexadiyne. All the chlorine removed from 52# CPs was recovered in the form of inorganic chlorine transferred to the aqueous phase.

参考文献:

[1] TYAGI V K, FDEZ-GUELFO L A, ZHOU Y, et al. Anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW): Progress and challenges [J]. Renewable and Sustainable Energy Reviews, 2018, 93(OCT.): 380-99.

[2] PAES L, BEZERRA B S, DEUS R M, et al. Organic solid waste management in a circular economy perspective – A systematic review and SWOT analysis [J]. Journal of cleaner Production, 2019.

[3] YADAV P, SAMADDER S R. A critical review of the life cycle assessment studies on solid waste management in Asian countries - ScienceDirect [J]. Journal of cleaner Production, 2018, 185(492-515).

[4] WAINAINA S, AWASTHI M K, SARSAIYA S, et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies [J]. Bioresource Technology, 2020, 301.

[5] CHATTERJEE B, MAZUMDER D.Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review [J]. Renewable and Sustainable Energy Reviews, 2019, 104(APR.): 439-69.

[6] XINLEI,CHEN, XINGMING,et al.Waste-to-energy: Dehalogenation of plastic-containing wastes [J]. Waste Management, 2016, 49(3): 287-303.

[7] GARCIA D, BALART R, SANCHEZ L, et al. Compatibility of recycled PVC/ABS blends. Effect of previous degradation [J]. Polymer Engineering and Science, 2007, 47(6): 789-96.

[8] PARK C H, JEON H S, PARK J K. PVC removal from mixed plastics by triboelectrostatic separation [J]. J Hazard Mater, 2007, 144(1-2): 470-476.

[9] ATTENBERGER P, KUFNER T, MIEDEN O, et al. Polyvinyl chloride (PVC) [J]. 2011,

[10] 孙亚君, 王旭光, 李健,等. 氯化石蜡的现状及发展前景 [J]. 氯碱工业, 2005, 6): 3.

[11] áLVAREZ-PEDREROL M, RIBAS-FITó N, TORRENT M, et al. Effects of PCBs, p,p'-DDT, p,p'-DDE, HCB and β-HCH on thyroid function in preschool children [J]. Occupational & Environmental Medicine, 2008, 65(7): 452-457.

[12] DIE Q, NIE Z, YANG Y, et al. Persistent organic pollutant waste in China: a review of past experiences and future challenges [J]. Journal of Material Cycles & Waste Management, 2015, 17(3): 434-441.

[13] NETO F F, ZANATA S M, ASSIS H C S D, et al. Toxic effects of DDT and methyl mercury on the hepatocytes from Hoplias malabaricus [J]. Toxicology in Vitro An International Journal Published in Association with Bibra, 2008, 22(7): 1705-1713.

[14] WEBER R, GAUS C, M T. Dioxin- and POP-contaminated sites—contemporary and future relevance and challenges [J]. Environmental Science and Pollution Research, 2008, 15(5): 363-393.

[15] VIJGEN J. The Legacy of Lindane HCH Isomer Production [J]. Main Report, 2006.

[16] HEINISCH E, KETTRUP A, BERGHEIM W, et al. Persistent chlorinated hydrocarbons (PCHCS), source-oriented monitoring in aquatic media. 6. Strikingly high contaminated sites [J]. Fresenius Environmental Bulletin, 2007, 16(10): 1248-1273.

[17] REPORT G. Medical Polymers Market to 2015 - Polyvinyl Chloride (PVC) Dominating the Medical Devices and Packaging Markets [J]. 2010.

[18] A F C, A M F, A A M, et al. Perspectives on alternatives to phthalate plasticized poly(vinyl chloride) in medical devices applications [J]. Progress in Polymer Science, 2013, 38(7): 1067-1088.

[19] HAKKARAINEN A M, AMINLASHGARI N, BO Y. Title: Biomass based plasticizers from liquefied waste paper [J].

[20] ZHAO X, COURTNEY J M, UPDATE S R. Update on Medical Plasticised PVC [J].

[21] WYPYCH, GEORGE. Handbook of Plasticizers [M]. Handbook of Plasticizers, 2012.

[22] CARLSON K. Toxicity Review of Di(2-ethylhexyl) Phthalate [J]. 2010.

[23] QI Y, HE J, XIU F R, et al. A convenient chemiluminescence detection for bisphenol A in E-waste dismantling site based on surface charge change of cationic gold nanoparticles [J]. Microchemical Journal, 2019, 147(789-96).

[24] G. LATINI M F, F. CHIELLINI. Materials Degradation in PVC Medical Devices, DEHP Leaching and Neonatal Outcomes [J]. Current Medicinal Chemistry, 2010, 17(26).

[25] QIAO, YU, SUN, et al. Thermal degradation of PVC: A review [J]. Waste Management, 2016, 48(2): 300-314.

[26] 刘岭梅. 聚氯乙烯增塑剂应用安全性能概述[C]// 全国pvc塑料与树脂技术年会. 全国聚氯乙烯信息站;聚氯乙烯编辑部, 2008.

[27] TOMY G T, FISK A T, WESTMORE J B, et al. Environmental Chemistry and Toxicology of Polychlorinated n-Alkanes [M]. Reviews of Environmental Contamination and Toxicology, 1998.

[28] GAO, YUAN, ZHANG, et al. Quantification of Short-Chain Chlorinated Paraffins by Deuterodechlorination Combined with Gas Chromatography-Mass Spectrometry [J]. Environmental Science & Technology, 2000.

[29] GLUGE J, BOGDAL C, SCHERINGER M, et al. Calculation of Physicochemical Properties for Short- and Medium-Chain Chlorinated Paraffins [J]. Journal of Physical & Chemical Reference Data, 2013, 42(2): 83-106.

[30] HOUDE M, MUIR D C G, TOMY G T, et al. Bioaccumulation and trophic magnification of short- and medium-chain chlorinated paraffins in food webs from Lake Ontario and Lake Michigan [J]. Environmental Science & Technology, 2008, 42(10): 3893.

[31] ZENG L, ZHAO Z, LI H, et al. Distribution of Short Chain Chlorinated Paraffins in Marine Sediments of the East China Sea: Influencing Factors, Transport and Implications [J]. Environmental Science & Technology, 2012, 46(18): 9898-9906.

[32] HILGER B, FROMME H, VOELKEL W, et al. Effects of chain length, chlorination degree, and structure on the octanol-water partition coefficients of polychlorinated n-alkanes [J]. Environmental Science & Technology, 2011, 45(7): 2842-2849.

[33] ZHANG B, ZHAO B, XU C, et al. Emission inventory and provincial distribution of short-chain chlorinated paraffins in China [J]. Science of the Total Environment, 2017, 581(582-8).

[34] GLüGE J, WANG Z, BOGDAL C, et al. Global production, use, and emission volumes of short-chain chlorinated paraffins – A minimum scenario [J]. Science of the Total Environment, 2016, 573(1132-46).

[35] TOMY G T, STERN G A, LOCKHART W L, et al. Occurrence of C10-C13 polychlorinated n-alkanes in Canadian midlatitude and Arctic lake sediments [J]. Environmental Science & Technology, 1999, 33(17).

[36] ZENG L, CHEN R, ZHAO Z, et al. Spatial Distributions and Deposition Chronology of Short Chain Chlorinated Paraffins in Marine Sediments across the Chinese Bohai and Yellow Seas [J]. Environmental Science & Technology, 2013, 47(20): 11449-56.

[37] DENMARK R, RA N I. European Union Risk Assessment Report [J]. 2004,

[38] BOSWELL K. Short-Chain Chlorinated Paraffins Action Plan Summary | Existing Chemicals | OPPT | US EPA [J].

[39] GAWOR A, WANIA F. Using quantitative structural property relationships, chemical fate models, and the chemical partitioning space to investigate the potential for long range transport and bioaccumulation of complex halogenated chemical mixtures [J]. Environmental Science Processes & Impacts, 2013, 15(9): 1671-1684.

[40] Ma X , Chen C , Zhang H , et al. Congener-specific distribution and bioaccumulation of short-chain chlorinated paraffins in sediments and bivalves of the Bohai Sea; China [J]. 2014.

[41] YUAN B, WANG T, ZHU N, et al. Short Chain Chlorinated Paraffins in Mollusks from Coastal Waters in the Chinese Bohai Sea [J]. Environmental Science & Technology, 2012, 46(12): 6489-6496.

[42] UEBERSCHäR K-H, DäNICKE S, MATTHES S. Dose-response feeding study of short chain chlorinated paraffins (SCCPs) in laying hens: effects on laying performance and tissue distribution, accumulation and elimination kinetics [J]. Molecular Nutrition & Food Research, 2010, 51(2).

[43] KROGSETH I S, BREIVIK K, ARNOT J A, et al. Evaluating the environmental fate of short-chain chlorinated paraffins (SCCPs) in the Nordic environment using a dynamic multimedia model [J]. Environmental Science: Processes & Impacts, 2013, 15(12): 2240-2251.

[44] MUIR D. Environmental Levels and Fate [J]. 2010,

[45] LI, CHAO, XIE, et al. Predicting Gaseous Reaction Rates of Short Chain Chlorinated Paraffins with center dot OH: Overcoming the Difficulty in Experimental Determination [J]. Environmental Science & Technology: ES&T, 2014.

[46] POPRC A, ANNEX. Decision POPRC-2/8: Short-chained chlorinated paraffins [J].

[47] MA X, ZHANG H, ZHOU H, et al. Occurrence and gas/particle partitioning of short- and medium-chain chlorinated paraffins in the atmosphere of Fildes Peninsula of Antarctica [J]. 2014.

[48] GOODMAN S. The Microwave Induced Pyrolysis of Problematic Plastics Enabling Recovery and Component Reuse [J]. 2014.

[49] ROWLANDS S A, HALL A K, MCCORMICK P G, et al. Destruction of toxic materials [J]. Nature.

[50] GIORGIO, MONTAUDO, AND, et al. Evolution of aromatics in the thermal degradation of poly(vinyl chloride): A mechanistic study - ScienceDirect [J]. Polymer Degradation and Stability, 1991, 33(2): 229-262.

[51] SCHEIRS J, KAMINSKY W. Liquefaction of PVC Mixed Plastics [M]. John Wiley & Sons, Ltd, 2006.

[52] KAMEDA T, ONO M, GRAUSE G, et al. Ball Mill-Assisted Dechlorination of Flexible and Rigid Poly(vinyl chloride) in NaOH/EG Solution [J]. Indengchemres, 2008, 47(22): 8619-8624.

[53] LóPEZ A, MARCO I D, CABALLERO B M, et al. Dechlorination of fuels in pyrolysis of PVC containing plastic wastes [J]. Fuel Processing Technology, 2011, 92(2): 253–260.

[54] MISKOLCZI N, BARTHA L, ANGYAL A. Pyrolysis of Polyvinyl Chloride (PVC)-Containing Mixed Plastic Wastes for Recovery of Hydrocarbons [J]. Energy & Fuels, 2009, 23(3): 2743-9.

[55] AGUADO J, SERRANO D P, ESCOLA J M. Feedstock recyCling and pyrolysis of waste plastics [J]. Focus on Catalysts, 2006.

[56] Y., MASUDA, T., et al. Pyrolysis study of poly (vinyl chloride)-metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides [J]. Journal of Analytical & Applied Pyrolysis, 2006.

[57] SAKATA Y, BHASKAR T, UDDIN M A, et al Development of a catalytic dehalogenation (Cl, Br) process for municipal waste plastic-derived oil [J]. Journal of Material Cycles and Waste Management, 2003, 5(2): 113-24.

[58] LOPEZ-URIONABARRENECHEA A, MARCO I D, CABALLERO B M, et al. Catalytic stepwise pyrolysis of packaging plastic waste [J]. Journal of Analytical & Applied Pyrolysis, 2012, 96(none): 54-62.

[59] ZHOU H, WU C, ONWUDILI J, et al. Effect of interactions of PVC and biomass components on the formation of polycyclic aromatic hydrocarbons (PAH) during fast co-pyrolysis [J]. RSC Adv, 2015, 5(15): 11371-7.

[60] ABOULKAS A, HARFI K E. Co-pyrolysis of olive residue with poly(vinyl chloride) using thermogravimetric analysis [J]. Journal of Thermal Analysis & Calorimetry, 2009, 95(3): 1007-13.

[61] MARTı́N-GULLóN I, ESPERANZA M, FONT R J. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET)[J]. Journal of Analytical & Applied Pyrolysis, 2001, 58(635-50).

[62] OSADA F, YANA J. Deplasticization and dechlorination of flexible polyvinyl chloride in NaOH solution by microwave heating [J]. Journal of Material Cycles & Waste Management, 2010, 12(3): 245-53.

[63] GOTO M. Chemical recycling of plastics using sub- and supercritical fluids [J]. Journal of Supercritical Fluids, 2009, 47(3): 500-7.

[64] KTA C, SK B, SB C. A review of hydrothermal biomass processing - ScienceDirect [J]. Renewable and Sustainable Energy Reviews, 2014.

[65] PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies [J]. Energy & Environmental Science, 2008, 1.

[66] MA D, FENG Q, CHEN B, et al. Insight into Chlorine Evolution during Hydrothermal Carbonization of Medical Waste Model [J]. Journal of Hazardous Materials, 2019, 380(120847).

[67] HASHIMOTO K, SUGA S, WAKAYAMA Y, et al. Hydrothermal dechlorination of PVC in the presence of ammonia [J]. Journal of Materials Science, 2008, 43(7): 2457-62.

[68] POERSCHMANN J, WEINER B, WOSZIDLO S, et al. Hydrothermal carbonization of poly(vinyl chloride) [J]. Chemosphere, 2015, 119(682-9).

[69] JIANG G, MONSALVE D,Cl OUGH P, et al. Understanding the Dechlorination of Chlorinated Hydrocarbons in the Pyrolysis of Mixed Plastics [J]. ACS Sustainable Chemistry And Engineering, 2021, 9(4): 1576-89.

[70] MAITY A, CHAUDHARI S, TITMAN J J, et al. Catalytic nanosponges of acidic aluminosilicates for plastic degradation and CO2 to fuel conversion [J]. Nature Communications, 2020, 11(1).

[71] KUNWAR B, CHENG H N, CHANDRASHEKARAN S R, et al. Plastics to fuel: a review [J]. Renewable & Sustainable Energy Reviews, 2016, 54(FEB.): 421-428.

[72] SHEN Y, YU S, GE S, et al. Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale [J]. Energy, 2017, 118(JAN.1): 312-323.

[73] HUANG N, ZHAO P, GHOSH S, et al. Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for Clean fuel production [J]. Applied Energy, 2019, 240(APR.15): 882-892.

[74] YAO, ZL, XQ. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo [J]. BIORESOURCE TECHNOL, 2018.

[75] LU X, MA X, CHEN X, et al. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production - ScienceDirect [J]. Bioresource Technology, 301.

[76] NING X, TENG H, WANG G, et al. Physiochemical, structural and combustion properties of hydrochar obtained by hydrothermal carbonization of waste polyvinyl chloride [J]. Fuel, 2020, 270:117526-.

[77] ZHAO P, LI T, YAN W, et al. Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives [J]. Environ Technol, 2018, 39(8): 977-85.

[78] ZHAO P, LI Z, LI T, et al. The study of nickel effect on the hydrothermal dechlorination of PVC [J]. Journal of cleaner Production, 2017, 152: 38-46.

[79] OMORI T, KODAMA K T. Bacterial cometabolic degradation of chlorinated paraffins [J]. Applied Microbiology&Biotechnology, 1987.

[80] ZHANG Z Y, LU M, ZHANG Z Z, et al. Dechlorination of short chain chlorinated paraffins by nanoscale zero-valent iron [J]. Journal of Hazardous Materials, 2012, 243(DEC.): 105-11.

[81] MATSUKAMI H, KAJIWARA N. Destruction behavior of short- and medium-chain chlorinated paraffins in solid waste at a pilot-scale incinerator [J]. Chemosphere, 2019, 230(SEP.): 164.

[82] XIN C, 1 Q Z, 1 X L, et al. Enhanced photocatalytic activity of degrading short chain chlorinated paraffins over reduced graphene oxide/CoFe2O4/Ag nanocomposite [J]. Journal of Colloid and Interface Science, 2000.

[83] YOSHINAGA T, YAMAYE M, KITO T, et al. Alkaline dechlorination of poly(vinyl chloride) in organic solvents under mild conditions [J]. Polymer Degradation and Stability, 2004, 86(3): 541-7.

[84] LU J, BORJIGIN S, KUMAGAI S, et al. Practical dechlorination of polyvinyl chloride wastes in NaOH/ethylene glycol using an up-scale ball mill reactor and validation by discrete element method simulations [J]. Waste Management, 2019, 99:31-41.

[85] SAVAGE P E. Organic Chemical Reactions in Supercritical Water [J]. Chem Rev, 1999, 99(2): 603-22.

[86] ONO M, GRAUSE G, MIZOGUCHI T, et al. Chemical modification of poly(vinyl chloride) by nucleophilic substitution [J]. Polymer Degradation and Stability, 2009.

[87] IO A, HO A, TS B. Efficient aramid fiber monomerization using alkaline subcritical water [J]. Polymer Degradation and Stability, 2021.

[88] FOX M H, NOIKE T, OHKI T. Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2003, 48(4): 77-84.

[89] YOSHIOKA T, FURUKAWA K, OKUWAKI A. Chemical recycling of rigid-PVC by oxygen oxidation in NaOH solutions at elevated temperatures [J]. Polymer Degradation & Stability, 2000, 67(2): 285-90.

[90] TAKESHITA Y, KATO K, TAKAHASHI K, et al. Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions [J]. Journal of Supercritical Fluids, 2004, 31(2): 185-93.

[91] MORIYA T, ENOMOTO H. Characteristics of polyethylene cracking in supercritical water compared to thermal cracking [J]. Polymer Degradation and Stability, 1999, 65(3): 373-86.

[92] WATANABE M, HIRAKOSO H, SAWAMOTO S, et al. Polyethylene conversion in supercritical water [J]. Journal of Supercritical Fluids, 1998, 13(1-3): 247-52.

[93] JIN K, VOZKA P, KILAZ G, et al. Conversion of polyethylene waste into clean fuels and waxes via hydrothermal processing (HTP) [J]. Fuel, 2020, 273:117726.

[94] WONG S L, NGADI N, AMIN N A S, et al. Pyrolysis of low density polyethylene waste in subcritical water optimized by response surface methodology [J]. Environmental Technology, 2016, 37(1-4): 245-54.

[95] SONG Z, XIU F R, QI Y. Degradation and Partial Oxidation of Waste Plastic Express Packaging Bags in Supercritical Water: Resources Transformation and Pollutants Removal [J]. Journal of Hazardous Materials, 2021, 423(10): 127018.

[96] SVANSTRM M, FRLING M, MODELL M, et al. Environmental assessment of supercritical water oxidation of sewage sludge [J]. Waste Manag Res, 2004, 41(4): 321-38.

[97] KRITZER P, DINJUS E. An assessment of supercritical water oxidation (SCWO) : Existing problems, possible solutions and new reactor concepts [J]. Chemical Engineering Journal, 2001, 83(3): 207-14.

[98] MOCHIDUKI M, SAWAMOTO S, ADSCHIRI T, et al. Partial oxidation of n-hexadecane and polyethylene in supercritical water [J]. The Journal of Supercritical Fluids, 2001.

[99] YANG B, CHENG Z, YUAN T, et al. Catalytic oxidation of various aromatic compounds in supercritical water: Experimental and DFT study [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100:47-55.

[100] X IU F R, QI Y, ZHANG F S. Co-treatment of waste printed circuit boards and polyvinyl chloride by subcritical water oxidation: Removal of brominated flame retardants and recovery of Cu and Pb [J]. Chemical Engineering Journal, 2014, 237(1): 242-9.

[101] XIU F R, QI Y, WANG S, et al. Application of critical water-alcohol composite medium to treat waste printed circuit boards: Oil phase products characteristic and debromination [J]. Journal of Hazardous Materials, 2017, 333-42.

[102] KUO, ZHENMING. Application of Supercritical Water To Decompose Brominated Epoxy Resin and Environmental Friendly Recovery of Metals from Waste Memory Module [J]. Environmental Science & Technology: ES&T, 2015, 49(3): 1761-7.

[103] JIN Y, GUANGMINGLI, HE W, et al. Hydrothermal decomposition of brominated epoxy resin in waste printed circuit boards [J]. Journal of Analytical & Applied Pyrolysis, 2011, 92(1): 131-6.

[104] ZENDA K, FUNAZUKURI T. Depolymerization of poly(ethylene terephthalate) in dilute aqueous ammonia solution under hydrothermal conditions [J]. Journal of Chemical Technology & Biotechnology, 2010, 83(10): 1381-6.

[105] Evaluating UV/H2O2 exposure as a DEHP degradation treatment for plasticized PVC [J]. Journal of Applied Polymer Science, 2014, 131(16).

[106] HATAKEYAMA K, KOJIMA T, FUNAZUKURI T. Chemical recycling of polycarbonate in dilute aqueous ammonia solution under hydrothermal conditions [J]. Journal of Material Cycles&Waste Management, 2014.

[107] PRADEEP S, FASEELA P, JOSH M K S, et al. Fungal biodegradation of phthalate plasticizer in situ [J]. Biodegradation, 2013, 24(2): 257-67.

[108] JORGE GONCALVES F, ALVES GURGEL L V, CATONE SOARES L, et al. Application of pyridine-modified chitosan derivative for simultaneous adsorption of Cu(II) and oxyanions of Cr(VI) from aqueous solution [J]. J Environ Manage, 2021, 282:111939.

[109] SONG Y, WANG L, LV B, et al. Removal of trace Cr(VI) from aqueous solution by porous activated carbon balls supported by nanoscale zero-valent iron composites [J]. Environ Sci Pollut Res Int, 2020, 27(7): 7015-24.

[110] BABY R, HUSSEIN M Z. Ecofriendly Approach for Treatment of Heavy-Metal-Contaminated Water Using Activated Carbon of Kernel Shell of Oil Palm [J]. Materials (Basel), 2020, 13(11).

[111] ZHAO X, YU X, WANG X, et al. Recent advances in metal-organic frameworks for the removal of heavy metal oxoanions from water [J]. Chemical Engineering Journal, 2021, 407.

[112] Xu X , Zhu D , Wang X , et al. Transformation of polyvinyl chloride (PVC) into a versatile and efficient adsorbent of Cu(II) cations and Cr(VI) anions through hydrothermal treatment and sulfonation[J]. Journal of Hazardous Materials, 2021(19):126973.

[113] YE X, JIANG J, HAI H. Chemical dechlorination of hexachlorobenzene with polyethylene glycol and hydroxide: Dominant effect of temperature and ionic potential [J]. Scientific Reports, 2014, 4:6305.

[114] FRXA B, YW A, XUAN Y A, et al. A novel safety treatment strategy of DEHP-rich flexible polyvinyl chloride waste through low-temperature critical aqueous ammonia treatment [J]. Science of The Total Environment.

[115] YUAN G, KEANE M A. Liquid phase hydrodechlorination of chlorophenols over Pd/C and Pd/Al2O3: a consideration of HCl/catalyst interactions and solution pH effects [J]. Applied Catalysis B Environmental, 2004, 52(4): 301-14.

[116] LV B, ZHAO G, LI D, et al. Dechlorination and oxidation for waste poly(vinylidene chloride) by hydrothermal catalytic oxidation on Pd/AC catalyst [J]. Polymer Degradation & Stability, 2009, 94(7): 1047-52.

[117] ZHOU, HUI, WU, et al. Influence of process conditions on the formation of 2-4 ring polycyclic aromatic hydrocarbons from the pyrolysis of polyvinyl chloride [J]. Fuel Processing Technology, 2016.

[118] ZHOU J, GUI B, QIAO Y, et al. Understanding the pyrolysis mechanism of polyvinylchloride (PVC) by characterizing the chars produced in a wire-mesh reactor [J]. Fuel, 2016, 166(FEB.15): 526-32.

[119] ZHOU C, ZENG G, HUANG D, et al. Distorted polymeric carbon nitride via carriers transfer bridges with superior photocatalytic activity for organic pollutants oxidation and hydrogen production under visible light - ScienceDirect [J]. Journal of Hazardous Materials, 386.

[120] XIU F R, ZHOU K, YU X, et al. Co-treatment of PVC and used LCD panels in low-temperature subcritical water: Enhanced dechlorination and mechanism [J]. Process Safety and Environmental Protection, 2021, 151.

[121] TAHIRA B E, KHAN M I, SAEED R, et al. A Review- Thermal Degradation and Stabilization of Poly (Vinyl Chloride) [J]. 2014.

[122] WAN J, JIE L, YAN W, et al. Investigation of cellulose supramolecular structure changes duringconversion of waste paper in near-critical water on producing5-hydroxymethyl furfural-ScienceDirect [J]. Renewable Energy, 2015, 80:132-9.

[123] FRXA B, YL A, YQA B. DEHP degradation and dechlorination of polyvinyl chloride waste in subcritical water with alkali and ethanol: A comparative study - ScienceDirect [J]. Chemosphere, 249.

中图分类号:

 X705    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式