题名: |
寒区裂隙岩质边坡冻融损伤特性试验研究
|
作者: |
张译文
|
学号: |
22204228109
|
保密级别: |
内部
|
语种: |
chi
|
学科代码: |
085900
|
学科: |
工学 - 工程 - 土木水利
|
学生类型: |
硕士
|
学位: |
工程硕士
|
学位年度: |
2025
|
学校: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
土木水利
|
研究方向: |
岩土力学与工程应用
|
导师姓名: |
杨更社
|
导师单位: |
西安科技大学
|
第二导师姓名: |
王建智
|
提交日期: |
2025-06-13
|
答辩日期: |
2025-06-05
|
外文题名: |
Experimental study on freeze-thaw damage characteristics of fissured rocky slopes in cold regions
|
关键词: |
裂隙岩质边坡 ; 损伤特性 ; 物理模型试验 ; 数值模拟
|
外文关键词: |
Fissured rocky slopes ; Damage characteristics ; Physical modeling tests ; Numerical simulation
|
摘要: |
︿
本研究以天山地区典型裂隙岩质边坡为研究对象,通过“现场调查-材料研发-模型试验-数值分析”多尺度研究方法,系统分析冻融循环作用下裂隙岩质边坡的损伤机制与失稳规律,主要研究成果如下。
(1)基于工程背景与现场调查,建立了天山地区裂隙岩质边坡冻融破坏模式分类体系,明确了滑移式破坏的发育特征及其内因与外因的耦合致灾机制;使用单一变量控制法,通过控制骨胶比进行材料物理力学参数对比实验,分析各原料对相似材料物理力学性质的影响,确定新型相似模型材料最优配比。
(2)在相似理论的基础上搭建了几何缩尺比例为1:40的边坡物理模型。在不同冻融循环次数进程中,对边坡模型裂隙内部温度、冻胀力、坡体整体位移以及局部应变进行全面监测。通过对监测数据的深度剖析,揭示多次冻融循环作用下,岩质边坡温度场的演变规律、冻胀力的变化规律、模型边坡的变形规律,以及这些规律与边坡失稳之间的内在关联。通过冻融循环试验发现:冻融损伤存在临界阈值效应,可大致分为初始裂隙扩展阶段、裂隙贯通阶段、滑体失稳破坏阶段三个阶段。
(3)借助有限元软件建立了热-水-力三场耦合数值模型,推导温度场、水分场、应力场控制方程,并求解等效热膨胀系数,复现了冻融循环作用下岩质边坡裂隙内部温度场、水分场、应力场的各参数微观量化结果。仿真结果表明:数值模拟与模型试验演化规律大体一致,水冰相变膨胀与冰塞效应是冻胀力产生的主要原因,研究结果为“裂隙扩展-裂隙贯通-边坡失稳”的灾变链式过程提供研究依据。
本研究运用室内试验、模型试验与数值模拟相结合的方式,针对裂隙岩质边坡在冻融循环影响下的损伤特性及变形破坏模式展开深入探究。所得研究成果致力于为后续剖析裂隙岩质边坡因冻融损伤而引发灾害的机制提供支撑。
﹀
|
外文摘要: |
︿
Taking typical fissured rocky slopes in Tien Shan area as the research object, this study systematically reveals the damage evolution mechanism and destabilization law of fissured rocky slopes under freeze-thaw cycle through the multiscale research method of “field investigation-material research and development-model test-numerical analysis”, and the main research results are as follows.
(1) Based on the engineering background and field investigation, a classification system of freeze-thaw damage patterns of fissured rocky slopes in Tien Shan region was established, and the developmental characteristics of slip damage and its coupling mechanism of internal and external causes were clarified; the single-variable control method was used to conduct a comparative experiment of the physical and mechanical parameters of materials by controlling the ratio of bone and rubber, to analyze the influence of each raw material on the physical and mechanical properties of the similar materials, and to determine the optimal ratio.
(2) A slope physical model with a geometric scaling of 1:40 was constructed on the basis of the similarity theory. In the process of different freezing and thawing cycles, the internal temperature, freezing and expansion force, overall displacement of the slope body and local strain of the slope model fissure were comprehensively monitored. Through the in-depth analysis of the monitoring data, the evolution of the temperature field of the rocky slope, the change rule of the freezing expansion force, the deformation law of the modeled slope, as well as the intrinsic correlation between these laws and slope destabilization were revealed under the action of multiple freeze-thaw cycles. Through the freeze-thaw cycle test, it is found that there is a critical threshold effect of freeze-thaw damage, which can be roughly divided into three stages: the initial fissure expansion stage, the fissure penetration stage, and the destabilization and damage stage of the slide.
(3) With the help of finite element software, a coupled numerical model of heat-water-force field was established, the controlling equations of temperature field, water field and stress field were derived, and the equivalent thermal expansion coefficient was solved, so as to reproduce the quantitative results of the parameters of the temperature field, water field and stress field inside the fissure of the rocky slope under the action of freezing and thawing cycle. The simulation results show that the numerical simulation and the model test are generally consistent with each other, and the water-ice phase expansion and ice plug effect are the main reasons for the freezing and expansion force, which provides a research basis for the disaster chain process of “fissure expansion - fissure penetration - slope instability”.
In this study, the damage characteristics and deformation damage modes of fissured rocky slopes under the influence of freeze-thaw cycles are investigated in depth by combining indoor experiments, modeling experiments and numerical simulations. The results of this study are intended to provide theoretical support for the subsequent analysis of the mechanism of disaster caused by freeze-thaw damage on fissured rocky slopes.
﹀
|
参考文献: |
︿
[1]杨更社. 冻融环境下软岩体细观损伤力学特性及水热迁移机理研究[Z]. 陕西省, 西安科技大学, 2008-01-16. [2]杨更社, 申艳军, 贾海梁等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J]. 岩石力学与工程学报, 2018,37(3):545-563. [3]杨更社. 冻结岩石力学的研究现状与展望分析[J]. 力学与实践, 2009,31(6):9-16, 29. [4]李宁, 钱七虎. 岩质高边坡稳定性分析与评价中的四个准则[J]. 岩石力学与工程学报,2010,29(09):1754-1759. [5]周宗尧, 王援高. 浙江省矿产资源储备勘查研究[J]. 浙江国土资源, 2023(01):20-23. [6]杨更社, 屈永龙, 奚家米. 白垩系地层煤矿立井冻结壁的力学特性及温度场研究[J].岩石力学与工程学报, 2014(9):1873-1879. [7]杨更社, 屈永龙, 奚家米等. 西部白垩系富水基岩立井冻结压力实测研究[J]. 采矿与安全工程学报, 2014(6):982-986, 994. [8]杨更社, 吕晓涛. 富水基岩井筒冻结壁砂质泥岩力学特性试验研究[J]. 采矿与安全工程学报, 2012,29(04):492-496. [9]高峰, 周科平, 熊信. 我国高海拔寒区金属矿产资源开采现状及关键问题[J]. 矿业研究与开发, 2022,42(10):1-5. [10]杜时贵, 雍睿, 陈咭扦等. 大型露天矿山边坡岩体稳定性分级分析方法[J]. 岩石力学与工程学报, 2017,36(11):2601-2611. [11]Yuan C, Zhang H, Wang L, et al. Research on strength prediction of crack rock mass basedon random forest algorithm[J]. Bulletin of Engineering Geology and the Environment,2024,83(4):128. [12]Afrasiabian B, Eftekhari M. Prediction of mode I fracture toughness of rock using linearmultiple regression and gene expression programming[J]. Journal of Rock Mechanics andGeotechnical Engineering, 2022,14(5):1421-1432. [13]冯守中, 闫澍旺, 崔琳. 严寒地区路堑边坡破坏机理及稳定计算分析[J]. 岩土力学,2009,30(S1):155-159. [14]徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005,24(17):3076-3082. [15]Evans D, Sagoo N, Renema W, et al. Eocene greenhouse climate revealed by coupledclumped isotope-Mg/Ca thermometry[J]. Proc Natl Acad Sci U S A, 2018,115(6):1174-1179. [16]徐拴海, 李宁, 袁克阔等. 融化作用下含冰裂隙冻岩强度特性及寒区边坡失稳研究现状[J]. 冰川冻土, 2016,38(04):1106-1120. [17]Zhang H F, Ge X S, Ye H, et al. Heat conduction and heat storage characteristics of soils[J].Applied Thermal Engineering, 2007,27(2):369-373. [18]叶万军, 杨更社. 黄土高边坡稳定性评价的改进可拓工程法[J]. 煤田地质与勘探,2007(06):47-50. [19]何凯. 寒区冻融循环作用下岩质边坡失稳机理研究[D]. 绍兴文理学院, 2020. [20]郑颖人, 赵尚毅, 时卫民, 林丽. 边坡稳定分析的一些进展[J]. 地下空间, 2001(04):262-271. [21]夏开宗, 陈从新, 鲁祖德等. 考虑水力作用的顺层岩质边坡稳定性图解分析[J]. 岩土力学, 2014(10):2985-2993, 3041. [22]张慧梅, 杨更社, 刘慧. 冻融环境下岩体隧道水热耦合模型及数值分析[J]. 西安科技大学学报, 2009,29(3):305-309. [23]杨天鸿, 张锋春, 于庆磊等. 露天矿高陡边坡稳定性研究现状及发展趋势[J]. 岩土力学, 2011,32(05):1437-1451. [24]陈朝晖, 雷坚, 黄景华等. 考虑参数空间变异性的边坡稳定可靠性有限元极限分析[J].岩土工程学报, 2018,40(6):985-993. [25]李航, 于玲. 冻融循环作用下路基边坡稳定性变化研究[J]. 路基工程, 2011(5):26-28,32. [26]杨欢. 基于Geo-slope的岩质边坡稳定性参数敏感性分析[J]. 公路工程,2018,43(5):289-293. [27]卢达. 基于赤平投影法的岩质边坡稳定性分析[J]. 铁道建筑, 2010(11):69-71. [28]杜时贵. 大型露天矿山边坡稳定性等精度评价方法[J]. 岩石力学与工程学报,2018,37(6):1301-1331. [29]周志军, 牛涌, 张铁柱. 基于改进Sarma法的岩质边坡稳定性分析[J]. 交通运输工程学报, 2013,13(01):15-19. [30]朱大勇, 范鹏贤, 郭志昆. 关于Sarma法改进算法的补充[J]. 岩石力学与工程学报,2006,25(11):2343-2345. [31]史秀志, 黄刚海, 张舒等. 基于FLAC3D的复杂条件下露天转地下开采空区围岩变形及破坏特征[J]. 中南大学学报(自然科学版), 2011,42(6):1710-1718. [32]Shi G. Block system modeling by discontinuous deformation analysis[J]. ComputationalMechanics Publications, 1993. [33]Chen W Z, Tang T, Xu J. Advances in research of structural system reliability assessmenttheory of cable-stayed bridges[J]. Bridge Construction, 2006,4:67-70. [34]YaoAijun, GongYifei, LiYanlin, et al. Mountain-Expressway Slope Safety Based on theOnline Monitoring System and Fuzzy Comprehensive Evaluation[J]. Beijing Universityof Technology, Beijing, China, 2022,50(4). [35]Peng X, Xinli H, Shuangshuang W, et al. Slope Stability Analysis Based on GroupDecision Theory and Fuzzy Comprehensive Evaluation[J]. Journal of Earth Science,2020,31(6):1121-1132. [36]Sharma L K, Umrao R K, Singh R, et al. Artificial Neural Network Approach to EvaluateGeotechnical Properties of Lime-Treated Mountain Soil: A Slope StabilizationPerspective[J]. Transportation Infrastructure Geotechnology, 2024,12(1):30. [37]孟海怡. 基于三维非连续变形分析的岩质边坡楔体破坏机理研究[D]. 沈阳工业大学土木工程, 2023. [38]范文宇, 赵兴, 徐浩帆等. 基于岩体结构分区模型的露天矿边坡稳定性与加固模拟分析[J]. 采矿技术, 2025,25(02):176-180. [39]荣光旭, 马清清, 高延超等. ICS-Elman神经网络在边坡稳定性分析中的应用[J]. 矿业研究与开发, 2025,45(03):213-221. [40]张从从, 肖艳, 刘晨等. 基于强度折减有限元法的堤防边坡稳定敏感性分析[J]. 水电能源科学, 2025(04):217-220. [41]Apriliana R, Indrawan I G B, Warmada I W. Utilizing the Limit Equilibrium Method:Slope stability analysis of the outlet diversion tunnel portal at Jatinegara Dam, TegalDistrict, Central Java[J]. IOP Conference Series: Earth and Environmental Science,2025,1462(1):12034. [42]Fumagalli. Statical and geomechaniccal models[M]. New York:Springer, 1973. [43]Clough R W, Pirtz D. Earthquake Resistance of Rock-Fill Dams[J]. 1956. [44]Wartman J, Seed R B, Bray J D. Shaking table modeling of seismically induceddeformations in slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(5):610-622. [45]Shimizu Y, Aydan M, Ichikawa Y, et al. A MODEL STUDY ON DYNAMIC FAILUREMODES OF DISCONTINUOUS ROCK SLOPES[J]. Proceedings of the InternationalSymposium on Engineering in Complex Rock Formations, 1988:183-189. [46]梁庆国, 韩文峰, 马润勇等. 强地震动作用下层状岩体破坏的物理模拟研究[J]. 岩土力学, 2005,26(8):1307-1311. [47]杨长卫, 张建经, 周德培. SV波作用下岩质边坡地震稳定性的时频分析方法研究[J].岩石力学与工程学报, 2013,32(03):483-491. [48]杨长卫, 高洪波, 张建经. 岩质高陡边坡地震动力响应共性和差异性[J].四川大学学报(工程科学版), 2013,45(3):18-26. [49]杨长卫, 张建经, 张明等. 双面高陡岩质边坡地震滑坡机制的研究[J]. 岩土力学,2013(11):3261-3268. [50]肖尚德. 恩施盆地红砂岩斜坡变形破坏机理与防治对策研究[D]. 中国地质大学,2016. [51]杜毅, 晏鄂川, 肖尚德等. 恩施盆地典型红砂岩斜坡破坏机理试验研究[J]. 地质科技情报, 2018,37(01):196-203. [52]沈小轲. 边坡岩体冻融循环特性及劣化损伤机制研究[D]. 长江科学院, 2020. [53]许腾晖. 西藏日喀则紫金山危岩破坏模式及失稳运动特征研究[D]. 成都理工大学地质工程, 2019. [54]卢婷. 日喀则地区岩质边坡地震动力响应的大型振动台试验研究[D]. 西南交通大学地质资源与地质工程, 2019. [55]刘帅, 杨更社, 潘振兴. 冻融环境下“三段式”岩质边坡锁固段损伤破坏及灾变机制研究[J]. 岩石力学与工程学报, 2024,43(11):2781-2795. [56]梁博, 杨更社, 冯伟等. 冻融诱发平面滑移型岩质边坡失稳模型试验研究[J]. 西安科技大学学报, 2024,44(6):1118-1126. [57]Huang R, Chen G, Guo F, et al. Experimental study on the brittle failure of the lockingsection in a large-scale rock slide[J]. Landslides, 2016,13(3):583-588. [58]Huang D, Cen D, Ma G, et al. Step-path failure of rock slopes with intermittent joints[J].Landslides, 2015,12(5):911-926. [59]韩晓东. 顺层锁固型岩质边坡变形破坏模型试验研究[D]. 华北水利水电大学地质工程, 2020. [60]Wu Z, Zhao D, Che A, et al. Dynamic response characteristics and failure mode of slopeson the loess tableland using a shaking-table model test[J]. Landslides,2020,17(prepublish):1-15. [61]Yang X, Sun X, He S, et al. Model Test on Acoustic Emission Monitoring of Loess SlopeFailure[J]. Sensors, 2024,24(21):6851. [62]周锋, 蒲黍絛, 王海勇. 缓坡顺倾红层路堑边坡破坏模型试验研究[J]. 山西建筑,2025,51(05):71-77. [63]胡南燕, 黄建彬, 罗斌玉等. 环氧树脂基脆性透明岩石相似材料配比试验研究[J]. 岩土力学, 2023,44(12):3471-3480. [64]战新宇, 高林, 赵芳昊等. 大相似比模型试验用超高强相似材料配比试验研究[J]. 煤田地质与勘探, 2023,51(11):109-118. [65]周威扬, 袁荣涛, 杨景川等. 基于正交实验的西北地区弱膨胀性围岩相似材料配比研究[J]. 铁道勘察, 2024,50(2):64-70, 78. [66]申艳军, 荣腾龙, 杨更社等. 类砂岩相似材料配合比方案试验研究[J]. 水利水电科技进展, 2016,36(4):75-79. [67]姬彦东, 林棋文, 王玉峰等. 滑坡-碎屑流模型实验岩石相似材料特性研究[J]. 工程地质学报, 2023,31(3):924-931. [68]臧万军, 常银会. 不同埋深灰岩相似材料配比试验及特性分析[J]. 福建工程学院学报,2023,21(4):320-326. [69]Zhao W, Gao H, Chen W, et al. Experimental study on similar materials for tunnel liningconcrete in geomechanical model tests[J]. Engineering failure analysis, 2023,152:107456. [70]刘伟韬, 吴海凤, 申建军. 基于RSM的超细水泥注浆材料配比及性能优化模型[J]. 煤炭科学技术, 2024,52(8):146-158. [71]沈吴钦, 吴昌将, 张军等. 深基坑模型试验中相似土配比及其微观表征研究[J]. 人民长江, 2023,54(09):236-244. [72]Shi W, Zhang J, Xin C, et al. Proportioning Test on the Similar Materials of the RockMass Physical Model Test Considering Seepage and Dynamic Characteristics[J]. Journalof Marine Science and Engineering, 2023,11(9):21. [73]董亚雄. 遗传算法在相似材料配比试验设计中的应用研究[J]. 吉林水利, 2024(1):22-29. [74]荆翔, 杨志强. 天山公路北段崩塌发育规律及变形失稳模式研究[J]. 公路,2017,62(6):297-302. [75]芮雪莲. 寒区冻融作用下岩石力学特性及致灾机制研究——以四川藏区主要公路为例[D]. 成都理工大学地质工程, 2016. [76]邹雪晴. 高寒山区岩质边坡冻融孕灾时效特征研究[D]. 成都理工大学地质工程,2017. [77]乔国文. 天山山区边坡冻融成灾机理及岩体质量评价体系研究[D]. 成都理工大学,2019. [78]许超, 薛雷, 崔远等. 岩质滑坡模型相似材料试验研究[J]. 公路交通科技,2023,40(11):1-9, 26. [79]中国水电顾问集团成都勘测设计研究院, 水电水利规划设计总院, 中国电力企业联合会. 工程岩体试验方法标准[S]. 中华人民共和国住房和城乡建设部;中华人民共和国国家质量监督检验检疫总局. [80]贾海梁, 赵思琪, 丁顺等. 含水裂隙冻融过程中冻胀力演化及影响因素研究[J]. 岩石力学与工程学报, 2022,41(9):1832-1845. [81]刘昊, 王宇, 王华建等. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J]. 工程地质学报, 2022,30(4):1122-1131. [82]申艳军, 杨更社, 王婷等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土,2019,41(01):117-128. [83]田镇, 李银平, 王贵宾等. 饱水红砂岩裂隙冻胀力与变形试验研究[J]. 岩石力学与工程学报, 2022,41(S1):2857-2868. [84]黄诗冰, 刘泉声, 程爱平等. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. 岩土力学,2018,39(1):78-84. [85]陶文铨. 传热学[M]. 西北工业大学出版社, 2006. [86]白青波. 附面层参数标定及冻土路基水热稳定数值模拟方法初探[D]. 北京交通大学岩土工程, 2015. [87]卢宁. 非饱和土力学[M]. 北京: 高等教育出版社, 2012. [88]张声文. 冻融循环作用下裂隙岩石冻胀力演化及剪切特性研究[D]. 中南大学, 2023. [89]Huang S, Liu Q, Liu Y, et al. Frost heaving and frost cracking of elliptical cavities(fractures) in low-permeability rock[J]. Engineering Geology, 2018,234:1-10. [90]康永水. 裂隙岩体冻融损伤力学特性及多场耦合过程研究[D]. 中国科学院大学; 中国科学院研究生院岩土工程, 2012. [91]Pingsheng W, Guoqing Z. Frost-heaving pressure in geotechnical engineering materialsduring freezing process[J]. 矿业科学技术学报(英文版), 2018,28(2):287-296.
﹀
|
中图分类号: |
TU458
|
开放日期: |
2026-06-13
|