论文中文题名: | 多源参量融合的刮板机直线度测量方法研究与系统开发 |
姓名: | |
学号: | 22205016032 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0802 |
学科名称: | 工学 - 机械工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2025 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 智能检测与控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2025-06-12 |
论文答辩日期: | 2025-06-05 |
论文外文题名: | Research and System Development on the Straightness Measurement Method of Scraper Conveyors Based on Multi-source Parameter Fusion |
论文中文关键词: | |
论文外文关键词: | Scraper conveyor ; straightness ; Attitude Angle ; displacement ; Multi-source parameter fusion |
论文中文摘要: |
在综采工作中,刮板输送机作为煤炭运输的关键设备,同时兼具采煤机运行轨道和液压支架推溜支点的多重功能。刮板输送机直线度的实时精确测量是实现工作面智能化开采的重要技术基础。然而,现有测量方法存在测量不足、实时性差、成本高昂及复杂工况适应性差等局限性。针对上述问题,本文提出了一种融合采煤机位姿与液压支架推移量的刮板输送机直线度动态测量方法,研制了具有高度集成化和智能化特点的测量装置,并构建了完整的刮板输送机直线度测量系统。论文主要研究包括: (1)基于综采“三机”协同工作原理,研究分析了刮板机直线度变化规律和影响因素,并结合“三机”之间的约束关系,提出了一种融合采煤机位姿和支架推移量的刮板机直线度测量方法。确定了由采煤机位姿测量装置、液压支架推移量测量装置和上位机组成的刮板机直线度测量系统总体方案。通过坐标转换和空间坐标矢量累加法,建立了采煤机位姿解算模型。考虑支架底座姿态角并基于投影原理,建立液压支架推移量解算模型。结合采煤机位姿和支架推移量建立刮板输送机直线度求解模型。 (2)研究确定了采煤机姿态、位置、支架推移量等参数的信号获取与处理方法。由安装于采煤机机身中心处的惯导元件MPU9250获取机身姿态角信息,由安装于采煤机行走部高速齿轮轴处的磁敏角度元件TLE5012B获取旋转角度与圈数信息,经计算得到采煤机行走里程信息。由安装于支架底座处的MPU6050获取底座姿态角信息,由红外测距传感器VL5300获取支架推移杆长度信息。针对惯导存在累积误差的问题,采用姿态航向参考系统(AHRS)互补滤波算法矫正采煤机的姿态角,采用卡尔曼滤波矫正液压支架底座姿态角。在滑动窗口内使用Kalman-RTS方法对采煤机位姿信号进行平滑处理,以减少采煤机截割振动对其的影响。 (3)采用DSP(TMS320F28335)作为主控芯片,结合上述感知元件,分别研制采煤机行走里程传感器、机身姿态传感器和液压支架底座姿态传感器。其中,采煤机行走里程传感器和姿态传感器共同组成采煤机位姿测量装置,液压支架底座姿态传感器通过SCI接口联合红外测距传感器组成液压支架推移量测量装置。DSP通过IIC和SSC与MPU9250、MPU6050和与TLE5012B进行数据传输。基于解算模型和信号处理方法,开发了数据采集、姿态角滤波、行走里程解算、采煤机位姿解算与平滑和推移量解算等程序。采用LabVIEW开发了融合采煤机位姿和支架推移量信息的刮板机直线度上位机程求解程序。 (4)制定实验方案,搭建实验平台完成了刮板输送机直线度测量系统及相关装置的功能和性能评估实验,并建立了刮板机直线度误差分析模型。实验结果表明:采煤机俯仰角、横滚角、航向角和旋转角度的最大绝对误差分别是0.07°、0.07°、0.20°、0.12°,平均相对误差分别是0.25%、0.26%、1.05%、0.49%。液压支架俯仰角、横滚角、航向角和推移量的最大绝对误差分别是0.12°、0.10°、0.13°和2.3mm,平均相对误差分别是3.82%、3.02%、4.65%、0.44%。在1.8m长的轨道模拟刮板输送机运动,并以推移步距为10cm,进行直线度测量的X轴和Y轴的最大绝对误差分别为0.74mm、0.08mm,平均相对误差2.43%、0.44%。 |
论文外文摘要: |
In fully mechanized mining, the scraper conveyor, as a key equipment for coal transportation, also serves multiple functions such as the running track for the shearer and the push point for the hydraulic support. The real-time and precise measurement of the scraper conveyor's straightness is an important technical foundation for achieving intelligent mining in the working face. However, the existing measurement methods have limitations such as insufficient measurement, poor real-time performance, high cost, and poor adaptability to complex working conditions. To address these issues, this paper proposes a dynamic measurement method for the straightness of the scraper conveyor that integrates the position and posture of the shearer with the push amount of the hydraulic support. A highly integrated and intelligent measurement device was developed, and a complete measurement system for the straightness of the scraper conveyor was constructed. The main research contents of this paper include: (1)Based on the collaborative working principle of the "three machines" in fully mechanized mining, the variation law and influencing factors of the straightness of the scraper conveyor were studied and analyzed. Combined with the constraint relationship among the "three machines", a measurement method for the straightness of the scraper conveyor that integrates the position and posture of the shearer and the push amount of the support was proposed. The overall scheme of the scraper conveyor straightness measurement system composed of the shearer position and posture measurement device, the hydraulic support push amount measurement device and the upper computer was determined. Through coordinate transformation and spatial coordinate vector accumulation method, the shearer position and posture solution model was established. Considering the attitude angle of the support base and based on the projection principle, the hydraulic support push amount solution model was established. Combined with the shearer position and posture and the support push amount, the solution model of the scraper conveyor straightness was established. (2)The research has determined the signal acquisition and processing methods for parameters such as the attitude, position of the coal shearer and the amount of support advancement. The attitude angle information of the coal shearer body is obtained by the inertial navigation component MPU9250 installed at the center of the coal shearer body, and the rotation angle and number of turns information are obtained by the magnetic sensitive angle component TLE5012B installed at the high-speed gear shaft of the coal shearer's traveling part. The traveling distance of the coal shearer is calculated. The attitude angle information of the support base is obtained by the MEMS installed at the support base, and the length information of the support advancement rod is obtained by the infrared distance sensor VL5300. To address the cumulative error problem of inertial navigation, the attitude angle of the coal shearer is corrected by the attitude and heading reference system (AHRS) complementary filter algorithm, and the attitude angle of the hydraulic support base is corrected by the Kalman filter. Within the sliding window, the Kalman-RTS method is used to smooth the position and attitude signals of the coal shearer to reduce the influence of the cutting vibration of the coal shearer. (3)The DSP (TMS320F28335) is used as the main control chip, combined with the aforementioned sensing elements to develop a walking distance sensor for the coal cutter, an attitude angle sensor, and an attitude angle sensor for the hydraulic support base. The walking distance sensor and the attitude angle sensor together form the equipment for measuring the position of the coal cutter. The attitude angle sensor for the hydraulic support base, in combination with an infrared distance sensor via an SCI interface, constitutes the device for measuring the translation amount of the hydraulic support. The DSP communicates with the MPU9250, MPU6050, and TLE5012B for data transmission via IIC and SSC protocols. Based on the calculation model and signal processing method, programs have been developed for data acquisition, attitude angle filtering, walking distance calculation, position calculation and smoothing for the coal cutter, and translation amount calculations. A LabVIEW-based upper computer program has been developed to solve the linearity of the scraper by integrating information from the coal cutter's position and the support translation amount. (4)An experimental plan was developed, and an experimental platform was built to complete the functional and performance evaluation experiments of the scraper conveyor linearity measurement system and related devices. Additionally, a linearity error analysis model for the scraper was established. The experimental results indicated that the maximum absolute errors for the pitch angle, roll angle, yaw angle, and rotation angle of the coal cutter were 0.07°, 0.07°, 0.20°, and 0.12°, respectively, with average relative errors of 0.25%, 0.26%, 1.05%, and 0.49%. For the hydraulic support, the maximum absolute errors for the pitch angle, roll angle, yaw angle, and translation amount were 0.12°, 0.10°, 0.13°, and 2.3 mm, respectively, with average relative errors of 3.82%, 3.02%, 4.65%, and 0.44%. In a 1.8 m long track simulating the movement of the scraper conveyor, linearity measurements were taken in the X and Y axes at a translation step of 10 cm, yielding maximum absolute errors of 0.74 mm and 0.08 mm, respectively, with average relative errors of 2.43% and 0.44%. |
参考文献: |
[1] 改革发展取得新进展煤炭供需实现基本平衡——2018煤炭行业发展年度报告发布会在京召开[J].北京:中国煤炭工业,2019,(03):8-9. [2] 国家发展改革委国家能源局应急管理部国家煤矿安监局工业和信息化部财政部科技部教育部关于加快煤矿智能化发展的指导意见[J].中国安全生产,2020,15(03):5. [3] 王国法.煤矿智能化最新技术进展与问题探讨[J].煤炭科学技术,2022,50(01):1-27. [4] 谢嘉成. VR环境下综采工作面“三机”监测与动态规划方法研究[D]. 太原理工大学,2018. [5] 张步勤.薄煤层综采自动化关键技术及应用研究[D].中国矿业大学(北京),2015. [6] 李首滨.智能化开采研究进展与发展趋势[J].煤炭科学技术,2019,47(10):102-110. [7] 卢春贵.自动化综采工作面刮板输送机直线度控制方法研究[D].太原理工大学,2022. [8] 黄曾华,王峰,张守祥.智能化采煤系统架构及关键技术研究[J].煤炭学报,2020,45(06):1959-1972. [9] 国家安全生产监督管理总局,煤矿安全规程[M].北京:煤炭工业出版社,2011. [10] 张巍.综采工作面刮板输送机直线度控制技术研究[J].中国石油和化工标准与质量,2020,40(22):147-149. [11] 雍建军.煤矿刮板输送机自动校直控制技术研究[J].能源与环保,2020,42(06):130-133+136. [12] 张世洪.我国综采采煤机技术的创新研究[J].煤炭学报,2010,35(11):1898-1902. [14] 何勇华.综放工作面液压支架直线度调整技术研究与实践[J].煤矿机械,2025,46(02):153-157. [15] 石斌.智能化综采工作面自动化技术的研究与应用[J].矿业装备,2022,(06):22-23.. [16] 梁吉智,韩培毅,郭天骏,等.综采工作面智能化装备关键技术与应用[J].煤炭科学技术,2021,49(S1):59-62. [18] 余佳鑫,马鹏宇,郭伟文,等.综采工作面液压支架和刮板输送机自动调直方法及系统:CN,CN103114867.A[P].2013. [19] 牛剑峰,李俊士,刘清.一种综采工作面伪斜自动控制系统:CN,CN104100277A[P].2014. [20] 中国矿业大学.综采面刮板输送机机身自动调直装置及其控制方法:201110053204.8[P].2013-04-24.. [21] 楼凤笑.刮板输送机姿态控制理论研究[J].煤炭科学技术,1995,(11):45-47. [22] 杨曌.基于视觉测量的综采工作面直线度测量技术研究[J].煤炭工程,2016,48(9):134-136. [23] 刘鹏坤,王聪.基于机器视觉的长壁工作面直线度测量算法研究[J].矿业科学学报,2017,2(03):267-273. [24] 张永亮,曲天智,丁秀兵,等.综采工作面弯曲检测和矫直方法及其系统:CN,CN10215616.X[P].2009. [25] 夏婷.综采工作面刮板输送机直线度检测方法研究[D].徐州:中国矿业大学,2019. [26] 王超,李威,杨海,等.基于航位推测的刮板输送机形态检测研究[J].煤炭学报,2017,42(08):2173-2180. [29] 李伟,张行,朱真才,等.综采工作面刮板输送机机身自动调直装置及方法:CN,CN105000328.A[P].2015. [30] 李俊士.一种基于多种传感器的工作面找直方法[J].煤矿机电,2014,(06):11-12+15. [31] 牛剑峰.综采工作面直线度控制系统研究[J].工矿自动化,2015,41(05):5-8. [32] 张智喆,王世博,张博渊,等.基于采煤机运动轨迹的刮板输送机布置形态检测研究[J].煤炭学报,2015,40(11):2514-2521. [33] 王世博,何亚,王世佳,等.刮板输送机调直方法与试验研究[J].煤炭学报,2017,42(11):3044-3050. [36] 邓文革.采煤机位置监测装置的原理与应用[J].煤矿机械,2007,(06):118-119. [38] 刘清,魏文艳.基于红外检测装置的采煤机定位算法研究[J].机械工程与自动化,2013,(06):157-159. [39] 张连昆,谢耀社,周德华,等.基于超声波技术的采煤机位置监测系统[J].煤炭科学技术,2010,38(05):104-106+110. [40] 杨滨海.基于激光扫描技术的采煤机精确定位系统[D].徐州:中国矿业大学,2016. [42] 王雪松.基于UWB技术的采煤机位置监测系统[J].山西焦煤科技,2016,40(9):4-6. [45] 杨海,李威,罗成名,等.基于捷联惯导的采煤机定位定姿技术实验研究[J].煤炭学报,2014,39(12):2550-2556. [46] 石金龙,马宏伟,毛清华,等.“惯导+里程计”的采煤机定位方法研究[J].煤炭工程,2021,53(10):143-147. [47] 江一夫,李四海,谢波,等.采煤机三维轨迹的惯性基厘米级相对测量方法[J].中国惯性技术学报,2021,29(02):178-183. [50] 崔宇.采煤机采区定位定姿技术[J].机械管理开发,2018,33(09):53-55. [51] 李楚.采煤机复合定位关键技术研究[D].徐州:中国矿业大学,2018. [53] 贺建伟.煤矿井下连续采煤机定位方法研究[J].工矿自动化,2021,47(10):42-48. [54] 许晓伟,赖际舟,吕品,等.基于采煤机工作面端头量测的改进因子图高精度自主定位方法[J].控制与决策,2022,37(08):2170-2176. [57] 宋单阳.煤矿无人值守工作面关键设备位姿检测和智能控制方法研究[D].太原理工大学,2023. [60] 白雪峰.掩护式支架姿态监测与控制的研究[D].太原理工大学,太原,2006. [61] 朱殿瑞.掩护式液压支架姿态监测的理论与主要部件的有限元分析[D].太原理工大学,太原,2012. [62] 白淑江.液压支架姿态感知及顶梁俯仰角调控研究[D].太原理工大学,2021. [63] 任锡义.液压支架整体动态特性仿真分析[D].太原理工大学,太原,2010. [64] 马盟.基于光纤传感技术的液压支架姿态监测研究[D].徐州:中国矿业大学,2018. [65] 张旭辉,王冬曼,杨文娟.基于视觉测量的液压支架位姿检测方法[J].工矿自动化,2019,45(03):56-60. [66] 韩哲,杜毅博,任怀伟,等.基于LoRaWAN的液压支架状态监测系统[J].工矿自动化,2020,46(08):89-93+100. [68] 马旭东.综采工作面液压支架姿态监测系统的开发[D].太原理工大学,2019. [70] 陆庭锴,马鹏宇,冯卓照,等.液压支架姿态动态监测与控制系统设计[J].煤炭科学技术,2014(S1):169-170. [71] 李帅帅.基于深度视觉原理的液压支架空间结构位姿测量方法研究[D].煤炭科学研究总院,2021. [72] 张坤,廉自生.液压支架姿态角度测量系统[J].工矿自动化,2017,43(05):40-45. [73] 吴修可,孟婥,姚灵灵,等.基于齐次坐标变换的编织工艺及芯模牵引轨迹分析[J].东华大学学报(自然科学版),2019,45(03):425-430.. [74] 刘锋.齐次变换矩阵在机器人运动学中的应用[J].河南科技,2020,39(28):22-24. [75] 李曼,沈思怡,刘俊棋,等.采煤机全位姿测量传感器系统研究与设计[J/OL].煤炭科学技术,1-9[2025-04-14]. [76] 石金龙.惯导与里程计组合的综采工作面直线度测量技术研究[D].西安科技大学,2021. [77] 李晓豁,郭继文,王丽,等.螺旋钻采煤机输送机构振动频率的计算与分析[J].广西大学学报(自然科学版),2011,36(06):897-902+909. [78] 李曼,郑思雨,刘浩东,等.采煤机滚筒高度测量传感器工作环境磁场仿真与屏蔽研究[J].煤炭科学技术,2022,50(08):204-209. [79] 杨继承.一种高精度消除SOC累积误差电路的设计[J].产品可靠性报告,2024,(04):76-78. [80] 王妍婷.基于惯导技术的采煤机定位方法研究[D].中国矿业大学,2024. [81] 叶鑫,赵忠华,金昱冏,等.基于多磁力计融合的电子罗盘研究[J].压电与声光,2024,46(01):89-96. [82] 郭锦萍,白征东,辛浩浩.基于Kalmam滤波和Kalman-RTS平滑的高铁轨道平顺性数据融合算法[J].测绘工程,2023,32(02):7-12. [83] 金静飞.液压支架电液控制系统测试平台关键技术研究[D].中国矿业大学,2015. [84] 李和深.基于Modbus协议煤矿液压支架用磁致伸缩位移传感器设计[D].华南理工大学,2017.. |
中图分类号: | TD421.6 |
开放日期: | 2025-06-19 |