- 无标题文档
查看论文信息

论文中文题名:

 时变波动情形下相依序列均值变点的统计推断    

姓名:

 李彩彩    

学号:

 18201009012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070104    

学科名称:

 理学 - 数学 - 应用数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用数学    

研究方向:

 时间序列分析    

第一导师姓名:

 金浩    

第一导师单位:

 西安科技大学    

第二导师姓名:

 杨云锋    

论文提交日期:

 2021-06-15    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Statistical Inference of Mean Change Point of Dependent Sequence under Time-Varying Volatility    

论文中文关键词:

 相依序列 ; 均值变点 ; 比值统计量 ; 渐近分布 ; 异方差    

论文外文关键词:

 Dependent sequence ; Mean change ; Ratio test ; Asymptotic distribution ; Heteroscedasticity    

论文中文摘要:

       近四十年来,变点问题在统计学领域一直是研究的热点问题之一。若忽略结构变点的影响,则会导致不准确的预测和错误的统计分析,故在建立模型之前有效地检验结构变点就显得尤为必要。研究发现:一方面许多金融时序数据不是简单的服从某个独立的分布,序列之间往往存在着一定的相依性;另一方面均值作为金融数据的重要数值特征,能很好地刻画时间序列的水平变化。因此,本文围绕相依序列均值变点检验问题展开研究,具体内容如下:
       相较于经典的累积和统计量,采用比值检验统计量研究了相依序列均值变点的检验问题。在均值变点模型中,理论上证明了比值统计量在原假设下的极限分布是一个标准布朗运动的泛函,并在备择假设下证明了该统计量的一致性。数值模拟结果表明:经验水平值在检验显著性水平附近波动;经验势函数值随着样本容量和均值变化幅度的增加而增加,且均值变点位置在样本中间的经验势函数值会显著高于均值变点位置在样本两端的经验势函数值。
       鉴于许多金融数据具有非平稳的波动性,讨论了异方差情形下相依序列均值变点的检验问题。基于广义的中心极限定理,分别推导了异方差情形下比值统计量在原假设和备择假设下的极限分布。原假设下的渐近分布不再是标准布朗运动的泛函,而是取决于方差函数的具体表达形式。研究发现异方差下的经验水平值会出现严重的扭曲现象,不再逼近检验显著性水平。针对此缺陷,本文提出了修正的比值检验统计量以实现异方差下均值变点的有效检验。数值模拟结果表明:修正的比值检验统计量能很好的改善了经验水平值扭曲和经验势函数值损失的现象。
       最后,选取了上海浦东开发银行股票价格和尼罗河最低水位两组时序数据进行实证分析。结果显示:本文所提出的修正比值检验方法是有效且可行的。基于比值统计量研究时变波动情形下的均值变点在计量经济领域具有重要的理论意义和应用价值。
 

论文外文摘要:

      For the past four decades, the problem of change point has been one of the hot issues in the field of statistical research. Ignoring the influence of structural changes will lead to inaccurate predictions and incorrect statistical analysis, so it is especially necessary to effectively test structural changes before building a model. The study found that: on the one hand, many financial time series data do not simply obey an independent distribution, and there are often certain dependencies between sequences; on the other hand, the mean value, as an important numerical feature of financial data, can well describe the level change of the time series. Therefore, this article mainly focuses on the test of the change point of the mean change point of the dependent sequence. The specific research content is as follows:
       Compared with the classical cumulative sum statistics, the ratio test statistic is used to study the test of the change point of the mean of the dependent series. In the mean change point model, it is theoretically proved that the limit distribution of the ratio statistic under the null hypothesis is a functional of the standard Brownian motion, and the consistency of the statistic is proved under the alternative hypothesis. Numerical simulation results show that the empirical size fluctuates around the testing significant level; the empirical potential power increases with the increase of sample size and the jump size of the mean change; the empirical potential power of the mean change point in the middle of the sample is significantly higher than the value of the empirical potential power at the previous and later periods of the mean change point.
       In view of the fact that many financial data have non-stationary volatility, the problem of testing the mean change points of dependent series in the case of heteroscedasticity is discussed. Based on the generalized central limit theorem, the limit distributions of the ratio statistic in the case of heteroscedasticity under the null hypothesis and the alternative hypothesis are deduced respectively. The asymptotic distribution under the null hypothesis is no longer a functional of the standard Brownian motion, but depends on the specific expression of the variance function. The study found that the empirical size under heteroscedasticity will be severely distorted, and the testing significant level is no longer approached. In response to this defect, this article proposes a modified ratio test statistic to achieve an effective test of the mean change point under heteroscedasticity. Numerical simulation results show that the modified ratio test statistics can improve the distortion of empirical size and the loss of empirical potential power.
        Finally, two sets of time series data of Shanghai Pudong Development Bank stock price and the lowest water level of the Nile River are selected for empirical analysis. The results show that the modified ratio test method proposed in this article is effective and feasible. The study of the mean change point under time-varying fluctuations based on ratio statistics has important theoretical significance and application value in the field of econometrics.
 

参考文献:

[1]Page, E. S. Continuous inspection schemes [J]. Biometrika, 1954, 42(6): 100-114.

[2]谭长春. 变点问题的非参数统计推断及其在金融中的应用 [D]. 合肥: 中国科技大学, 2000.

[3]张虎. 变点估计值对状态空间模型预测的影响分析 [D]. 合肥: 合肥工业大学, 2012.

[4]缪柏其, 赵林城. 关于变点个数及位置的检测和估计 [M]. 中国科学技术大学统计与金融系, 合肥, 2003.

[5]Csorgo M, Horvath L. Limit theorems in change-point analysis [M]. John Wiley and Sons Ltd, West Sussex, England, 1997.

[6]Perron P. Dealing with structural breaks [M]. Working Paper Series, Department of Economics, Boston University, 2005.

[7]Chen J, Gupta AK. Parametric statistical change point analysis: With applications to genetics and finance [M]. Springer Science and Business Media, Berlin, 2011.

[8]Christian K. Structural change in (economic) time series [M]. Working papers, Faculty of Business and Economics-University of Basel, 2016.

[9]Jin H, Zhang S, Zhang J, Hao H. Modified tests for change points in variance in the possible presence of mean breaks [J]. Journal of Statistical Computation and Simulation, 2018, 88(14): 2651–2667.

[10]Wang D, Guo P, Xia Z. Detection and estimation of structural change in heavy-tailed sequence [J]. Communications in Statistics-Theory and Methods, 2017, 46(2): 815-827.

[11]Kokoszka P, Leipus R. Change-point in the mean of dependent observations [J]. Statistics & Probability Letters, 1998, 40(4): 385-393.

[12]Zhanshou C, Zi J, Zheng T, Peiyan Q. Bootstrap testing multiple changes in persistence for a heavy-tailed sequence [J]. Computational Statistics and Data Analysis, 2012, 162(13): 2303-2316.

[13]Paul F, Guillem R. Changepoint detection in the presence of outliers [J]. Journal of the American Statistical Association, 2019, 114(525):169-183.

[14]陈希孺. 变点统计分析简介[J]. 数理统计与管理, 1991, 10(2): 52-59.

[15]Bai J. Least squares estimation of a shift in linear process [J]. Journal of Time Series Analysis, 1994, 15(6): 453-472.

[16]Wang L. Change in mean problem for long memory time series models with applications [J]. Journal of Statistical Computation and Simulation, 2008, 78(7): 653 -668.

[17]Kim S, Cho S, Lee S. On the cusum test for parameter changes in GARCH(1,1) models [J]. Communication in Statistics, 2000, 29(3): 445-462.

[18]Horváth L, Horváth Z, Huaková M. Ratio tests for change point detection [J]. Institute of Mathematical Statistics, 2008, 63(9): 293-304.

[19]赵文芝, 吕会琴. 厚尾相依序列均值变点Ratio检验 [J]. 山西大学学报, 2016, 39(3): 410-414.

[20]Shao XF. A simple test of changes in mean in the possible presence of long-range dependence. Journal of Time Series Analysis, 2010, 32(6): 598–606.

[21]Zhao W, Tian Z, Xia Z. Ratio test for variance change point in linear process with long memory [J]. Statistical Papers, 2010, 51(2): 397-407.

[22]Aue A, Horváth L. Structural breaks in time series [J]. Journal of Time Series Analysis, 2012, 34(1): 1-16.

[23]Peštová B, Pešta M. Abrupt change in mean using block bootstrap and avoiding variance estimation [J]. Computational Statistics, 2018, 33(1): 413–441.

[24]Hao J, Zheng T, Qin R. Bootstrap tests for structural change with infinite variance observations [J]. Statistics & Probability Letters, 2009, 79(19): 1985-1995.

[25]马健琦. 长记忆时间序列变点检验及其应用 [D]. 青海: 青海师范大学, 2017.

[26]金浩, 张思. 基于稳定分布的ARCH模型均值变点检验 [J]. 宝鸡文理学院学报(自然科学版), 2017, 37(3): 1-6.

[27]秦瑞兵, 田铮, 陈占寿. 独立随机序列均值多变点的非参数检测 [J]. 应用概率统计, 2013, 29(5): 449-457.

[28]Qin R, Liu W. A robust test for mean change in dependent observations [J]. Journal of Inequalities & Applications, 2015, 2015(1): 48-66.

[29]Qin R, Liu Y. Subsampling testing for persistence change in heavy-tailed series [J]. Journal of Shanxi University (Natural Science Edition), 2017, 40(2): 209-215.

[30]Bai J, Perron P. Estimating and testing linear model with multiple structural changes [J]. Econometric, 1998, 6(2): 47-78.

[31]付国龙, 何灿明. 长记忆时间序列均值多变点滑动比检验及应用 [J]. 统计学与应用, 2018, 7(2): 79-89.

[32]Pagan AR, Schwert GW. Testing for covariance stationarity in stock market data [J]. Economics Letters, 1990, 33(2): 165-170.

[33]Waston MW. Explaining the increased variability in long-term intest rates [J]. Federal Reserve Bank Richmond Econ. Quart, 1999, 85(8): 71-96.

[34]Jin H, Zhang S, Zhang JS. Spurious regression due to neglected of non-stationary volatility [J]. Comput Stat. 2017, 32: 1065-1081.

[35]王娟, 李锐. 中国股市的时变波动性——基于长记忆性、杠杆效应视角 [J]. 北京航空航天大学学报(社会科学版), 2019, 32(3): 57-79.

[36]Cavaliere G. Unit root tests under time-varying variances [J]. Econometric Reviews, 2005, 23(3): 259-292.

[37]Cavaliere G, Taylor A. Testing for unit roots in time series models with non-stationary volatility [J]. Journal of Econometrics, 2007, 140(2): 919-947.

[38]Pitarakis JY. Least squares estimation and tests of breaks in mean and variance under misspecification [J]. Econometrics Journal, 2004, 7(1): 32-54.

[39]Xu K. Robust testing for structural change under nonstationary variances [J]. Econometrics Journal, 2015, 18(2): 274-305.

[40]Zhang E, Wu J. Testing for structural changes in linear regressions with time-varying variance [J]. Communications in Statistics-Theory and Methods, 2020, 49(20): 4889- 4918.

[41]Lee Y, Park S. The cusum of squares test for variance changes in infinite order moving average processes [J]. Scandinavian Journal of Statistics, 2001, 28(4): 625-642.

中图分类号:

 O211.61    

开放日期:

 2021-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式