论文中文题名: | 微胶囊化改性水滑石阻化煤自燃特性研究 |
姓名: | |
学号: | 20220226121 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-16 |
论文答辩日期: | 2023-06-04 |
论文外文题名: | Study on the Resist Coal Spontaneous Combustion Characteristics of Microencapsulated Modified Hydrotalcite |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; Microencapsulation ; Modified hydrotalcite ; Inhibition performance ; Encapsulation rate |
论文中文摘要: |
煤炭资源是我国基础能源之一,在我国能源需求体系中占据重要地位。但是低变质程度的煤化学性质不稳定,易发生氧化自燃,对矿井安全生产带来极大的威胁。因此诸多阻化煤自燃的手段应用而生,改性水滑石因其层间阴离子热稳定性、可交换性以及层板组成元素的可调控性,被广泛应用于矿井煤自燃的防治工作中,但其无法根据煤自燃临界温度点进行定时阻化,且在矿井环境的影响下其阻化效率会降低。因此,本文选取改性水滑石为芯材,将其微胶囊化,研究微胶囊化改性水滑石对煤自燃的阻化性能。研究结果为进一步研制高效阻化材料提供了理论基础。 首先,采用共沉淀法制备出改性水滑石,通过X射线衍射实验、扫描电镜及能谱分析仪研究了La元素不同添加浓度对改性水滑石空间结构、微观形貌及性能的影响规律,发现随着La元素浓度增加,改性水滑石衍射峰附近出现少量杂峰,衍射峰的对称性及强度在不断降低,表明La元素的增高会对改性水滑石的空间结构造成破坏,并且改性水滑石外表面的纳米圆片状物质随La元素浓度的增加呈负相关,且逐渐凝结成团;通过热重分析实验研究了改性水滑石的阻化效果,发现La元素不同添加浓度的改性水滑石均能使原煤的临界温度点(T1)滞后,活化能增大,其中LDHs-3使T1推延程度最大(14.15℃),与原煤之间的活化能差值为10.50KJ/mol。因此,确定了LDHs-3为微胶囊化改性水滑石的芯材。 其次,基于材料的理化性质、相变温度点和阻化性能优选出聚乙二醇-碳酸氢钠的混合体为阻化微胶囊的壁材,以改性水滑石LDHs-3为芯材,采用微流体技术制备出微胶囊化改性水滑石。通过扫描电镜及能谱分析仪、激光粒度仪、紫外分光光度法研究了微胶囊化改性水滑石的微观形貌、粒度分布及升温过程中包覆率的变化情况,发现微胶囊化改性水滑石的粒度主要分布在5~13nm之间,且未出现粘结现象,在30~60℃温度区间内微胶囊化改性水滑石包覆率达87.5%;采用热重分析实验研究了微胶囊化改性水滑石的热稳定性,确定了微胶囊化改性水滑石热解过程的阶段性特征,即第一反应阶段(52~83.40℃)主要发生碳酸氢钠的分解反应及聚乙二醇的融解反应;第二反应阶段(83.40~247.64℃)主要以聚乙二醇的初步裂解反应及改性水滑石分子间层间水、-OH的脱除反应为主;第三反应阶段(247.64~323.43℃)主要以聚乙二醇完成裂解反应及改性水滑石分子结构中CO32-的消除反应为主。因此,制备的微胶囊化改性水滑石具有较高的热稳定性及包覆率。 最后,利用程序升温实验研究了微胶囊化改性水滑石对煤自燃的阻化效果,发现向原煤中添加水滑石(LDHs-0)CO释放速率为原煤的61.1%,添加改性水滑石(LDHs-3)CO释放速率为原煤的51.1%,添加微胶囊化改性水滑石CO释放速率为原煤的33.7%,且向原煤中添加微胶囊化改性水滑石之后,阻化煤样与原煤之间活化能的差值达到最大(12.77kJ/mol),微胶囊化改性水滑石的阻化效果远高于改性水滑石(LDHs-0)、改性水滑石(LDHs-3)的阻化效果;发现向原煤中添加不同浓度的微胶囊化改性水滑石其阻化效果呈非线性变化,其中添加浓度为12.5%的微胶囊化改性水滑石在170℃的CO释放速率为原煤的31.5%,低于原煤在140℃的CO释放速率,在100℃时的阻化率达到最大,为81%。因此,微胶囊化改性水滑石对煤自燃具有较好的阻化效果,且微胶囊化改性水滑石与煤的最优配比浓度为12.5%。 关 键 词:煤自燃;微胶囊;改性水滑石;阻化性能;包覆率 |
论文外文摘要: |
As one of the basic energy sources in China, coal resource occupies an important position in the energy demand system.However, low metamorphic coals are chemically unstable and prone to oxidative spontaneous combustion, posing a significant threat to mine safety. As a result, a number of methods have been developed to prevent the spontaneous combustion of coal.Modified hydrotalcite is widely used in the prevention and control of coal spontaneous combustion in mines because of its interlayer anion thermal stability, exchangeability, and modifiability of laminate constituent elements. However, modified hydrotalcite cannot be timed to resist coal spontaneous combustion according to its critical temperature point, and its resisting efficiency decreases under the influence of mine environment. Therefore, in this paper, modified hydrotalcite was selected as the core material to be microencapsulated, so as to investigate the inhibition effect of microencapsulated modified hydrotalcites on coal spontaneous combustion. The results of the study provide a theoretical basis for the further development of efficient inhibition materials. The co-precipitation method was adopted to prepare the modified hydrotalcites. The effects of different additive concentrations of La element on the spatial structure, microscopic morphology and properties of the modified hydrotalcite were investigated by X-ray diffraction experiments, scanning electron microscopy and energy spectrum analyzer. It was found that as the concentration of La element increased, a small amount of spurious peaks appeared near the diffraction peaks of modified hydrotalcite, and the symmetry and intensity of diffraction peaks were decreasing, indicating that the increase of La element would cause damage to the spatial structure of modified hydrotalcite. Moreover, the nano-cylinders on the outer surface of the modified hydrotalcite showed a negative correlation with the increase of La element concentration, and gradually agglomerated into clusters. The inhibition effect of modified hydrotalcite was investigated by thermogravimetric analysis experiments. It was found that all the modified hydrotalcites with different additive concentrations of La elements could hinder the critical temperature point (T1) of the original coal and increase the activation energy, among which LDHs-3 caused the greatest degree of deferral of T1 (14.15°C) and the activation energy difference between it and the original coal was 10.50 KJ/mol. Therefore, LDHs-3 was identified as the core material of the microencapsulated modified hydrotalcite. Based on the physicochemical properties, phase transition temperature point and inhibition properties of the material, the polyethylene glycol-sodium bicarbonate blend was preferably selected as the wall material for the inhibition microencapsulation. The microfluidic technique was adopted to prepare microencapsulated modified hydrotalcites using modified hydrotalcite LDHs-3 as the core material. The microscopic morphology, particle size distribution and the change of encapsulation rate during the warming process of microencapsulated modified hydrotalcite were investigated by scanning electron microscopy and energy spectrum analyzer, laser particle size meter and UV spectrophotometry. It was found that the particle size distribution of microencapsulated modified hydrotalcite was mainly between 5 and 13 nm, without bonding phenomenon, and the microencapsulated modified hydrotalcite coverage rate reached 87.5% in the temperature interval of 30-60°C. The thermal stability of microencapsulated modified hydrotalcite was investigated by thermogravimetric analysis experiments. The stage characteristics of the microencapsulated modified hydrotalcite pyrolysis process were determined, namely, the first reaction stage (52~83.40℃), in which the decomposition reaction of sodium bicarbonate and the melting reaction of polyethylene glycol mainly occurred; the second reaction stage (83.40~247.64℃) was mainly dominated by the preliminary cleavage reaction of polyethylene glycol and the removal reaction of interlayer water and -OH between modified hydrotalcite molecules; the third reaction stage (247.64~323.43℃) is mainly based on the completion of the cleavage reaction of polyethylene glycol and the elimination of CO32- from the molecular structure of modified hydrotalcite. Therefore, the prepared microencapsulated modified hydrotalcite has high thermal stability and encapsulation rate. The inhibition effect of microencapsulated modified hydrotalcites on coal spontaneous combustion was investigated by a programmed warming experiment. It was found that the CO release rate by adding hydrotalcite (LDHs-0) to the raw coal was 61.1% of that of the raw coal, the CO release rate by adding modified hydrotalcite (LDHs-3) was 51.1% of that of the raw coal, and the CO release rate by adding microencapsulated modified hydrotalcite was 33.7% of that of the raw coal. And after adding microencapsulated modified hydrotalcite to the raw coal, the difference of activation energy between the inhibited coal sample and the raw coal reached the maximum value (12.77 kJ/mol), and the inhibition effect of microencapsulated modified hydrotalcite was much higher than that of modified hydrotalcite (LDHs-0) and modified hydrotalcite (LDHs-3). It was found that the inhibition effect of adding different concentrations of microencapsulated modified hydrotalcite to the raw coal showed a nonlinear variation, in which the CO release rate of microencapsulated modified hydrotalcite added at a concentration of 12.5% was 31.5% of that of the raw coal at 170°C, which was lower than that of the raw coal at 140°C, and the inhibition rate reached the maximum at 100°C, which was 81%. Therefore, the microencapsulated modified hydrotalcite has a better inhibition effect on coal spontaneous combustion, and the optimal ratio concentration of microencapsulated modified hydrotalcite to coal is 12.5%. Key words: Coal spontaneous combustion; Microencapsulation; Modified hydrotalcite; Inhibition performance; Encapsulation rate |
参考文献: |
[1]中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2022. [2]邓军, 杨囡囡, 王彩萍, 等. 采空区煤自燃“防-抑-灭”协同防灭火关键技术[J]. 煤矿安全, 2022,53(09):1-8. [3]侯欣然, 郭立稳, 王福生, 等.植酸抑制煤自燃的热分析试验研究[J]. 矿业研究与开发, 2022,42(10):127-131. [4]项宗文, 杜云峰, 崔向兴, 等.在煤自燃火灾防治中阻化剂使用浓度的实验研究[J]. 能源技术与管理, 2022,47(01):113-116. [6]邓军, 白祖锦, 肖旸.煤自燃灾害防治技术现状与挑战[J]. 煤矿安全,2020,51(10):118-125. [8]许红英.复合阻化剂抑制煤自燃的热重动力学实验研究[J]. 矿业研究与开发,2019,39(06):79-84. [12]王紫薇, 衡辉, 李金燕, 等. 水滑石及其衍生物处理水中污染物的研究进展[J]. 中国无机分析化学, 2023,13(05):448-454. [14]郝武民, 张顺孝, 朱佳慧.镍钴水滑石负载偕胺肟化竹纤维在铀吸附中的应用研究[J]. 当代化工研究,2023(02):78-80. [15]程正伟, 包宗宏.固体芯材微胶囊制备技术研究进展[J]. 高分子通报,2010(04):55-61. [18]乔恩斯J.煤炭自燃的深入研究[J]. 防火与消防工程师杂志, 2011,75(08):6-14. [20]姚建, 田冬梅.矿井火灾防治[M]. 煤炭工业出版社,2012,67(04):16-24. [22]尤飞, 皇甫文豪, 王振华, 等.基于热重分析的煤升温氧化及煤氧复合特性分析[J]. 安全与环境学报,2018,18(04):1312-1315. [23]崔鑫峰.高地温采空区煤自燃危险区域判定及防控方法[D].西安科技大学,2021. [24]艾晴雪.煤自燃过程活性基团与自由基反应特性研究[D].华北理工大学,2018. [25]肖旸, 吕慧菲, 邓军, 等.煤自燃阻化机理及其应用技术的研究进展[J]. 安全与环境工程, 2017, 24(01):176-182. [26]张丹, 蔡维维, 邹媛, 等.探究高分子胶体防灭火技术的原理及发展现状[J]. 煤炭技术, 2011, 30(11):252-254. [27]赵建国, 朱化雨, 刘晓泓, 等.煤矿三元复合胶体防灭火材料的制备与性能研究[J]. 功能材料, 2015, 46(13):13139-13143. [29]秦波涛, 鲁义, 殷少举, 等.近距离煤层综放面瓦斯与煤自燃复合灾害防治技术研究[J]. 采矿与安全工程学报, 2013,30(02):311-316. [30]段志勇, 王飞.MgCl2对煤一次氧化与二次氧化影响的实验研究[J]. 煤矿安全,2017, 48(06):13-15+19. [32]周清清.煤自燃倾向性及阻化技术的实验研究[D].浙江大学, 2018. [34]李晓曦, 谭波.煤自燃阻化剂的阻化效果动力学分析及优选[J]. 中国安全科学学报, 2017, 27(06):83-88. [35]吕慧菲.咪唑类离子液体抑制煤自燃热效应及动力学研究[D].西安科技大学, 2018. [37]谢锋承.阻化剂抑制煤自燃的实验研究[D]. 河南理工大学, 2011. [38]李玉春, 商晓林.尿素对煤炭自燃的阻化作用[J]. 内蒙古煤炭经济,2018,(07):135-136. [42]王洋.物理-化学笼式复合阻化剂对煤自燃的影响研究[J]. 徐州:中国矿业大学, 2016. [43]王婕, 张玉龙, 王俊峰, 等.无机盐类阻化剂和自由基捕获剂对煤自燃的协同抑制作用[J]. 煤炭学报,2020,45(12):4132-4143. [45]叶文娟, 杜隆超.一种新型膨胀阻燃剂的合成及与层状双氢氧化物复合阻燃LLDPE[J]. 安徽大学学报(自然科学版), 2016,40(05):87-96. [46]杨妮娜, 马榕翊.镁铁双氢氧化物对聚乙烯协效阻燃性能的研究[J]. 安全, 2014,35(04):15-17+21. [47]吴建方.层状双氢氧化物制备、改性及其CO2吸附性能研究[D].浙江工业大学,2013. [48]刘博, 贾雪梅, 周安宁, 等.锌镁铝类水滑石/煤复合材料协同阻燃乙烯-醋酸乙烯酯共聚物[J]. 高分子材料科学与工程, 2014,30(11):145-150. [49]杨漪.基于氧化特性的煤自燃阻化剂机理及性能研究[D].西安科技大学,2015. [50]闫修川, 李召好, 李法强,等.阻燃用氢氧化镁的表面改性研究现状[J]. 盐湖研究,2005(04):67-71. [52]肖铭.氢氧化镁阻燃剂应用研究进展[J].精细与专用化学品,2022,30(02):31-33. [53]黄雅妮.氢氧化镁无机阻燃剂的改性研究进展[J].材料导报,2014,28(S1):364-367+378. [55]朱超, 李惠萍, 陈世军,等.白度化微胶囊红磷阻燃剂的研究与制备[J]. 现代化工, 2015,35(04):116-118. [57]刘新平.MH/MF与ATH/MF微胶囊的制备及热分解动力学研究[D].郑州大学,2012. [58]吕建平, 梁亚平.微胶囊包覆改善阻燃剂六溴环十二烷的热稳定性能[J]. 高分子材料科学与工程, 2007(05):223-226. [59]吕建平,吴强,瞿保钧.密胺树脂硼酸锌双层包覆微胶囊化氯蜡-70的热稳定性[J].化学通报,2004(06):456-460. [63]于水军, 张如意, 阳虹, 等.防老剂甲的分散性对煤炭自燃阻化效果的影响[J]. 矿业安全与环保,1999(05):23-24+49. [65]陈旭.环境友好无卤阻燃EVA的研制[D].东华大学,2010. [66]陈旭, 虞鑫海, 钟毅, 等.氢氧化镁微胶囊的制备与应用[J]. 绝缘材料, 2009,42(05):14-16+23. [70]李培培, 陈建铭, 宋云华.微胶囊化改性氢氧化镁及其在低密度聚乙烯中的阻燃性能研究[J]. 北京化工大学学报(自然科学版),2011,38(02):76-80. [71]谭逸伦, 赵海珠, 吴雨凡, 等.微胶囊化次磷酸铝阻燃玻璃纤维增强PA 6[J]. 合成树脂及塑料, 2014,31(03):21-24. [72]李孜军, 郭兆东, 吴靓.氯化镁微胶囊泡沫作用机理及阻化效果研究[J]. 中国安全生产科学技术, 2016,12(06):54-58. [73]马超.微胶囊阻化剂泡沫防灭火技术在煤矿的应用[J].煤矿安全,2010(09):48-50. [75]吴世博.煤矿用微胶囊材料防灭火性能研究[D]. 西安科技大学,2018. [76]白子明.防治煤自燃的微胶囊化复合阻化剂研究[D]. 徐州:中国矿业大学, 2019. [77]夏翠萍.温控胞衣复合材料力学性能和阻燃性能的研究[D]. 徐州:中国矿业大学,2019. [81]李毅恒.稀土类水滑石的煤自燃阻化机理研究[D].西安科技大学,2018. [82]王秋红, 靳松灵, 罗振敏, 等.煤变质程度对煤燃烧动力学参数的影响[J]. 安全与环境工程, 2022,29(03):62-70. [83]庞攀, 肖旸, 刘昆华, 等.煤质活性炭氧化自燃热失重及传热特性研究[J]. 煤矿安全, 2020,51(12):27-33. [84]于伟东, 王慧明, 杨晓成, 等.褐煤比热容及热扩散系数随温度衍化规律实验研究[J]. 煤炭工程, 2020,52(11):149-153. [85]王晓东.基于热动力学分析煤自燃特性研究[D].天津理工大学,2020. [87]袁壮.煤自燃阶段特征及活化能变化规律的实验研究[D].重庆大学,2017. [88]刘立威.煤自燃阻化剂高温阻燃特性研究[D].中国矿业大学,2019. [89]李小玉, 邵帅.防治煤自燃的新型复合阻化剂研究及应用[J]. 辽宁工程技术大学学报(自然科学版), 2017,36(03):267-271. [90]樊世星.高瓦斯易自燃采空区瓦斯与遗煤自燃共生灾害研究[D].安徽建筑大学,2016. [91]寇雅芳.磷系化合物抑制煤自燃热动力学研究[D].华北理工大学,2019. [92]张铎, 唐瑞, 王振等.基于热重分析的红庆河煤自燃热动力学研究[J].西安科技大学学报,2020,40(06):974-980. [93]刘傲, 刘梦华, 李珂等.肥煤自燃全过程热动力学特征参数研究[J]. 工业安全与环保,2020,46(03):18-22+41. [94]许红英.复合阻化剂抑制煤自燃的热重动力学实验研究[J].矿业研究与开发,2019,39(06):79-84. [95]李霖, 蔡喜韬, 惠嘉,等.微胶囊相变材料研究发展及在沥青混合料中的应用现状[J]. 化工新型材料, 2022,50(08):292-296. [96]高玉坤, 黄志安, 张英华, 等.碳酸氢盐阻化剂抑制遗煤自燃机理的实验研究[J]. 矿业研究与开发, 2012(01):64-68. [99]石婷静.相变微胶囊的微流体技术制备及研究[D].天津大学,2020. [100]韩阳,吕洛,唐永红,等.两种壁材迷迭香精油脂质体包埋效果的比较[J].上海交通大学 学报(农业科学版),2017,35(01):72-77+94. [101]许芸芸.煤自燃氧化特性测试系统耗氧规律分析[J].唐山学院学报,2019,32(06):57-62. [102]魏泽.钠盐微胶囊阻化剂抑制煤自燃特性实验研究[D].西安科技大学,2021. [103]马砺, 马武阳, 何铖茂, 等.钠盐微胶囊制备及其阻化性能研究[J]. 煤矿安全, 2022,53(09):94-99. |
中图分类号: | TD752.2 |
开放日期: | 2024-06-16 |